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Preface

Engineers apply mathematics and science to solve problems. In a traditional under-
graduate engineering curriculum, students begin their academic career by taking
courses in mathematics and basic sciences such as chemistry and physics. Students

begin to develop basic problem-solving skills in engineering courses such as statics, dynam-
ics, mechanics of solids, fluid mechanics, and thermodynamics. In such courses, students
learn to apply basic laws of nature, constitutive equations, and equations of state to devel-
op solutions to abstract engineering problems. 

Vibrations is one of the first courses where students learn to apply the knowledge obtained
from mathematics and basic engineering science courses to solve practical problems. While the
knowledge about vibrations and vibrating systems is important, the problem-solving skills
obtained while studying vibrations are just as important. The objectives of this book are two-
fold: to present the basic principles of engineering vibrations and to present them in a frame-
work where the reader will advance his/her knowledge and skill in engineering problem solving. 

This book is intended for use as a text in a junior- or senior-level course in vibrations. It
could be used in a course populated by both undergraduate and graduate students. The latter
chapters are appropriate for use as a stand-alone graduate course in vibrations. The prerequi-
sites for such a course should include courses in statics, dynamics, mechanics of materials, and
mathematics using differential equations. Some material covered in a course in fluid mechan-
ics is included, but this material can be omitted without a loss in continuity.

Chapter 1 is introductory, reviewing concepts such as dynamics, so that all readers are
familiar with the terminology and procedures. Chapter 2 focuses on the elements that com-
prise mechanical systems and the methods of mathematical modeling of mechanical systems.
It presents two methods of the derivation of differential equations: the free-body diagram
method and the energy method, which are used throughout the book. Chapters 3 through 5
focus on single degree-of-freedom (SDOF) systems. Chapter 6 is focused solely on two
degree-of-freedom systems. Chapters 7 through 9 focus on general multiple degree-of-freedom
systems. Chapter 10 provides a brief overview of continuous systems. The topic of Chapter 11
is the finite-element methods, which is a numerical method with its origin in energy meth-
ods, allowing continuous systems to be modeled as discrete systems. Chapter 12 introduces
the reader to nonlinear vibrations, while Chapter 13 provides a brief introduction to random
vibrations.

The references at the end of this text list many excellent vibrations books that address
the topics of vibration and design for vibration suppression. There is a need for this book,
as it has several unique features:
• Two benchmark problems are studied throughout the book. Statements defining the

generic problems are presented in Chapter 1. Assumptions are made to render SDOF
models of the systems in Chapter 2 and the free and forced vibrations of the systems
studied in Chapters 3 through 5, including vibration isolation. Two degree-of-freedom
system models are considered in Chapter 6, while MDOF models are studied in



Chapters 7 through 9. A continuous-systems model for one benchmark problem is
considered in Chapter 10 and solved using the finite-element method in Chapter 11.
A random-vibration model of the other benchmark problem is considered in Chapter 13.
The models get more sophisticated as the book progresses. 

• Most vibration problems (certainly ones encountered by undergraduates) involve the
planar motion of rigid bodies. Thus, a free-body diagram method based upon
D’Alembert’s principle is developed and used for rigid bodies or systems of rigid bod-
ies undergoing planar motion.

• An energy method called the equivalent systems method is developed for SDOF sys-
tems without introducing Lagrange’s equations. Lagrange’s equations are reserved for
MDOF systems.

• Most chapters have a Further Examples section which presents problems using con-
cepts presented in several sections or even several chapters of the book.

• MATLAB® is used in examples throughout the book as a computational and graphi-
cal aid. All programs used in the book are available at the specific book website acces-
sible through www.cengage.com/engineering.

• The Laplace transform method and the concept of the transfer function (or the impul-
sive response) is used in MDOF problems. The sinusoidal transfer function is used to
solve MDOF problems with harmonic excitation.

• The topic of design for vibration suppression is covered where appropriate. The design
of vibration isolation for harmonic excitation is covered in Chapter 4, vibration isola-
tion from pulses is covered in Chapter 5, design of vibration absorbers is considered
in Chapter 6, and vibration isolation problems for general MDOF systems is consid-
ered in Chapter 9.

To access additional course materials, please visit www.cengagebrain.com. At the
cengagebrain.com home page, search for the ISBN of your title (from the back cover of
your book) using the search box at the top of the page. This will take you to the product
page where these resources can be found.

The author acknowledges the support and encouragement of numerous people in the
preparation of this book. Suggestions for improvement were taken from many students
at The University of Akron. The author would like to especially thank former students
Ken Kuhlmann for assistance with the problem involving the rotating manometer in
Chapter 12, Mark Pixley for helping with the original concept of the prototype for the soft-
ware package available at the website, and J.B. Suh for general support.  The author also
expresses gratitude to Chris Carson, Executive Director, Global Publishing; Chris Shortt,
Publisher, Global Engineering; Randall Adams, Senior Acquisitions Editor; and Hilda
Gowans, Senior Developmental Editor, for encouragement and guidance throughout the
project. The author also thanks George G. Adams, Northeastern University; Cetin
Cetinkaya, Clarkson University; Shanzhong (Shawn) Duan, South Dakota State
University; Michael J. Leamy, Georgia Institute of Technology; Colin Novak, University of
Windsor; Aldo Sestieri, University La Sapienza Roma; and Jean Zu, University of Toronto,
for their valuable comments and suggestions for making this a better book. Finally, the
author expresses appreciation to his wife, Seala Fletcher-Kelly, not only for her support and
encouragement during the project but for her help with the figures as well.

S. GRAHAM KELLY
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C h a p t e r 1

INTRODUCTION

1.1 THE STUDY OF VIBRATIONS
Vibrations are oscillations of a mechanical or structural system about an equilibrium posi-
tion. Vibrations are initiated when an inertia element is displaced from its equilibrium
position due to an energy imparted to the system through an external source. A restoring
force, or a conservative force developed in a potential energy element, pulls the element
back toward equilibrium. When work is done on the block of Figure 1.1(a) to displace it
from its equilibrium position, potential energy is developed in the spring. When the block
is released the spring force pulls the block toward equilibrium with the potential energy
being converted to kinetic energy. In the absence of non-conservative forces, this transfer
of energy is continual, causing the block to oscillate about its equilibrium position. When
the pendulum of Figure 1.1(b) is released from a position above its equilibrium position
the moment of the gravity force pulls the particle, the pendulum bob, back toward equi-
librium with potential energy being converted to kinetic energy. In the absence of non-con-
servative forces, the pendulum will oscillate about the vertical equilibrium position.

Non-conservative forces can dissipate or add energy to the system. The block of 
Figure 1.2(a) slides on a surface with a friction force developed between the block and the
surface. The friction force is non-conservative and dissipates energy. If the block is given a
displacement from equilibrium and released, the energy dissipated by the friction force
eventually causes the motion to cease. Motion is continued only if additional energy is
added to the system as by the externally applied force in Figure 1.2(b).



2 CHAPTER 1

Vibrations occur in many mechanical and structural systems. If uncontrolled, vibration
can lead to catastrophic situations. Vibrations of machine tools or machine tool chatter can
lead to improper machining of parts. Structural failure can occur because of large dynamic
stresses developed during earthquakes or even wind-induced vibration. Vibrations induced
by an unbalanced helicopter blade while rotating at high speeds can lead to the blade’s fail-
ure and catastrophe for the helicopter. Excessive vibrations of pumps, compressors, turbo-
machinery, and other industrial machines can induce vibrations of the surrounding
structure, leading to inefficient operation of the machines while the noise produced can
cause human discomfort. 

Vibrations can be introduced, with beneficial effects, into systems in which they would
not naturally occur. Vehicle suspension systems are designed to protect passengers from dis-
comfort when traveling over rough terrain. Vibration isolators are used to protect structures
from excessive forces developed in the operation of rotating machinery. Cushioning is used
in packaging to protect fragile items from impulsive forces.

Energy harvesting takes unwanted vibrations and turns them into stored energy. An
energy harvester is a device that is attached to an automobile, a machine, or any system that
is undergoing vibrations. The energy harvester has a seismic mass which vibrates when
excited, and that energy is captured electronically. The principle upon which energy har-
vesting works is discussed in Chapter 4.

Micro-electromechanical (MEMS) systems and nano-electromechanical (NEMS) sys-
tems use vibrations. MEMS sensors are designed using concepts of vibrations. The tip of

(a) (b) mg

T

k

kx

FIGURE 1.1
(a) When the block is displaced
from equilibrium, the force
developed in the spring (as a
result of the stored potential
energy) pulls the block back
toward the equilibrium posi-
tion. (b) When the pendulum is
rotated away from the vertical
equilibrium position, the
moment of the gravity force
about the support pulls the
pendulum back toward the
equilibrium position. x

μ

(a)

kx

mg

N

μmg

x

F F

(b)

kx

mg

N

μmg

FIGURE 1.2
(a) Friction is a non-conserva-
tive force which dissipates
the total energy of the
system. (b) The external force
is a non-conservative force
which does work on the
system
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an atomic force microscope uses vibrations of a nanotube to probe a specimen.
Applications to MEMS and NEMS are sprinkled throughout this text.

Biomechanics is an area where vibrations are used. The human body is modeled using
principles of vibration analysis. Chapter 7 introduces a three-degree-of-freedom model of
a human hand and upper arm proposed by Dong, Dong, Wu, and Rakheja in the Journal
of Biomechanics.

The study of vibrations begins with the mathematical modeling of vibrating systems.
Solutions to the resulting mathematical problems are obtained and analyzed. The solutions
are used to answer basic questions about the vibrations of a system as well as to determine
how unwanted vibrations can be reduced or how vibrations can be introduced into a
system with beneficial effects. Mathematical modeling leads to the development of princi-
ples governing the behavior of vibrating systems.

The purpose of this chapter is to provide an introduction to vibrations and a review of
important concepts which are used in the analysis of vibrations. This chapter begins with
the mathematical modeling of vibrating systems. This section reviews the intent of the
modeling and outlines the procedure which should be followed in mathematical modeling
of vibrating systems.

The coordinates in which the motion of a vibrating system is described are called the
generalized coordinates. They are defined in Section 1.3, along with the definition of
degrees of freedom. Section 1.4 presents the terms which are used to classify vibrations and
describe further how this book is organized.

Section 1.5 is focused on dimensional analysis, including the Buckingham Pi theorem.
This is a topic which is covered in fluid mechanics courses but is given little attention in
solid mechanics and dynamics courses. It is important for the study of vibrations, as is
steady-state amplitudes of vibrating systems are written in terms of non-dimensional vari-
ables for an easier understanding of dependence on parameters.

Simple harmonic motion represents the motion of many undamped systems and is pre-
sented in Section 1.6.

Section 1.7 provides a review of the dynamics of particles and rigid bodies used in this
work. Kinematics of particles is presented and is followed by kinematics of 
rigid bodies undergoing planar motion. Kinetics of particles is based upon Newton’s second
law applied to a free-body diagram (FBD). A form of D’Almebert’s principle is used to ana-
lyze problems involving rigid bodies undergoing planar motion. Pre-integrated forms of
Newton’s second law, the principle of work and energy, and the principle of impulse and
momentum are presented.

Section 1.8 presents two benchmark problems which are used throughout the book to
illustrate the concepts presented in each chapter. The benchmark problems will be reviewed
at the end of each chapter. Section 1.9 presents further problems for additional study. This
section will be present at the end of most chapters and will cover problems that use con-
cepts from more than one section or even more than one chapter. Every chapter, including
this one, ends with a summary of the important concepts covered and of the important
equations introduced in that chapter.

Differential equations are used in Chapters 3, 4, and 5 to model single degree-of-freedom
(SDOF) systems. Systems of differential equations are used in Chapters 6, 7, 8, and 9 to
study multiple degree-of-freedom systems. Partial differential equations are used in
Chapter 10 to study continuous systems. Chapter 11 introduces an approximate method
for the solution of partial differential equations. Chapter 12 uses nonlinear differential
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equations to model nonlinear systems. Chapter 13 uses stochastic differential equations to
study random vibrations. Differential equations are not the focus of this text, although
methods of solution are presented. The reader is referred to a text on differential equations
for a more thorough understanding of the mathematical methods employed.

1.2 MATHEMATICAL MODELING
Solution of an engineering problem often requires mathematical modeling of a physical
system. The modeling procedure is the same for all engineering disciplines, although the
details of the modeling vary between disciplines. The steps in the procedure are presented
and the details are specialized for vibrations problems.

1.2.1 PROBLEM IDENTIFICATION
The system to be modeled is abstracted from its surroundings, and the effects of the sur-
roundings are noted. Known constants are specified. Parameters which are to remain vari-
able are identified.

The intent of the modeling is specified. Possible intents for modeling systems under-
going vibrations include analysis, design, and synthesis. Analysis occurs when all parame-
ters are specified and the vibrations of the system are predicted. Design applications include
parametric design, specifying the parameters of the system to achieve a certain design
objective, or designing the system by identifying its components.

1.2.2 ASSUMPTIONS
Assumptions are made to simplify the modeling. If all effects are included in the modeling
of a physical system, the resulting equations are usually so complex that a mathematical
solution is impossible. When assumptions are used, an approximate physical system is
modeled. An approximation should only be made if the solution to the resulting approxi-
mate problem is easier than the solution to the original problem and with the assumption
that the results of the modeling are accurate enough for the use they are intended. 

Certain implicit assumptions are used in the modeling of most physical systems. These
assumptions are taken for granted and rarely mentioned explicitly. Implicit assumptions
used throughout this book include:

1. Physical properties are continuous functions of spatial variables. This continnum
assumption implies that a system can be treated as a continuous piece of matter. The
continuum assumption breaks down when the length scale is of the order of the mean
free path of a molecule. There is some debate as to whether the continuum assump-
tion is valid in modeling new engineering materials, such as carbon nanotubes.
Vibrations of nanotubes where the length-to-diameter ratio is large can be modeled
reasonably using the continuum assumption, but small length-to-diameter ratio nan-
otubes must be modeled using molecular dynamics. That is, each molecule is treated
as a separate particle.

2. The earth is an inertial reference frame, thus allowing application of Newton’s laws in
a reference frame fixed to the earth.
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3. Relativistic effects are ignored. (Certaintly, velocities encountered in the modeling of
vibrations problems are much less than the speed of light).

4. Gravity is the only external force field. The acceleration due to gravity is 
9.81 m/s2 (32.2 ft/s2) on the surface of the earth.

5. The systems considered are not subject to nuclear reactions, chemical reactions, exter-
nal heat transfer, or any other source of thermal energy.

6. All materials are linear, isotropic, and homogeneous.

7. The usual assumptions of mechanics of material apply. This includes plane sections
remaining plane for beams in bending and circular sections under torsional loads do
not warp.

Explicit assumptions are those specific to a particular problem. An explicit assumption
is made to eliminate negligible effects from the analysis or to simplify the problem while
retaining appropriate accuracy. An explicit assumption should be verified, if possible, on
completion of the modeling.

All physical systems are inherently nonlinear. Exact mathematical modeling of any
physical system leads to nonlinear differential equations, which often have no analytical
solution. Since exact solutions of linear differential equations can usually be determined
easily, assumptions are often made to linearize the problem. A linearizing assumption leads
either to the removal of nonlinear terms in the governing equations or to the approxima-
tion of nonlinear terms by linear terms. 

A geometric nonlinearity occurs as a result of the system’s geometry. When the dif-
ferential equation governing the motion of the pendulum bob of Figure 1.1(b) is
derived, a term equal to sin � (where � is the angular displacement from the equilib-
rium position) occurs. If � is small, sin � � � and the differential equation is linearized.
However, if aerodynamic drag is included in the modeling, the differential equation is
still nonlinear.

If the spring in the system of Figure 1.1(a) is nonlinear, the force-displacement relation
in the spring may be The resulting differential equation that governs the
motion of the system is nonlinear. This is an example of a material nonlinearity. The
assumption is often made that either the amplitude of vibration is small (such that

and the nonlinear term neglected).
Nonlinear systems behave differently than linear systems. If linearization of the differ-

ential equation occurs, it is important that the results are checked to ensure that the lin-
earization assumption is valid.

When analyzing the results of mathematical modeling, one has to keep in mind that
the mathematical model is only an approximation to the true physical system. The actual
system behavior may be somewhat different than that predicted using the mathematical
model. When aerodynamic drag and all other forms of friction are neglected in a mathe-
matical model of the pendulum of Figure 1.1(b) then perpetual motion is predicted for the
situation when the pendulum is given an initial displacement and released from rest. Such
perpetual motion is impossible. Even though neglecting aerodynamic drag leads to an
incorrect time history of motion, the model is still useful in predicting the period, fre-
quency, and amplitude of motion.

Once results have been obtained by using a mathematical model, the validity of all
assumptions should be checked.

k3x
3

V k1x

F = k1x + k3x
3.
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1.2.3 BASIC LAWS OF NATURE
A basic law of nature is a physical law that applies to all physical systems regardless of the
material from which the system is constructed. These laws are observable, but cannot be
derived from any more fundamental law. They are empirical. There exist only a few basic
laws of nature: conservation of mass, conservation of momentum, conservation of energy,
and the second and third laws of thermodynamics.

Conservation of momentum, both linear and angular, is usually the only physical law
that is of significance in application to vibrating systems. Application of the principle of
conservation of mass to vibrations problems is trivial. Applications of the second and third
laws of thermodynamics do not yield any useful information. In the absence of thermal
energy, the principle of conservation of energy reduces to the mechanical work-energy
principle, which is derived from Newton’s laws.

1.2.4 CONSTITUTIVE EQUATIONS
Constitutive equations provide information about the materials of which a system is made.
Different materials behave differently under different conditions. Steel and rubber behave
differently because their constitutive equations have different forms. While the constitutive
equations for steel and aluminum are of the same form, the constants involved in the equa-
tions are different. Constitutive equations are used to develop force-displacement relation-
ships for mechanical components that are used in modeling vibrating systems.

1.2.5 GEOMETRIC CONSTRAINTS
Application of geometric constraints is often necessary to complete the mathematical mod-
eling of an engineering system. Geometric constraints can be in the form of kinematic rela-
tionships between displacement, velocity, and acceleration. When application of basic laws
of nature and constitutive equations lead to differential equations, the use of geometric
constraints is often necessary to formulate the requisite boundary and initial conditions.

1.2.6 DIAGRAMS
Diagrams are often necessary to gain a better understanding of the problem. In vibrations,
one is interested in forces and their effects on a system. Hence, a free-body diagram (FBD),
which is a diagram of the body abstracted from its surrounding and showing the effect of
those surroundings in the form of forces, is drawn for the system. Since one is interested
in modeling the system for all time, a FBD is drawn at an arbitrary instant of time.

Two types of forces are illustrated on a FBD: body forces and surface forces. A body
force is applied to a particle in the interior of the body and is a result of the body existence
in an external force field. An implicit assumption is that gravity is the only external force
field surrounding the body. The gravity force –(mg) is applied to the center of mass and is
directed toward the center of the earth, usually taken to be the downward direction, as
shown in Figure 1.3.

Surface forces are drawn at a particle on the body’s boundary as a result of the interaction
between the body and its surroundings. An external surface force is a reaction between the
body and its external surface. Surface forces may be acting at a single point on the boundary
of the body, as shown in Figure 1.4(a), or they may be distributed over the surface of the

FIGURE 1.3
The gravity force is directed
toward the center of the
earth, usually taken as the
vertical direction.

mg



Introduction 7

body, as illustrated in Figure 1.4(b). Surface forces also may be the resultant of a stress 
distribution.

In analyzing vibrations, FBDs are generally drawn at an arbitrary instant in the motion
of the body. Forces are labeled in terms of coordinates and system parameters. Constitutive
laws and geometric constraints are taken into consideration. An FBD drawn and annotated
as described, is ready for the basic laws of nature to be applied.

1.2.7 MATHEMATICAL SOLUTION
The mathematical modeling of a physical system results in the formulation of a mathemat-
ical problem. The modeling is not complete until the appropriate mathematics is applied
and a solution obtained. 

The type of mathematics required is different for different types of problems. Modeling
of many statics, dynamics, and mechanics of solids problems leads only to algebraic equa-
tions. Mathematical modeling of vibrations problems leads to differential equations.

Exact analytical solutions, when they exist, are preferable to numerical or approximate
solutions. Exact solutions are available for many linear problems, but for only a few non-
linear problems.

1.2.8 PHYSICAL INTERPRETATION OF MATHEMATICAL RESULTS
After the mathematical modeling is complete, there is still work to be done. Vibrations is
an applied science—the results must mean something. The end result may be generic: to
determine the frequency response of a system due to a harmonic force where a non-dimen-
sional form of the frequency response would be a great help in understanding the behavior
of the system. The reason for the mathematical modeling may be more specific: to analyze
a specific system to determine the maximum displacement. It only remains to substitute
given numbers. The objective of the mathematical modeling dictates the form of the phys-
ical interpretation of the results.

The mathematical modeling of a vibrations problem is analyzed from the beginning
(where the conservation laws are applied to a FBD) to the end (where the results are used).
A variety of different systems are analyzed, and the results of the modeling applied.

1.3 GENERALIZED COORDINATES
Mathematical modeling of a physical system requires the selection of a set of variables that
describes the behavior of the system. Dependent variables are the variables that describe the
physical behavior of the system. Examples of dependent variables are displacement of a par-
ticle in a dynamic system, the components of the velocity vector in a fluid flow problem,

F sinω t

(a)

F(x) sinωt

(b)

FIGURE 1.4
(a) A surface force applied to the beam
may be concentrated at a single point.
(b) A surface force also may be a distrib-
uted load, as shown on the beam.
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the temperature in a heat transfer problem, or the electric current in an AC circuit prob-
lem. Independent variables are the variables with which the dependent variables change.
That is, the dependent variables are functions of the independent variables. An independ-
ent variable for most dynamic systems and electric circuit problems is time. The temper-
ature distribution in a heat transfer problem may be a function of spatial position as well
as time. The dependent variables in most vibrations problems are the displacements of
specified particles from the system’s equilibrium position while time is the independent
variable.

Coordinates are kinematically independent if there is no geometric relationship
between them. The coordinates in Figure 1.5(a) are kinematically dependent because

(1.1)

and

(1.2)

In Figure 1.5(b), the cables have some elasticity which is modeled by springs. The coordi-
nates x, y, and � are kinematically independent, because Equations (1.1) and (1.2) are not
applicable due to the elasticity of the cables.

The number of degrees of freedom for a system is the number of kinematically inde-
pendent variables necessary to completely describe the motion of every particle  in the
system. Any set of n kinematically independent coordinate for a system with n degrees of
freedom is called a set of generalized coordinates. The number of degrees of freedom used in
analyzing a system is unique, but the choice of generalized coordinates used to describe the
motion of the system is not unique. The generalized coordinates are the dependent vari-
ables for a vibrations problem and are functions of the independent variable, time. If the
time history of the generalized coordinates is known, the displacement, velocity, and accel-
eration of any particle in the system can be determined by using kinematics.

A single particle free to move in space has three degrees of freedom, and a suitable choice
of generalized coordinates is the cartesian coordinates (x, y, z) of the particle with respect to
a fixed reference frame. As the particle moves in space, its position is a function of time.

A unrestrained rigid body has six degrees of freedom, three coordinates for the dis-
placement of its mass center, and angular rotation about three coordinate axes, as shown in
Figure 1.6(a). However constraints may reduce that number. A rigid body undergoing 
planar motion has three possible degrees of freedom, the displacement of its mass center in

y = r1u =

r1

r2
 

x = r2u

r2

r1

x

y

θ

(a)

r2
r1

x

y

θ

(b)

FIGURE 1.5
(a) The coordinates x, y, and
� are kinematically depend-
ent, because there exists a
kinematic relationship
between them. (b) The coor-
dinates x, y, and � are kine-
matically independent,
because there is no kinematic
relation between them due
to the elasticity of the cables
modeled here as springs.
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a plane, and angular rotation about one axis, as illustrated in Figure 1.6(b). Two rigid
bodies undergoing planar motion have six degrees of freedom, but they may be connected
in a manner which constrains them and reduces the number of degrees of freedom.

y

x

xi + yj + zk

xi + yj

z
(a)

θy

θx

θz

y

x

GG

z
(b)

θz

FIGURE 1.6
(a) The general three-dimen-
sional motion of a rigid body
has six degrees of freedom. Its
mass center is free to move in
three coordinate directions,
and rotation may occur about
three axes. (b) A rigid body
undergoing planar motion has
at most three degree of free-
dom. Its mass center can move
in two directions, and rotation
occurs only about an axis per-
pendicular to the plane of
motion.

EXAMPLE 1 . 1
Each of the systems of Figure 1.7 is in equilibrium in the position shown and undergoes
planar motion. All bodies are rigid. Specify, for each system, the number of degrees of free-
dom and recommend a set of generalized coordinates.

SO LU T I ON
(a) The system has one degree of freedom. If �, the clockwise angular displacement of the
bar from the system’s equilibrium position, is chosen as the generalized coordinate, then a

FIGURE 1.7
(a) through (d) Systems of Example 1.1. Possible generalized coordinates are indicated.

L

(a)

θ G

(b)

θ

x

(c)

x2

x1

(d)
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x

φ

θ
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particle initially a distance a from the fixed support has a horizontal position a cos � and a
vertical displacement a sin �.

(b) The system has two degrees of freedom, assuming it is constrained from side-to-
side motion. If �, the clockwise angular displacement of the bar measured from its equilib-
rium position, and x, the displacement of the bar’s mass center measured from equilibrium,
are chosen as generalized coordinates, then the displacement of a particle a distance d to
the right of the mass center is x � d sin �. An alternate choice for the generalized coordi-
nates is x1, the displacement of the right end of the bar, and x2, the displacement of the left
end of the bar, both measured from equilibrium.

(c) The system has two degrees of freedom. The sliding block is rigidly connected to
the pulley, but the pulley is connected by a spring to the hanging block. Two possible
degrees of freedom are x1 (the displacement of the sliding block from equilibrium) and x2
(the displacement of the hanging mass from the system’s equilibrium position). An alter-
nate choice of generalized coordinates are � (the clockwise angular rotation of the pulley
from equilibrium) and x2.

(d) The system has four degrees of freedom. The sliding block is connected by an 
elastic cable to the pulley. The pulley is connected by an elastic cable to bar AB, which is
connected by a spring to bar CD. A possible set of generalized coordinates (all from equi-
librium) is x, the displacement of the sliding block; �, the clockwise angular rotation of the
pulley; �, the counterclockwise angular rotation of bar AB; and �, the clockwise angular
rotation of bar CD.

The systems of Example 1.1 are assumed to be composed of rigid bodies. The rela-
tive displacement of two particles on a rigid body remains fixed as motion occurs.
Particles in an elastic body may move relative to one another as motion occurs. Particles
A and C lie along the neutral axis of the cantilever beam of Figure 1.8, while particle B
is in the cross section obtained by passing a perpendicular plane through the neutral
axis at A. Because of the assumption that plane sections remain plane during displace-
ment, the displacements of particles A and B are related. However, the displacement of
particle C relative to particle A depends on the loading of the beam. Thus, the displace-
ments of A and C are kinematically independent. Since A and C represent arbitrary par-
ticles on the beam’s neutral axis, it is inferred that there is no kinematic relationship
between the displacements of any two particles along the neutral axis. Since there are
an infinite number of particles along the neutral axis, the cantilever beam has an infi-
nite number of degrees of freedom. In this case, an independent spatial variable x,
which is the distance along the neutral axis to a particle when the beam is in equilib-
rium, is defined. The dependent variable, displacement, is a function of the independ-
ent variables x and time, w(x, t).

A C

B

w(x, t)

x

FIGURE 1.8
The transverse displacements of particles A and B are
equal from elementary beam theory. However, no kine-
matic relationship exists between the displacements of
particle A and B particle C. The beam has an infinite
number of degrees of freedom and is a continuous
system.
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1.4 CLASSIFICATION OF VIBRATION
Vibrations are classified by the number of degrees of freedom necessary for their modeling,
the type of forcing they are subject to, and the assumptions used in the modeling.
Vibrations of systems that have a finite number of degrees of freedom are called discrete 
systems. A system with one degree of freedom is called a single degree-of-freedom (SDOF)
system. A system with two or more degrees of freedom is called a multiple degree-of-freedom
(MDOF) system. A system with an infinite number of degrees of freedom is called a contin-
uous system or distributed parameter system.

If the vibrations are initiated by an initial energy present in the system and no other
source is present, the resulting vibrations are called free vibrations. If the vibrations are
caused by an external force or motion, the vibrations are called farced vibrations. If the
external input is periodic, the vibrations are harmonic. Otherwise, the vibrations are said to
be transient. If the input is stochastic, the vibrations are said to be random.

If the vibrations are assumed to have no source of energy dissipation, they are called
undamped. If a dissipation source is present, the vibrations are called damped and are fur-
ther characterized by the form of damping. For example, if viscous damping is present, they
are called viscously damped.

If assumptions are made to render the differential equations governing the vibrations
linear, the vibrations are called linear. If the governing equations are nonlinear, then so are
the vibrations.

Mathematical modeling of SDOF systems is the topic of Chapter 2. Free vibrations of
SDOF systems are covered in Chapter 3 (first undamped, then viscously damped, and finally
with other forms of damping). Forced vibrations of SDOF systems are covered in Chapter 4
(harmonic) and Chapter 5 (transient). Chapter 6 discusses the special case of two degree-of-
freedom systems from the derivation of the differential equations to forced vibrations. The
more general MDOF systems are considered in Chapters 7 through 9. Chapter 7 focuses on
the modeling of MDOF systems, Chapter 8 on the free vibration response of undamped and
damped systems, and Chapter 9 on the forced response of MDOF systems. Chapters 10 and
11 consider continuous systems. The exact free and forced response of continuous systems is
covered in Chapter 10, while Chapter 11 presents a numerical method called the finite-
element method, which is used to approximate continuous systems with a discrete systems
model. Chapter 12 covers nonlinear vibrations. Finally, Chapter 13 covers random vibrations.

1.5 DIMENSIONAL ANALYSIS
An engineer want to run tests to find the correlation between a single dependent variable
and four independent variables,

(1.3)

There are ten values of each independent variable. Changing one variable at a time requires
10,000 tests. The expense and time required to run these tests are prohibitive.

A better method to organize the tests is to use non-dimensional variables. 
The Buckingham Pi theorem states that you count the number of variables, including the

y = f (x1, x2, x3, x4)
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dependent variable: call it n. Then count the number of basic dimensions involved in the
variables; call it r. Then you need n � r dimensionless variables or � groups. If n � 6 and
n � 3 there are three � groups, and the relation has a non-dimensional form of

(1.4)

where �1 is a dimensionless group of parameters involving the dependent variable and �2
and �3 are dimensionless groups that involve only the independent parameters.

Usually, the dimensionless parameters have physical meaning. For example, in fluid
mechanics when it is desired to find the drag force acting on an airfoil, it is proposed that

(1.5)

where D is the drag force, v is the velocity of the flow, L is the length of the airfoil, � is the
mass density of the fluid, � is the viscosity of the fluid, and c is the speed of sound in the
fluid. There are six variables which involve three dimensions. Thus, the Buckingham Pi
theorem yields a formulation involving three � groups. The result is

(1.6)

where the drag coefficient is

(1.7)

the Reynolds number is

(1.8)

and the Mach number is

(1.9)

The drag coefficient is the ratio of the drag force to the inertia force, the Reynolds number
is the ratio of the inertia force to the viscous force, and the Mach number is the ratio to
the velocity of the flow to the speed of sound.

Dimensional analysis also can be used when a known relationship exists between a
single dependent variable and a number of dimensional variables. The algebra leads to a
relationship between a dimensionless variable involving the dependent parameter and non-
dimensional variables involving the independent parameters.

M =

v
c

Re =

rvL

m

CD =

D
1

2
rv2L

CD = f (Re, M  )

D = f (v, L, r, m, c)

p1 = f (p2,p3)

EXAMPLE 1 . 2
A dynamic vibration absorber is added to a primary system to reduce its amplitude. The
absorber is illustrated in Figure 1.9 and studied in Chapter 6. The steady-state amplitude
of the primary system is dependent upon six parameters:

• m1, the mass of the primary system
• m2, the absorber mass
• k1, the stiffness of the primary system
• k2, the absorber stiffness
• F0, the amplitude of excitation
• �, the frequency of excitation
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The equation for the dimensional amplitude is

(a)

Non-dimensionalize this relationship.

SO LU T I ON
The dimensional variables involve three independent basic dimensions: mass, length, and
time. The Buckingham Pi theorem predicts that the non-dimensional relationship between
X1 and the parameters involve 7 � 3 � 4 non-dimensional parameters. Factor k2 out of the
numerator and k1k2 out of the denominator, resulting in 

(b)

Multiply both sides by , making both sides dimensionless. Define and

, leading to

(c)p1 = 3 1 - p2

m1v
2

k1

p2 - p2 + am1

k1

+

m2

k1

bv2
+ 1
3

p2 =

m2v
2

k2

p1 =

k1x1

F0

k1

F0

X1 =

F0

k1

4 1 -

m2v
2

k2

m1m2v
4

k1k2

- am1

k1

+

m2

k2

+

m2

k1

bv2
+ 1

4

X1 = F0
3 k2 - m2v

2

m1m2v
2

- (k2m1 + k1m2 + k2m2)v
2

+ k1k2

3

F0 sinωt

Primary
system

Absorber
system

k2

m1

m2

k1

2

k1

2

FIGURE 1.9
Example 1.2 is to determine the non-dimen-
sional form of the steady-state amplitude
of the primary system when an absorber
system is added.
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Define . The final dimensional term in Equation (c) becomes

(d)

The non-dimensional form of Equation (a) is

(e)

1.6 SIMPLE HARMONIC MOTION
Consider a motion represented by

(1.10)

Such a motion is referred to as simple harmonic motion. Use of the trigonometric identity

(1.11)

in Equation (1.10) gives

(1.12)

where

(1.13)

and

(1.14)

Equation (1.12) is illustrated in Figure 1.10. The amplitude, X, is the maximum displace-
ment from equilibrium. The response is cyclic. The period is the time required to execute
one cycle, is determined by

(1.15)

and is usually measured in seconds (s). The reciprocal of the period is the number of cycles
executed in one second and is called the frequency

(1.16)

The unit of cycles/second is designated as one hertz (Hz). As the system executes 
one cycle, the argument of the trigonometric function goes through 2� radians. Thus, 

f =

v

2p

T =

2p
v

f = tan-1aA
B
b

X = 2A2
+ B2

x (t ) = X sin (vt + f)

 sin (vt + f) =  sin vt cos f + cos vt sin f

x (t ) = A cos vt + B sin vt

p1 = 3 1 - p2

p3p2 - p2 + (1 + p4) p3 + 1
3

am1

k1

+

m2

k1

bv2 = p3a1 +

m2

m1
b = p3(1 + p4)

p3 =

m1v
2

k1
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1 cycle � 2� radians and the frequency becomes

(1.17)

Thus, � is the circular frequency measured in rad/s. The frequency also may be
expressed in term of revolutions per minute (rpm) by noting that one revolution is the
same as one cycle and there are 60 s in one minute,

(1.18)

The phase angle � represents the lead or lag between the response and a purely sinusoidal
response. If  , the response is said to  “lag” a pure sinusoid, and if  , the response
is said to “lead” the sinusoid.

f 6 0f 7 0

v rpm/s = (v rad/s)a 1 rev

2p rad
b a 60 s

1 min 
b

f = a v
2p

 cycle/sb (2p rad/cycle) = v rad/s

–3

–2

–1

0x(
t)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
t

1

2

3 FIGURE 1.10
Illustration of simple har-
monic motion in which � � 0
and the response lags a pure
sinusoid.

EXAMPLE 1 . 3
The response of a system is given by

(a)

Determine (a) the amplitude of motion, (b) the period of motion, (c) the frequency in
Hz, (d) the frequency in rad/s, (e) the frequency in rpm, (f ) the phase angle, and (g) the
response in the form of Equation (1.12)

SO LU T I ON
(a) The amplitude is given by Equation (1.13) which results in

(b)

(b) The period of motion is

(c)

(c) The frequency in hertz is

(d)f =

1
T

=

1
0.209 s = 4.77 Hz

T =

2p

30
 s = 0.209 s

X = 20.0032
+ 0.0042 m = 0.005 m

x (t) = 0.003  cos (30t) + 0.004  sin(30t) m
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(d) The frequency in rad/s is

(e)

(e) The frequency in revolutions per minute is

(f)

(f ) The phase angle is

(g)

(g) Written in the form of Equation (1.12), the response is

(h)

1.7 REVIEW OF DYNAMICS
A brief review of dynamics is presented to familiarize the reader with the notation and
methods used in this text. The review begins with kinematics of particles and progresses to
kinematics of rigid bodies. Kinetics of particles is presented, followed by kinetics of rigid
bodies undergoing planar motion.

1.7.1 KINEMATICS
The location of a particle on a rigid body at any instant of time can be referenced to a fixed
cartesian reference frame, as shown in Figure 1.11. Let  i, j, and k be unit vectors parallel
to the x, y, and z axes, respectively. The particle’s position vector is given by

(1.19)

from which the particle’s velocity and acceleration are determined

(1.20)

(1.21)a =

d v
dt

= x
$

 (t)i + y 

$
 (t)j + z

$
 (t)k

v =

d r
dt

= x#  (t)i + y#  (t)j + z#  (t)k

r = x (t)i + y (t)j + z(t)k

x (t) = 0.005 sin(30t + 0.643) m

f = tan-1a0.003
0.004

b = 0.643 rad

v = a20
rad
s
b a 1 rev

2p rad
b a 60 s

1  min 
b = 191.0 rpm

v = 2pf = 30 rad/s

p(x, y, z)
r = xi + yj + zk

k
i

j

FIGURE 1.11
Illustration of the position vector for a particle
in three-dimensional space.
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where a dot above a quantity represents differentiation of that quantity with respect 
to time.

The motion of a particle moving in a circular path centered at A is illustrated in 
Figure 1.12. The motion is characterized by an angular coordinate � measured positive
counterclockwise. The rate of rotation

(1.22)

is called the angular speed and has units of rad/s, assuming the unit of time is in seconds.
The angular acceleration is defined by

(1.23)

and has units of rad/s2.
The position vector of the particle is

(1.24)

where R is the radius of the circle and i
n

is a unit vector instantaneously directed toward
the particle from the center of rotation. Define i

t
as the unit vector instantaneously tangent

to the circle in the direction of increasing � and instantaneously perpendicular to i
n
.

Noting that and the velocity is 

(1.25)

The particle’s acceleration is

(1.26)

Now consider a rigid body undergoing planar motion. That is (1) the mass center
moves in a plane, say the x-y plane and (2) rotation occurs only about an axis perpendicu-
lar to the plane (the z axis), as illustrated in Figure 1.13. Consider two particles on the rigid
body, A and B, and locate their position vectors r

A 
and r

B. The relative position vector r
B/A

lies in the x-y plane. The triangle rule for vector addition yields

(1.27)

Differentiation of Equation (1.27) with respect to time yields

(1.28)vB = vA + vB>A

rB = rA + rB>A

a = v# =

d(Rvit)

dt
= R 

dv
dt

 it + Rv 
d it

dt
= Rait - Rv2in

v = r# = R 

d in

dt
= Rvit

d in

dt
= -vin,

d it

dt
= -vin

r = R in

a = u
$

 u
#

= v

θ

(a)

R

A A A

r = Rin

θ

(c)

R

at = Rα
an = Rω 2

θ

(b)

R

v = Rω it

FIGURE 1.12
(a) The position vector for a particle moving in a circular path. (b) The velocity for such a particle is
instantaneously tangent to the path of motion. (c) The particle has two components of acceleration.
One component is instantaneously tangent to the path, while the other is directed from the particle to
the center of rotation.
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Since rotation occurs only about the z axis, the motion of B (as viewed from A) is that
of a particle moving in a circular path of radius |r

B/A
| Thus, the magnitude of relative veloc-

ity is given by Equation (1.25) as

(1.29)

and its direction is tangent to the circle made by the motion of particle B, which is perpen-
dicular to r

B/A
. The total velocity of particle B is given by Equation (1.28) and lies in the

x-y plane.
Differentiating of Equation (1.28) with respect to time yields

(1.30)

The acceleration of particle B viewed from particle A is the acceleration of a particle
moving in a circular path centered at A as

(1.31)

Equations (1.28) and (1.30) are known as the relative velocity and relative acceleration
equations, respectively. They and Equations (1.29) and (1.31) are the only equations nec-
essary for the study of rigid-body kinematics of bodies undergoing planar motion.

1.7.2 KINETICS
The basic law for kinetics of particles is Newton’s second law of motion

(1.32)

where the sum of the forces is applied to a free-body diagram of the particle. A rigid body
is a collection of particles. Writing an equation similar to Equation (1.32) for each particle
in the rigid body and adding the equations together leads to

(1.33)

where is the acceleration of the mass center of the body and the forces are summed on a
free-body diagram of the rigid body. Equation (1.33) applies to all rigid bodies.

A moment equation is necessary in many problems. The moment equation for a rigid
body undergoing planar motion is

(1.34)

where G is the mass center of the rigid body and is the mass moment of inertia about an
axis parallel to the z axis that passes through the mass center.

I

aMG = I a

 a

aF = m a

aF = m a

aB = | rB>A |ait - r v2in

aB = aA + aB>A

vB/A = | rB>A |v

rB/Ar�B

r�A

A

B

y

x

y

x

y

x

(a)

vA

vA

A

B

(b)

vA⎪rB/A⎪α

aA

aA

A

B

(c)

⎪rB/A⎪ω 2⎪rB/A⎪ω

FIGURE 1.13
(a) The triangle rule for
vector addition is used to
define the relative position
vector. (b) For a rigid body
undergoing planar motion,
the velocity of B viewed from
A is that of a particle moving
in a circular path centered at
A. (c) The relative acceleration
is that of a particle moving in
a circular path centered at A.
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Equations (1.33) and (1.34) can be used to solve rigid-body problems for planar
motion. In general, the force equation of Equation (1.33) yields two independent equa-
tions, and the moment equation of Equation (1.35) yields one. If the axis of rotation is
fixed, Equation (1.33) may be replaced by

(1.35)

where IO is the moment of inertia about the axis of rotation. In Figure 1.14(a), O is a fixed
axis of rotation, and Equation (1.35) is applicable. In Figure 1.14(b), link BC has does not
have a fixed axis of rotation, and Equation (1.35) is not applicable.

Recall that a system of forces and moments acting on a rigid body can be replaced by
a force equal to the resultant of the force system applied at any point on the body and a
moment equal to the resultant moment of the system about the point where the resultant
force is applied. The resultant force and moment act equivalently to the original system 
of forces and moments. Thus Equations (1.33) and (1.34) imply that the system of exter-
nal forces and moments acting on a rigid body is equivalent to a force equal to applied
at the body’s mass center and a resultant moment equal to . This latter resultant system
is called the system of effective forces. The equivalence of the external forces and the effec-
tive forces is illustrated in Figure 1.15.

The previous discussion suggests a solution procedure for rigid-body kinetics problems.
Two free-body diagrams are drawn for a rigid body. One free-body diagram shows all exter-
nal forces and moments acting on the rigid body. The second free-body diagram shows the

Ia
ma

aMO = IOa

(a)

A C

B

O

(b)

FIGURE 1.14
(a) Rotation about a fixed axis at O. (b) AB has
a fixed axis of rotation at A, but BC does not
have a fixed axis of rotation.

G
G=

FB

ma
Iα

M1

M2

F4

F3

F2

F1

FIGURE 1.15
The system of external forces
and moments acting on a
rigid body undergoing planar
motion is equivalent to the
system of effective forces, a
force equal to applied at
the mass center, and a
moment equal to .I a

m  a
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effective forces. If the problem involves a system of rigid bodies, it may be possible to draw
a single free-body diagram showing the external forces acting on the system of rigid bodies
and one free-body diagram showing the effective forces of all of the rigid bodies. Equations
(1.33) and (1.34) are equivalent to

(1.36)

and

(1.37)

taken about any point O on the rigid body. Equations (1.36) and (1.37) are statements of
D’ Alembert’s principle applied to a rigid body undergoing planar motion.

aMOext
= aMOeff

aFext = aFeff

EXAMPLE 1 . 4
The slender rod AC of Figure 1.16(a) of mass m is pinned at B and held hor-
izontally by a cable at C. Determine the angular acceleration of the bar immediately after
the cable is cut.

SO LU T I ON
Immediately after the cable is cut, the angular velocity is zero. The bar has a fixed axis of
rotation at B. Applying Equation (1.35)

(a)

to the FBD of Figure 1.16(b) and taking moments as positive clockwise, we have

(b)

The parallel-axis theorem is used to calculate IB as

(c)

Substituting into Equation (b) and solving for 	 yields

(d)

A L T ERNAT I V E METHOD
Free-body diagrams showing effective and external forces are shown in Figure 1.16(c). The
appropriate moment equation is

(e)

leading to

(f)

and a =

12g

7L
.

 mg  

L
4

=

1
12

 mL2
+ am 

L
4

 ab aL
4
b

1gMB2ext = 1gMB2eff

a =

12g

7L

IB = I + md 2
=

1
12

 mL2
+ m aL

4
b2

=

7
48

 mL2

mg  
L
4

= IB a

aMB = a IB a

1I =
1
12mL22
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Determine the angular acceleration of the pulley of Figure 1.17.

SO LU T I ON
Consider the system of rigid bodies composed of the pulley and the two blocks. If  	 is the
counterclockwise angular acceleration of the pulley, then, assuming no slip between the
pulley and the cables, block A has a downward acceleration of rA	 and block B has an
upward acceleration of rB	.

Summing moments about the center of the pulley, neglecting axle friction in the
pulley, and using the free-body diagrams of Figure 1.17(b) assuming moments are positive
counterclockwise yields

Substituting given values leads to 	 � 7.55 rad/s2.

mA grA - mB grB = IPa + mB r
2
A a + mB r

2
B a

gMOext
= gMOeff

B CA

3L
4

L
4

L
4

1
12

(a)

G

R

(b)

mg

G
=

R

(c)

mg m

mL2α

α

FIGURE 1.16
(a) System of Example 1.4 where the slender rod is pinned at B and held by the cable at C. (b) FBD
of bar immediately after cable is cut. The problem involves rotation about a fixed axis at B, so

(c) FBD’s showing external forces and effective forces immediately after cable is cut.aM B = IBa.

EXAMPLE 1 . 5

rA
rA = 30 cm
rB = 20 cm
IP = 0.6 kg · m2

mA = 5 kg
mB = 3 kg

mA mB

rB

(a)

mAg

mPg

mBg

R

External forces

(b)

mArAα mBrBα

IPα

External forces

=

FIGURE 1.17
(a) System of Example 1.4. (b) FBDs showing external forces and effective forces.
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1.7.3 PRINCIPLE OF WORK AND ENERGY
The kinetic energy of a rigid body undergoing planar motion is the sum of the translational
kinetic energy and the rotational kinetic energy

(1.38)

If the body has a fixed axis of rotation at O, the kinetic energy is

(1.39)

The work done by a force, F, acting on a rigid body as the point of application of the
force travels between two points described by position vectors rA and rB is

(1.40)

where dr is a differential position vector in the direction of motion. The work done by a
moment acting on a rigid body in planar motion is

(1.41)

If the work of a force is independent of the path taken from A to B, the force is called
conservative. Examples of conservative forces are spring forces, gravity forces, and normal
forces. A potential energy function, V (r), can be defined for conservative forces. The work
done by a conservative force can be expressed as a difference in potential energies 

(1.42)

Since the system of external forces is equivalent to the system of effective forces, the
total work done on a rigid body in planar motion is

(1.43)

When integrated, the right-hand side of Equation (1.43) is equal to the difference in the
kinetic energy of the rigid body between A and B. Thus Equation (1.43) yields the princi-
ple of work-energy,

(1.44)

If all forces are conservative, Equation (1.42) is used in Equation (1.44) and the result
is the principle of conservation of energy

(1.45)

If some external forces are conservative and some are non-conservative, then

(1.46)

where is the work done by all non-conservative forces. Equation (1.44) becomes

(1.47)

Equation (1.47) is the most general form of the principle of work and energy.

TA + VA + UA:BNC
= TB + VB

UA:BNC

UA:B = VA - VB + UA:BNC

TA + VA = TB + VB

TB - TA = UA:B

UA:B =

L

rB

rA

m  a # d r +

L

uB

uA

 Ia d u

UA:B = VA - VB

UA:B =

L

uB

uA

M d u

UA:B =

L

rB

rA

F # d r

T = IOv
2

T =

1
2

mv 2
+

1
2
 Iv2
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Express the kinetic energy of each of the systems of Figure 1.18 in terms of the specified
generalized coordinates at an orbitrary instant.

SO LU T I ON
(a) The system is a SDOF system. The angular velocity of the bar is . The velocity of the
mass center of the bar is related to the angular velocity of the bar using the relative veloc-
ity equation . The kinetic energy of the system is calculated using Equation (1.38)
as

(a)

(b) The system has two degrees of freedom. The kinetic energy is calculated using
Equation (1.38) as

(b)T =

1

2
mx# 2 +

1
2
a 1

12
mL2bu2

#

T =

1

2
maL

6
 u
# b2

+

1
2
a 1

12
mL2bu2

#

=

1
18

mL2u2
#

v =
L
6 u

#

u
#

EXAMPLE 1 . 6

(c)

(b)

Slender bar
of mass m

θ

y

x

x

I
3r

r

Slender bar
of mass m

θ

2L
3

L
3

(a)

m

2m

FIGURE 1.18
Systems of Example 1.6: (a) SDOF system; (b) two
degree-of-freedom system with one rigid body; and
(c) two degree-of-freedom system composed of
three rigid bodies.
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(c) The system has two degrees of freedom. The angular rotation of the pulley is related to
the displacement of the sliding block by . The displacement of the hanging mass is
independent of x. The kinetic energy is the sum of the kinetic energies of the sliding mass,
the pulley, and the hanging mass:

(c)

1.7.4 PRINCIPLE OF IMPULSE AND MOMENTUM
The impulse of the force F between t1 and t2 is defined as

(1.48)

The total angular impulse of a system of forces and moments about a point O is

(1.49)

The system momenta at a given time are defined by the system’s linear momentum

(1.50)

and its angular momentum about its mass center for a rigid body undergoing planar
motion

(1.51)

Integrating Equations (1.33) and (1.34) between arbitrary times t1 and t2 leads to

(1.52)

and

(1.53)

Equations (1.52) and (1.53) summarize the principle of impulse and momentum for
a system. For a particle application, Equation (1.52) is usually sufficient. For a rigid body
undergoing planar motion, Equation (1.52) can be written (in general) in component
form as two scalar equations. Equation (1.53) is not a vector equation and represents one
equation.

Using an equivalent force system argument similar to that used to obtain Equations
(1.36) and (1.37), it is deduced from Equations (1.52) and (1.53) that the system of
applied impulses is equivalent to the difference between the system momenta at t1 and the
system momenta at t2. This form of the principle of impulse and momentum, convenient
for problem solution, is illustrated in Figure 1.19 for a rigid body undergoing planar
motion.
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The slender rod of mass m of Figure 1.20 is swinging through a vertical position with an
angular velocity �1 when it is struck at A by a particle of mass m/4 moving with a speed
vp. Upon impact the particle sticks to the bar. Determine (a) the angular velocity of the bar
and particle immediately after impact, (b) the maximum angle through which the bar and
particle will swing after impact, and (c) the angular acceleration of the bar and particle
when they reach the maximum angle. 

SO LU T I ON
(a) Let t1 occur immediately before impact and t2 occur immediately after impact. Consider
the bar and the particle as a system. During the time of impact, the only external impulses
are due to gravity and the reactions at the pin support. The principle of impulse and
momentum is used in the following form:

Using the momentum diagrams of Figure 1.20(b), this becomes

(a)

which is solved to yield

(b)v2 =

4L2v1 - 3vpa

4L2
+ 3a2

- c am 

L
2
v1b aL

2
b - am

4
vpb (a) +

1
12

mL2v1 d

0 = am 

L
2

 v2b aL
2
b + am

4
 a v2b (a) +

1

12
mL2v2

P
External angular
impulses about O
between t1and t2

Q = P
Angular momentum

about O
at t2

Q - P
Angular momentum

about O
at t1

Q

=

=

∫
t2 F3 dt

t1

∫
t2 F2 dt

t1

∫
t2 F1 dt

t1

∫
t2 M2 dt

t1

mv�2∫
t2 M1 dt

t1

External impulses applied
between t1 and t2

–

–

Iω 2

G

System momenta
at t2

System momenta
at t1

mv�1

Iω 1

G

FIGURE 1.19
Illustration of the principle of
impulse and momentum.

EXAMPLE 1 . 7
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(b) Let t3 be the time when the bar and particle assembly attains its maximum angle.
Gravity forces are the only external forces that do work; hence conservation of energy
applies between t2 and t3. Thus, from Equation (1.45),

(c)

The potential energy of a gravity force is the magnitude of the force times the distance 
its point of application is above a horizontal datum plane. Choosing the datum as the 

T2 + V2 = T3 + V3

m

m
a

A =

=
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m
4

m
4

m
4
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mL2ω2
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2

ω2 m

–

m
4

1
12

mL2ω1
1
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L
2
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∫
t2mg dt
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∫
t2 g dt

t1

∫
t2 Rx dt

t1

∫
t2 Rx dt
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(a) External impulses
during impact

–
System momenta

after impact
System momenta

before impact

(b)

= m
4

aα

L
2

αm

mL2α1
12

m
4

g

mg

Rx

Ry

External forces Effective forces

(c)

θmax θmax

FIGURE 1.20
(a) Slender rod of Example 1.7 swinging through the vertical position with angular velocity �1 when it
is struck by a particle moving with a velocity vp a distance a from the pin support. (b) Impulse and
momentum diagrams for the time immediately before impact and the time immediately after impact.
(c) FBDs when the bar swings through its maximum angle.
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horizontal plane through the support, using Equation (1.38) for the kinetic energy of a
rigid body, and noting T3 � 0 yields

(d)

which is solved to yield

(e)

(c) The bar attains its maximum angle at t3, �3 � 0. Summing moments about O using
the free-body diagrams of Figure 1.20(c) assuming moments and positive clockwise gives

(f)

(g)

which is solved to yield

(h)

1.8 TWO BENCHMARK EXAMPLES
Two benchmark examples will be followed throughout the text. The basic problems are
introduced here. Their mathematical models, assuming a SDOF system, are constructed in
Chapter 2 and analyzed under various forcing conditions in Chapters 3 through 5. Two
degree-of-freedom models are introduced in Chapter 6, and more general MDOF system
models are introduced in Chapter 7 and analyzed in Chapters 8 and 9. The first example
continues into Chapters 10 and 11 using a continuous system analysis. The second exam-
ple is continued into Chapter 13 using a random excitation.

1.8.1 MACHINE ON THE FLOOR OF AN INDUSTRIAL PLANT
A 2000 lb machine is placed on the floor of an industrial plant, as shown in Figure 1.21(a).
The floor is supported by a W14 � 30 steel beam. The beam is 20 ft long, fixed at one
end, and pinned at the other. The machine is placed twelve ft from the fixed end, as shown
in Figure 1.21(b). The beam has a cross-sectional area of 8.85 in2 and a cross-sectional
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moment of inertia of 291 in4. The beam’s weight per unit foot is 30 lb. Steel has an elastic
modulus of 30 � 106 psi. The basic model is that of a machine on an elastic beam. 

Initially, the beam is modeled as a mass-less spring whose stiffness is calculated from
static-beam deflection theory. The inertia of the spring is then taken into account by cal-
culating an equivalent mass for the beam such that its kinetic energy is approximately that
of the kinetic energy of a particle lumped at the location of the machine. This model is
shown in Figure 1.21(c). In Chapter 3, the natural frequency of the system is calculated,
and the free response of the system is examined when subject to an impulsive load. 

First, the beam is modeled without damping. Then the hysteretic damping is modeled
by an equivalent viscous damping model. The machine develops a harmonic force while
operating and the steady-state vibrations of the beam are examined. Then the beam is
assumed to be rigid, and a vibration isolator is designed to protect the beam from large
forces generated during operation of the machine. The machine could be subject to a har-
monic excitation (Chapter 4) or an impulsive loading (Chapter 5).

The inertia of the beam is lumped at the location of the mass and a two-degree-of-
freedom system is assumed as shown in Figure 1.21(d). Natural frequencies of the two
degree-of-freedom system are determined, and the forced response is calculated (Chapter 6).
The same vibration isolator designed for the rigid beam is placed between the machine and
the beam, a multiple degree-of-freedom model is assumed (Chapter 7), and the natural fre-
quencies and mode shapes are calculated (Chapter 8). Then the performance of the vibration
isolator is evaluated (Chapter 9).

A continuous system model is described in Chapter 10, when natural frequencies are
approximated using the Rayleigh-Ritz method. The forced response is obtained by a finite-
element method in Chapter 11.

1.8.2 SUSPENSION SYSTEM FOR A GOLF CART
The design of a suspension system for an automobile is complicated. Some models require
up to eighteen degrees of freedom. The suspension system must be able to handle a wide
variety of road contours. Suspension system performance is often analyzed using random
vibration theory. Thus, a complete analysis is beyond the scope of this book. The focus is

(c) (d)

(a) (b)

w14×30 steel beam

Machine
Machine

Floor

Machine and 
equivalent mass
of beam

Equivalent
stiffness of beam

Beam

Machine

FIGURE 1.21
(a) The analysis of a machine
placed on a floor in an indus-
trial plant is one of the bench-
mark problems. (b) The
problem has been idealized
as a machine mounted on a
fixed-pinned beam. (c) SODF
model of mass on beam
accounting for inertia effects
of beam. (d) A two degree-
of-freedom model of the
machine when a vibration
isolator is placed between
the machine and the beam.
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instead on a simplified model of the suspension system, as shown in Figure 1.22, where this
could serve as the model of a suspension system for a golf cart.

The mass of the empty golf cart is 300 kg. Two golfers and their clubs could add an
addition 300 kg to the mass of the vehicle.

A simplified model for the suspension system is developed in Chapter 2. The analysis
of the golf cart when it encounters a sudden change in terrain contour is analyzed in
Chapter 3, while its performance under a sustained bumpy terrain contour is considered
in Chapter 4. Its performance when it encounters a hole in the road considered in Chapter 5.
A two degree-of-freedom model (which includes the mass of the axle and wheels) is used
in Chapter 6. In Chapter 7, a multiple degree-of-freedom model is developed for the vehi-
cle assuming the front wheels are independent of the rear wheels and the body has a distri-
bution of mass, as shown in Figure 1.22(c). The natural frequencies of the MDOF model
are calculated in Chapter 8, while the forced response is considered in Chapter 9. The effect
of a random input is described in Chapter 13.

1.9 FURTHER EXAMPLES

(d)(c)

v

(b)(a)

v

v
FIGURE 1.22
(a) A suspension system for a
small vehicle such as a golf
cart is the second benchmark
problem. (b) In early chap-
ters, the golf cart is modeled
as a SDOF system. (c) The
analysis grows in complexity
as the chapters progress. In
later chapters, the mass of
the wheel is taken into
account. (d) The distribution
of mass on the body is
considered.

EXAMPLE 1 . 8
The slender bar of Example 1.4 and Figure 1.16 is pinned at A and held in the horizon-
tal position by a cable. The cable is cut at t � 0.
(a) What is the bar’s angular velocity after it has rotated through 10°? 
(b) What are the reactions at the pin support after it has rotated through 10°?
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SO LU T I ON
(a) Let position 1 refer to the bar immediately after the cable is cut. Let position 2 refer to
the bar after it has rotated through 10°. All external forces are conservative; thus, conserva-
tion of energy applies between positions 1 and 2 as

(a)

Take the datum for potential energy calculations for the gravity force to be position 1, then 
V1 � 0, and The kinetic energy in position 1 is zero, and

(b)

Kinematics (the relative velocity equation) is used to relate the velocity of the mass center to
the angular velocity of the bar so that Substituting into Equation (a), we have

(c)

which is solved to yield

(d)

(b) Summing moments about the pin support on the free-body diagrams after the body 
has rotated through 10° are illustrated in Figure 1.23. Taking moments about the pin 
support yields which is the same as the initial value. This is to be expected, as the
external forces are constant, which implies uniformly accelerated motion. Summing forces
using the free-body diagrams according to give

(e)

By equating coefficients of the unit vectors, the reactions are determined as

(f)

(g)Ry = mg a1 -

4

7
 cos 10° +

8

7
 sin 210°b = 0.472mg

Rx = -

4mg

7
 sin 10°(1 + 2 cos 10°) = -0.295mg

+ m 

L
3
a24g

7L
 sin 10°b (-cos 10°i +  sin 10°j)

Rxi + (Ry - mg)j = m 

L
3
a12g

7L
b (- sin10°i - cos10°j)

(gF)ext = (gF)eff

a =
12g
7L ,

v = A
24g

7L
 sin 10° = 0.818A

g

L

0 =

1
2

maL
3
vb2

+

1
2
a 1

12
mL2bv2

2 -

mgL

3
 sin 10°

v =
L
3v.

T2 =

1
2

mv 2
2 +

1
2
a 1

12
mL2bv2

2

V2 = -
mgL

3  sin 10°.

T1 + V1 = T2 + V2

mg
Ry

Rx

External forces

m α

Effective forces

L
3

mL2α1
12

m ω2L
3

FIGURE 1.23
FBDs after bar of Example 1.8 has rotated through .10°
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Determine the acceleration of the block Figure 1.24(a).

SOLUT ION
The acceleration of the block is assumed to be upward, which is consistent with the assumed
direction of the angular acceleration of the disk. The point on the disk where the cable is
in contact with it has the same acceleration (r	) as the cable. Assuming the cable is inex-
tensible, it has the same acceleration as the block. Summing moments about the mass
center by applying to the FBDs shown in Figure 1.24(b) leads to

(a)

Solving for 	 gives

(b)

The acceleration of the block is

(c)a = r a = (0.3 m)(68.5 rad/s2) = 20.5 m/s2

a =

M - mgr

I + mr 2 =

(18 N # m) - (1.3 kg)(9.81 m/s2)(0.3 m)

0.09 kg # m2
+ (1.3 kg)(0.3 m)2 = 68.5 rad/s2

M - mgr = mra(r) + Ia

(gMO)ext = (gMO)eff

EXAMPLE 1 . 9

0

r

m

M

(a)

M = 18 N · m
m = 1.3 kg
r = 30 cm
I = 0.09 kg · m2

R

mg

M

(b)

External forces Effective forces

=

mpg

mrα

Iα

FIGURE 1.24
(a) System of Example 1.9. (b) FBDs drawn
at an arbitrary instant showing the external
forces and the effective forces.
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A thin disk of mass 5 kg, radius 20 cm, and attached to a spring of stiffness 2000 N/m is
in equilibrium when it is subject to an applied force P � 10 N. The coefficient of friction
between the disk and the surface is 0.1. 

(a) What is the maximum displacement of the disk from its equilibrium position, assum-
ing no slipping between the disk and the surface? 

(b) What is the angular acceleration of the disk immediately after it reaches its maximum
displacement? 

(c) Is the no-slip assumption correct?

SO LU T I ON
(a) Let position 1 refer to the position when the disk is in equilibrium, and let position 2
refer to the position when the disk reaches its maximum displacement. Application of the
principle of work and energy between position 1 and position 2 for the disk gives

(a)

The kinetic energy of the disk in position 1 is zero, because the disk is at rest. The kinetic
energy of the disk in position 2 is zero, because the disk reaches its maximum displacement.
The only source of potential energy is the spring force. The potential energy in the spring
in position 1 is zero, as the spring is unstretched. Letting x be the maximum displacement,
the potential energy in position 2 is

(b)

The friction force does no work, since the disk rolls without slipping. Thus, the velocity of
the point where the friction force is applied is zero. The only non-conservative force is the
applied force P. Its work is

(c)

Substituting into Equation (a),

(d)

or

(e)

(b) Summing moments about the contact point as and using the
free-body diagrams drawn immediately after the disk reaches its maximum displacement
(illustrated in Figure 1.25) yields

(f)

If the disk rolls without slipping, the velocity of the point of contact is identically zero, 
and its acceleration only has an upward component of r�2. Application of the horizontal

-kxr + Pr =

1
2

mr 2a + mar

(gMO )ext = (gMO )eff

x =

2P
k

=

2(10 N)

2000 N/m
= 0.01 m

Px =

1

2
kx 2

U1:2NC
=

L

x

0
Pdx = Px

V2 =

1

2
kx 2

T1 + V1 + U1:2NC
= T2 + V2

EXAMPLE 1 . 1 0



Introduction 33

component of the relative acceleration equation between the point of contact and the mass
center yields . Substituting this result into Equation (b) leads to

(g)

(c) Summing moments about the mass center as and using the
free-body diagrams of Figure 1.25 yields

(h)

The maximum value of 	 from when the motion is initiated to when the disk reaches its
maximum displacement should be used in the calculation. The maximum value occurs in
position 1 when

(i)

and

(j)

The maximum available friction force is �mg � 0.1(5 kg) (9.81 m/s2) � 4.91 N. Since
the friction force is less than the maximum allowable friction force, the disk rolls without
slipping.

F =

1
2

mr a =

1
2

(5 kg)(0.2 m)(6.67 rad/s2) = 3.33 N

a =

2P
3mr

=

2(10 N)

3(5 kg) (0.2 m)
= 6.67 rad/s2

Fr =

1
2

mr 2aQ F =

1
2

mr a 

(gMC)ext = (gMC)eff

a =

2(P - kx)

3mr
=

2310 N - (2000 N/m)(0.01 m)4
3(5 kg)(0.2 m)

= 6.67 rad/s2

a = ra

N

F

P P

External forces Effective forces

kx

mr2α

ma = mrα

mg 1
2

=

FIGURE 1.25
FBDs of system in Example 1.10.
Summing moments about the
point of contact helps to solve for
the angular acceleration assuming
no slipping. Summing moments
about the mass center finds the
friction force which is checked
against the maximum value to
determine if slipping occurs.

EXAMPLE 1 . 1 1
A baseball player holds a bat with a centroidal moment of inertia a distance a from the
bats mass center. His “bat speed” is the angular velocity with which he swings the bat. The
pitched ball is a fastball which reaches the batter with a velocity v. Assuming his swing is a
rigid-body rotation about an axis perpendicular to his hands, where should the batter hit
the ball to minimize the impulse felt by his hands?

SO LU T I ON
When the better hits the ball, it exerts an impulse on the bat: call it B. Since the batter is
holding the bat, he feels an impulse as he hits the ball: call it P. The effect of hitting the

I
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ball is to change the bat speed from �1 to �2. The impulse momentum diagrams of the bat
during the time are shown in Figure 1.26.

Applying the principle of linear impulse and momentum to Figure 1.26 leads to

(a)

Application of the principle of angular impulse and angular momentum about an axis
through the batter’s  hands yields

(b)

Solving Equation (b) for B, we have

(c)

Substituting Equation (c) into Equation (a) and solving for P leads to

(d)

Thus, P � 0 if

(e)

Thus, the angular impulse felt by the batter is zero if b satisfies Equation (e). The location
of b is called the center of percussion.

b = a +

I
ma

P = (v1 - v2)a I + ma2

b
- mab

B =

(I + ma2)

b
(v2 - v1)

Iv1 + mav1(a) - B(b) = Iv2 + mav2(a)

mav1 + P - B = mav2

b

B

=+

=+

a

P

Momenta of bat
immediately before
striking ball

External impulses
during striking ball

System momenta
immediately after
striking ball

Iω1 Iω2

maω2maω1

FIGURE 1.26
Impulse momentum diagrams for Example 1.11 as batter hits ball.

1.10 SUMMARY

1.10.1 IMPORTANT CONCEPTS
• Vibrations are oscillations about an equilibrium position.
• Assumptions may be implicit (such as the continuum assumption) or explicit (such as

neglecting all forms of friction).
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• The number of degrees of freedom used in a system model is the number of kinematically
independent coordinates necessary to describe the motion of every particle in the system.

• Vibrations are classified as free or forced, damped or undamped, linear or nonlinear,
continuous or discrete, and deterministic or random.

• The Buckingham Pi theorem allows calculation of the number of dimensionless param-
eters which are involved in the non-dimensional formulation of an equation derived
from a physical law.

• Kinematics of particles tracks the motion of particles through space through their posi-
tion vector, velocity vector, and acceleration.

• A particle moving in a circular path has a velocity that is instantaneously tangent to the
circle at the point where the particle is located.

• A particle moving in a circular path has two components of acceleration: a tangential
component and a normal component.

• A rigid body undergoes planar motion in the x-y plane if the path of the mass center lies
in x-y plane, and rotation occurs only about the z axis.

• The relative velocity and relative acceleration equations are used to analyze rigid body
dynamics.

• A free-body diagram (FBD) is a diagram of the body, which has been abstracted from
its surroundings, showing the effect of the surroundings in the form of forces.

• Body forces are forces that are applied within the body and are due to an external force
field such as gravity.

• Surface forces are applied to the boundary of the body as a result of contact between the
body and its surroundings.

• Newton’s second law is a basic law of nature written for a particle.
• D’Alembert’s principle applied to a rigid body undergoing planar motion reveals that

the system of external forces is equivalent to the system of effective forces. The effective
forces are a force equal to applied at the mass center and a couple equal to 

• The principle of work and energy is a pre-integrated form of Newton’s second law, The
integration occurs over the path of motion.

• Conservative forces are forces whose work is independent of the path. A potential
energy function, which is a function of position, is defined for conservative forces such
that the work done by the force is the difference in potential energies.

• The principle of impulse and momentum is a pre-integrated form of Newton’s second
law, The integration occurs over time.

1.10.2 IMPORTANT EQUATIONS
Simple harmonic motion

(1.12)

Velocity and acceleration of a particle

(1.20)

(1.21)a = x 

$

i + y
$

 j + z 

$

k

v = x#  i + y#  j + z#  k

x (t) = A  sin (vt + f)

Ia.m a
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Velocity and acceleration of a particle moving in a circular path

(1.25)

(1.26)

Relative velocity equations

(1.28)

(1.29)

Relative acceleration equations

(1.30)

(1.31)

Newton’s second law as applied to a particle

(1.32)

Newton’s second law for a rigid body

(1.33)

Moment equation for a rigid body undergoing planar motion

(1.34)

D’Alembert’s principle for rigid bodies undergoing planar motion

(1.36)

(1.37)

Work done by a force

(1.40)

Principle of work and energy

(1.47)

Impulse due to a force

(1.48)

Principle of impulse and momentum

(1.52)

Principle of angular impulse and angular momentum

(1.53)HG1
- JG1:2

= HG2

I1 + I1:2 = I2

I1:2 =

L

t2

t1

Fdt

TA + VA + UA:BNC
= TB + VB

UA:B =

L

rB

rA

F # dr

(gMO)ext = (gMO)eff

1gF2ext = 1gF2eff

gMG = Ia

gF = m a

gF = m a

aB = | rB>A |ait - rv2in

aB = aA + aB>A

vB/A = | rB>A |v

vB = vA + vB>A

a =  Rait - Rv2in

v = Rvit
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PROBLEMS

SHORT ANSWER PROBLEMS
For questions 1.1 through 1.10, indicate whether the statement presented is true or false.
If true, state why. If false, rewrite the statement to make it true.

1.1 The earth can be taken to be an inertial reference frame.
1.2 Systems undergoing mechanical vibrations are not subject to nuclear reactions is

an example of an explicit assumption.
1.3 A basic law of nature is proven only empirically.
1.4 The point of application of surface forces is anywhere in the body.
1.5 The number of degrees of freedom necessary to model a mechanical system is

not unique.
1.6 Distributed parameter systems are another name for discrete systems.
1.7 The Buckingham Pi theorem is used to predict how many non-dimensional

variables are used in a dimensionless formulation of a dimensional relationship.
1.8 A rigid body undergoing planar motion has at most three degrees of freedom.
1.9 A particle traveling in a circular path has a velocity which is in the direction of

the radius.
1.10 The principle of work and energy is derived from Newton’s second law

integrated over time.

Questions 1.11 through 1.25 require a short answer.

1.11 What is the continuum assumption, and what does it imply?
1.12 What is the difference between explicit and implicit assumptions?
1.13 How are constitutive equations used in vibrations modeling?
1.14 What is a free-body diagram (FBD)? How is it used in modeling mechanical

systems?
1.15 What does the following equation represent

1.16 In the equation of Problem 1.15 define (a) X, (b) �, and (c) �.
1.17 The phase angle for a mechanical system is calculated as 26°. Does the response

lead or lag a pure sinusoid?
1.18 What is the distinction between a particle and a rigid body?
1.19 What are the criteria for a rigid body to undergo planar motion?
1.20 The acceleration of a particle traveling in a circular path has two components.

What are they?
1.21 Particle A and particle B are fixed particles on a rigid body undergoing planar

motion. Describe the motion of particle B by an observer fixed at particle A.
1.22 How is the equation applied to a vibrating particle?
1.23 What are the effective forces for a rigid body undergoing planar motion?
1.24 The kinetic energy of a rigid body undergoing planar motion consists of two

terms. What are they? What does each represent?
1.25 State the principle of impulse and momentum.

gF = ma

x (t) = X sin (vt + f)
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126–1.33 How many degrees of freedom are required to model the system of  
Figures SP 1.26 through 1.33? Identify a set of generalized coordinates which
can be used to analyze the system’s motion for each system.

FIGURE SP 1.26 FIGURE SP 1.27

FIGURE SP 1.28
FIGURE SP 1.29

Rigid link

FIGURE SP 1.30 FIGURE SP 1.31
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Beam

FIGURE SP 1.32

Mfingers

Mpalm

Arm

y

y

Mhand

FIGURE SP 1.33

Questions 1.34 through 1.43 require short calculations.

1.34 A particle has a uniform acceleration of 2 m/s2. If the particle starts from rest 
at t � 0. 

(a) Determine the velocity of the particle at t � 5 s.
(b) Determine how far the particle travels in 5 s.

1.35 A particle starts at the origin of a Cartesian coordinate system and moves with a
velocity vector v � 2 cos 2t i � 3 sin 2t j � 0.4 k m/s. 

(a) Determine the magnitude and direction of the particle’s acceleration at 
t � � s.

(b) Determine the particle’s position at t � � s.

1.36 A particle is traveling in a circular path of radius 3 m. The particle starts at 
� � 0 at t � 0 and has a constant speed of 2 m/s.

(a) Where is the particle at t � 2 s?
(b) What  is the acceleration of the particle at t � 2 s?
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1.37 A rigid body of mass 2 kg undergoes planar motion. At a given instant, the
acceleration of its mass center is (5i � 3j) m/s2, and it rotates about the z, axis
with a clockwise angular acceleration of 10 rad/s2. What are the effective forces
at this instant? Where on the body are they applied?

1.38 The velocity of a particle of mass 0.1 kg is (9i � 11j) m/s. Calculate the kinetic
energy of the particle.

1.39 The velocity of the mass center of a rigid body of mass 3 kg undergoing planar
motion is (3i � 4j) m/s. The mass center is 20 cm from the fixed axis of
rotation. Calculate the angular velocity of the body at this instant.

1.40 The kinetic energy of a body that rotates about its centroidal axis is 100 J. The
centroidal mass moment of inertia is 0.03 kg • m2. Calculate the angular
velocity of the body.

1.41 The speed of the mass center of a rigid body undergoing planar motion of mass 
5 kg is 4 m/s. It rotates about the z axis with a clockwise angular velocity 
of 20 rad/s. The mass moment of inertia of the body about its centroidal axis is 
0.08 kg • m2. Calculate the kinetic energy of the body.

1.42 An impulsive force of magnitude 12,000 N is applied to a particle for 0.03 s.
What is the total impulse imparted by this force?

1.43 The force of Figure SP1.43 is applied to a particle of mass 3 kg at rest in
equilibrium. 

(a) What is the total impulse imparted to the particle?
(b) What is the velocity of the particle at t � 2 s?
(c) What is the velocity of the particle at 5 s?

100 N

1 s 2 s 3 s

F

t

FIGURE SP 1.43

FIGURE SP 1.44

1.44 A particle of mass 2 kg is subject to a constant force of 6 N, as shown in 
Figure SP1.44. How far has the particle traveled after 10 s if the particle’s
velocity is 4 m/s initially?

2 kg 6 N

1.45 Match the quantity with the appropriate units (units may be used more than
once, and some units may not be used).
(a) acceleration, a (i) N • s 
(b) velocity, v (ii) m/s2

(c) impulse, I (iii) rad/s2

(d) kinetic energy, T (iv) m/s
(e) linear momentum, L (v) J
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(f ) work done by a force, (vi) rad/s
(g) angular velocity, � (vii) m
(h) angular acceleration, 	 (viii) rad
(i) force, F (ix) N

CHAPTER PROBLEMS
1.1 The one-dimensional displacement of a particle is

(a) What is the maximum displacement of the particle?
(b) What is the maximum velocity of the particle?
(c) What is the maximum acceleration of the particle?

1.2 The one-dimensional displacement of a particle is

(a) What is the maximum displacement of the particle?
(b) What is the maximum velocity of the particle?
(c) What is the maximum acceleration of the particle?

1.3 At the instant shown in Figure P1.3, the slender rod has a clockwise angular
velocity of 5 rad/s and a counterclockwise angular acceleration of 14 rad/s2. At
the instant shown, determine (a) the velocity of point P and (b) the acceleration
of point P.

x (t) = 0.5e -0.2t sin (5t + 0.24) m

x (t) = 0.5e -0.2t sin 5t m

W1:2

3 m

1 m

10°

14 rad /s2

5 rad /sP

FIGURE P1.3

1.4 A t � 0, a particle of mass 1.2 kg is traveling with a speed of 10 m/s that is
increasing at a rate of 0.5 m/s2. The local radius of curvature at this instant is
50 m. After the particle travels 100 m, the radius of curvature of the particle’s
path is 50 m.

(a) What is the speed of the particle after it travels 100 m?
(b) What is the magnitude of the particle’s acceleration after it travels 100 m?
(c) How long does it take the particle to travel 100 m?
(d) What is the external force acting on the particle after it travels 100 m?
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1.5 The machine of Figure P1.5 has a vertical displacement x(t). The machine has a
component which rotates with a constant angular speed �. The center of mass
of the rotating component is a distance e from the axis of rotation. The center
of mass of the rotating component is as shown at t � 0. Determine the vertical
component of the acceleration of the rotating component.

ω

x(t)

e

FIGURE P1.5

(a)

r

(b)

FIGURE P1.6

1.6 The rotor of Figure P1.6 consists of a disk mounted on a shaft. Unfortunately,
the disk is unbalanced, and the center of mass is a distance e from the center of
the shaft. As the disk rotates, this causes a phenomena called “whirl”, where the
disk bows. Let r be the instantaneous distance from the center of the shaft to
the original axis of the shaft and � be the angle made by a given radius with the
horizontal. Determine the acceleration of the mass center of the disk.

1.7 A 2 ton truck is traveling down an icy, 10° hill at 50 mph when the driver sees a
car stalled at the bottom of the hill 250 ft away. As soon as he sees the stalled
car, the driver applies his brakes, but due to the icy conditions, a braking force
of only 2000 N is generated. Does the truck stop before hitting the car?

1.8 The contour of a bumpy road is approximated by

What is the amplitude of the vertical acceleration of the wheels of an automobile
as it travels over this road at a constant horizontal speed of 40 m/s?

1.9 The helicopter of Figure P1.9 has a horizontal speed of 110 ft/s and a
horizontal acceleration of 3.1 ft/s2. The main blades rotate at a constant speed
of 135 rpm. At the instant shown, determine the velocity and acceleration of
particle A.

y(x) = 0.03 sin (0.125x) m
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1.10 For the system shown in Figure P1.10, the angular displacement of the thin
disk is given by rad. The disk rolls without slipping
on the surface. Determine the following as functions of time.

(a) The acceleration of the center of the disk.
(b) The acceleration of the point of contact between the disk and the surface.
(c) The angular acceleration of the bar.
(d) The vertical displacement of the block.

(Hint: Assume small angular oscillations � of the bar. Then sin � � �.)

u(t) = 0.03 sin (30t +
p
4)

45°

2.1 ft

A

135 rpm

110 ft/s

3.1 ft/s2

FIGURE P1.9

Thin disk of
radius 10 cm

Rigid link

θ(t) = 0.03 sin(30t + –) 

Rigid link

20 cm

4
π

φ

30 cm

FIGURE P1.10
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1.11 The velocity of the block of the system of Figure P1.11 is  sin 20t m/s
downward. 

(a) What is the clockwise angular displacement of the pulley?
(b) What is the displacement of the cart?

1.12 A 60-lb block is connected by an inextensible cable through the pulley to the
fixed surface, as shown in Figure P1.12. A 40 lb weight is attached to the pulley,
which is free to move vertically. A force of magnitude lb tows
the block. The system is released from rest at 

(a) What is the acceleration of the 60 lb block as a function of time?
(b) How far does the block travel up the incline before it reaches a velocity of

2 ft/s?

t = 0.
P = 100(1 + e -t )

y# = 0.02

r2

r1

r1 = 10 cm
r2 = 30 cm

y = 0.02sin20t m/s

FIGURE P1.11 FIGURE P1.12

40 lb

60 lb

45°
µ = 0.3

p

1.13 Repeat Problem 1.8 for a force of 
1.14 Figure P1.14 shows a schematic diagram of a one-cylinder reciprocating one-

cylinder engine. If  at the instant of time shown the piston has a velocity v and
an acceleration a, determine (a) the angular velocity of the crank and (b) the
angular acceleration of the crank in terms of  v, a, the crank radius r, the
connecting rod length and the crank angle 

1.15 Determine the reactions at A for the two-link mechanism of Figure P1.15. The
roller at C rolls on a frictionless surface.

u./,

P = 100t  N.
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1.16 Determine the angular acceleration of each of the disks in Figure P1.16. 

l

�, a

r

θ

B

C
A

3.6 kg

2.4 kg

30°

2 m

2.6 m/s

1.4 m/s2

3 m

FIGURE P1.14

FIGURE P1.16

FIGURE P1.15

20 kg

60 cm

(a) (b)

30 kg

4 kg·m2

180 N

60 cm

270 N

4 kg·m2

1.17 Determine the reactions at the pin support and the applied moment if the bar
of Figure P1.17 has a mass of 50 g.
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1.18 The disk of Figure P1.18 rolls without slipping. Assume if 

(a) Determine the acceleration of the mass center of the disk.
(b) Determine the angular acceleration of the disk.

P = 18 N.

3 m

1 m

θ = 10°

α = 14 rad/s2

ω = 5 rad/s

M

FIGURE P1.17 FIGURE P1.18

P

1.8 kg

20 cm

1.19 The coefficient of friction between the disk of Figure P1.18 and the surface is
0.12. What is the largest force that can be applied such that the disk rolls
without slipping?

1.20 The coefficient of friction between the disk of Figure P1.18 and the surface is
0.12. If what are the following?

(a) Acceleration of the mass center.
(b) Angular acceleration of the disk.

1.21 The 3 kg block of Figure P1.21 is displaced 10 mm downward and then
released from rest. 

(a) What is the maximum velocity attained by the 3-kg block?
(b) What is the maximum angular velocity attained by the disk? 

P = 22 N,

5 kg 3 kg

20 cm

4000 N/m

0.25 kg · m2

FIGURE P1.21
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1.22 The center of the thin disk of Figure P1.22 is displaced 15 mm and released.
What is the maximum velocity attained by the disk, assuming no slipping
between the disk and the surface? 

r r = 25 cm
20,000 N/m

m = 2 kg

FIGURE P1.22 FIGURE P1.23

k
m

µ

1.23 The block of Figure P1.23 is given a displacement and then released.
(a) What is the minimum value of such that motion ensues?
(b) What is the minimum value of such that the block returns to its

equilibrium position without stopping? 
1.24 The five-blade ceiling fan of Figure P1.24 operates at 60 rpm. The distance

between the mass center of a blade and the axis of rotation is 0.35 m. What is
its total kinetic energy?

d

d

d

60 rpm

G

G

13 mm

m = 1.21 kg

m = 4.7 kg

I = 0.96 kg · m2

I = 5.14 kg · m2

Blade

Motor

FIGURE P1.24

1.25 The U-tube manometer shown in Figure P1.25 rotates about axis A-A at a
speed of 40 rad/s. At the instant shown, the column of liquid moves with a

100 cm

40 rad/s
v = 20 m/s
Specific gravity = 1.4
Area = 3 × 10–4 m2

60 cm20 cm

FIGURE P1.25
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speed of 20 m/s relative to the manometer. Calculate the total kinetic energy of
the column of liquid in the manometer.

1.26 The displacement function for the simply supported beam of Figure P1.26 is 

where c � 0.003 m and t is in seconds. Determine the kinetic energy of the beam.

y (x, t) = c sinapx
L
bcosap2A

EI

rAL4
tb

x

y(x, t)

E = 200 × 104 N/m2

I = 1.73 × 10–7 m4

ρ = 7400 kg/m3

A = 1.6 × 10–4 m2

3.1 m

FIGURE P1.27

FIGURE P1.28

FIGURE P1.26

1.27 The block of Figure P1.27 is displaced 1.5 cm from equilibrium and released.

(a) What is the maximum velocity attained by the block?
(b) What is the acceleration of the block immediately after it is released?

12,000 N/m

65 kg

1.28 The slender rod of Figure P1.28 is released from the horizontal position when the
spring attached at A is stretched 10 mm and the spring attached at B is unstretched.

(a) What is the acceleration of the bar immediately after it is released?
(b) What is the maximum angular velocity attained by the bar? 

B

A

y

1000 N/m

m = 1.2 kg

1200 N/m

1 m
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1.29 Let x be the displacement of the left end of the bar of the system in Figure P1.29.
Let represent the clockwise angular rotation of the bar. 

(a) Express the kinetic energy of the system at an arbitrary instant in terms of 
and .

(b) Express the potential energy of an arbitrary instant in terms of and u.x
u
#

x#
u

k k

θ

x

4

3L F(t)

FIGURE P1.29

1.30 Repeat Problem 1.29 using as coordinates x1, which is the displacement of the
mass  center, and x2, which is the displacement of the point of attachment of
the spring that is a distance 3L/4 from the left end.

1.31 Let � represent the clockwise angular displacement of the pulley of the system
in Figure P1.31 from the system’s equilibrium position.

(a) Express the potential energy of the system at an arbitrary instant in terms of �.
(b) Express the kinetic energy of the system at an arbitrary instant in terms of .u

#

2r

2 m

Ip

m
k

2 k

r

θ

FIGURE P1.31

1.32 A 20 ton railroad car is coupled to a 15 ton car by moving the 20 ton car at 
5 mph toward the stationary 15 ton car. 

(a) What is the resulting speed of the two-car coupling?
(b) What would the resulting speed be if the 15 ton car is moving at 5 mph

toward a stationary 20 ton car? 
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1.33 The 15 kg block of Figure P1.33 is moving with a velocity of 3 m/s at t � 0
when the force F(t) is applied to the block.
(a) Determine the velocity of the block at t � 2 s.
(b) Determine the velocity of the block at t � 4 s.
(c) Determine the block’s kinetic energy at t � 4 s.

v

F(t)

30 N15 kg

3 t
µ = 0.08

FIGURE P1.33

1.34 A 400 kg forging hammer is mounted on four identical springs, each of stiffness 
k � 4200 N/m. During the forging process, a 110 kg hammer, which is part 
of the machine, is dropped from a height of 1.4 m onto an anvil, as shown in
Figure P1.34. 
(a) What is the resulting velocity of the entire machine after the hammer is

dropped?
(b) What is the maximum displacement of the machine? 

1.4 m

Drop hammer

Workpiece

Anvil

FIGURE P1.34

1.35 The motion of a baseball bat in a ballplayer’s hands is approximated as a rigid-
body motion about an axis through the player’s hands, as shown in Figure P1.35.
The bat has a centroidal moment of inertia I. The player’s “bat speed” is , and
the velocity of the pitched ball is v. Determine the distance from the player’s
hand along the bat where the batter should strike the ball to minimize the

v
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1.36 A playground ride has a centroidal moment of inertia of 17 slug . ft2. Three
children of weights 50 lb, 50 lb, and 55 lb are on the ride, which is rotating at
60 rpm. The children are 30 in. from the center of the ride. A father stops the
ride by grabbing it with his hands. What is the impulse felt by the father? 

Problems 1.37 through 1.39 present different problems that are to be formulated in non-
dimensional form. For each problem answer the following.

(a) What are the dimensions involved in each of the parameters?
(b) How many dimensionless parameters does the Buckingham Pi theorem predict are in

the non-dimensional formulation of the relation between the natural frequencies and
the other parameters?

(c) Develop a set of dimensionless parameters.

1.37 The natural frequencies of a thermally loaded fixed-fixed beam (Figure P1.37)
are a function of the material properties of the beam, including:

E, the elastic modulus of the beam
�, the mass density of the beam
	, the coefficient of thermal expansion

The geometric properties of the beam are

A, its cross-sectional area
I, its cross section moment of inertia
L, its length

Also,

, the temperature difference between the installation and loading¢T

FIGURE P1.35

G

a b

�

ω

L

E, I, A, P, α, ΔT

FIGURE P1.37

impulse felt by the his/her hands. Does the distance change if the player
“chokes up” on the bat, reducing the distance from G to his/her hands.
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1.38 The drag force F on a circular cylinder due to vortex shedding is a 
function of

the velocity of the flow
the dynamic viscosity of the fluid
the mass density of the fluid
the length of the cylinder
the diameter of the cylinder

1.39 The principal normal stress � due to forcing of a beam with a concentrated
harmonic excitation is a function of

, the amplitude of loading
the frequency of the loading
the elastic modulus of the beam
the mass density of the beam
the beam’s cross-sectional area

the beam’s cross-sectional moment of inertia
the beam’s length
the location of the load along the axis of the beam

1.40 A MEMS system is undergoing simple harmonic motion according to

(a) What is the period of motion?
(b) What is the frequency of motion in Hz?
(c) What is the amplitude of motion?
(d) What is the phase and does it lead or lag?
(e) Plot the displacement.

1.41 The force that causes simple harmonic motion in the mass-spring system of 
Figure P1.41 is F(t) � 35 sin 30t N. The resulting displacement of the mass is 
x(t) � 0.002 

(a) What is the period of the motion?
(b) The amplitude of displacement is  where is the amplitude of

the force and is a dimensionless factor called the magnification factor.
Calculate M.

(c) M has the form

where is called the natural frequency. If then otherwise
Calculate vn.f = 0.

f = p;vn 6 v,vn

M =

1

` 1 - a v
vn

b2 `

M

F0X =

F0

k
M

 sin (30t - p)m.

x (t ) = 33.1 sin (2 * 105t + 0.48) + 4.8 cos (2 * 105t + 1.74)4 mm

a,
L,
I,
A,
r,
E,
v,
F0

D,
L,
r,
m,
U,
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1.42 The displacement vector of a particle is

(a) Describe the trajectory of the particle.
(b) How long does it take the particle to make one circuit around the path? 

r(t) = 32 sin 20t i + 3 cos 20t j4 mm

m

35 sin 30t

3.5 � 104 N/m

FIGURE P1.41
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C h a p t e r 2

MODELING OF
SDOF SYSTEMS

2.1 INTRODUCTION
The basic components of a mechanical system are inertia, stiffness, damping, and a source
of work or energy. Inertia components store kinetic energy. Stiffness components store poten-
tial energy. Damping components dissipate energy. Energy sources provide energy to the
system.

This chapter begins with a discussion of potential energy sources, mainly springs.
Springs store potential energy, but they don’t require motion to do so. The helical coil
spring serves as the model for all linear springs. Structural components, such as bars under-
going longitudinal motion, shafts under rotational motion, and beams undergoing trans-
verse vibrations, all store potential energy and can be modeled as springs. Combinations of
springs may be replaced by a single spring of an equivalent stiffness. Hanging springs acting
under gravity store potential energy when in static equilibrium. However, the potential
energy stored in the spring due to deflection from its equilibrium position cancels with the
potential energy due to gravity for a linear system, when  modeling a linear system.

Viscous damping refers to any form of damping in which the friction force is propor-
tional to the velocity. Viscous dampers are inserted into mechanical systems because they
add a linear term in the differential equation. The energy dissipated due to the viscous
damping force is considered and an equivalent viscous damping coefficient is calculated for
a combination of viscous dampers.

An inertia element is anything that has mass or stores kinetic energy. The principles of
dynamics reviewed in Chapter 1 govern the motion of inertia elements. An equivalent mass
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can be calculated for a SDOF system when it includes several inertia elements. The inertia
effects of springs and entrained fluids are taken into account with an equivalent 
mass model.

The energy source could be an initial energy present in the system, or it could be an
input to the system in terms of an external force or an imposed motion.

The derivation of differential equations governing the motion of a SDOF is consid-
ered. The free-body diagram method applies Newton’s second law or D’Alembert’s 
principle to free-body diagrams drawn at an arbitrary instant. Nonlinear differential
equations are linearized through application of a small angle or small displacement
assumption.

The equivalent systems method only applies for linear systems. It uses the model of a
linear mass-spring and viscous-damper system for any linear SDOF system. The kinetic
energy calculated at an arbitrary instant is used to determine an equivalent mass. The
potential energy is used to determine an equivalent stiffness. The work done by viscous
damping forces is used to calculate an equivalent viscous damping coefficient. The work
done by external forces is used to calculate an equivalent force.

A second-order linear ordinary differential equation which governs the motion of a
SDOF system results from either method. The equation may be homogeneous (in the case
of free vibrations) or non-homogeneous (in the case of forced vibrations).

2.2 SPRINGS

2.2.1 INTRODUCTION
A spring is a flexible mechanical link between two particles in a mechanical system. In real-
ity a spring itself is a continuous system. However, the inertia of the spring is usually small
compared to other elements in the mechanical system and is neglected. Under this assump-
tion the force applied to each end of the spring is the same. 

The length of a spring when it is not subject to external forces is called its unstretched
length. Since the spring is made of a flexible material, the force F that must be applied to
the spring to change its length by x is some continuous function of x,

(2.1)

The appropriate form of f (x) is determined by using the constitutive equation for the
spring’s material. Since f (x) is infinitely differentiable at x � 0, it can be expanded by a
Taylor series about x � 0 (a MacLaurin expansion):

(2.2)

Since x is the spring’s change in length from its unstretched length, when x � 0, F � 0.
Thus When x is positive, the spring is in tension. When x is negative, the spring
is in compression. Many materials have the same properties in tension and compression.
That is, if a tensile force F is required to lengthen the spring by , then a compressive force
of the same magnitude F is required to shorten the spring by . For these materials,

or f is an odd function of x. The Taylor series expansion of an odd func-
tion cannot contain even powers. Thus, Equation (2.2) becomes

(2.3)F = k1x + k3x
3

+ k5x
5

+
Á

f  (-x) = - f  (x),
d

d

k0 = 0.

F = k0 + k1x + k2x
2

+ k3x
3

+
Á

F = f  (x)
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All springs are inherently nonlinear. However in many situations x is small enough that the
nonlinear terms of Equation (2.3) are small compared with k1x. A linear spring obeys a
force-displacement law of 

(2.4)
where k is called the spring stiffness or spring constant and has dimensions of force per length.
Thus, for a linear spring, , which is illustrated in Figure 2.1.

The work done by a force is calculated according to Equation (1.40). For a linear
system where the spring force is applied to a particle whose displacement is x, in the hori-
zontal direction the force is represented by –kx i, and the differential displacement vector is
dxi. The work done by the spring force as its point of application moves from a position
described by to a position described by x2 is

(2.5)

Since the work depends upon the initial and final position of the point of application of
the spring force and not the path of the system, the spring force is conservative. A poten-
tial energy function can be defined for a spring as

(2.6)

where x is the change in the length of the spring from its unstretched length.
A torsional spring is a link in a mechanical system where application of a torque leads to

an angular displacement between the ends of the torsional spring. A linear torsional spring
has a relationship between an applied moment M and the angular displacement of

(2.7)

where the torsional stiffness kt has dimensions of force times length. The potential energy
function for a torsional spring is 

(2.8)

2.2.2 HELICAL COIL SPRINGS
The helical coil spring is used in applications such as industrial machines and vehicle sus-
pension systems. Consider a spring manufactured from a rod of circular cross section of
diameter D. The shear modulus of the rod is G. The rod is formed into a coil of N turns
of radius r. It is assumed that the coil radius is much larger than the radius of the rod and
that the normal to the plane of one coil nearly coincides with the axis of the spring.

Consider a helical coil spring when subject to an axial load F. Imagine cutting the rod
with a knife at an arbitrary location in a coil, slicing the spring in two sections. The cut
exposes an internal shear force F and an internal resisting torque Fr, as illustrated in 

V =

1

2
ktu

2

M = ktu

u

V (x) =

1

2
 k x2

U1:2 =

L

x 2

x1

(-k x )d x = k 
x 2

1

2
- k 

x 2
2

2

x1

k =

df
dx

|
x = 0

F = kx

f

x

k = (0) = slope of
 tangent

df
dx

tangent
at x = 0

Actual
force deflection
curve

FIGURE 2.1
The spring stiffness is the derivative of the
force displacement relation at x = 0.
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Figure 2.2. Assuming elastic behavior, the shear stress due to the resisting torque varies
linearly with distance from the center of the rod to a maximum of 

(2.9)

where is the polar moment of inertia of the rod. The shear stress due to the
shear force varies nonlinearly with distance from the neutral axis. For the maxi-
mum shear stress due to the internal shear force is much less than the maximum shear stress
due to the resisting torque, and its effect is neglected. 

Principles of mechanics of materials can be used to show that the total change in length
of the spring due to an applied force F is 

(2.10)

Comparing Equation (2.10) with Equation (2.4) leads to the conclusion that under the
assumptions stated a helical coil spring can be modeled as a linear spring of stiffness

(2.11)k =

GD4

64Nr 3

x =

64Fr 
3N

GD 
4

r /D W 1
J = (pD 

4)/32

t
 max 

=

Fr D
2 J

=

16 F r
pD 

3

F

F
T = Fr FIGURE 2.2

A spring is subject to a force F along its axis. A section
cut of the spring reveals its cross section has a shear
force F and a torque Fr where r is the coil radius.

EXAMPLE 2 . 1
A tightly wound spring is made from a 20-mm-diameter bar of 0.2% C-hardened steel 
(G � 80 � 109 N/m2). The coil diameter is 20 cm. The spring has 30 coils. What is the
largest force that can be applied such that the elastic strength in shear of 220 � 106 N/m2

is not exceeded? What is the change in length of the spring when this force is applied? 

SO LU T I ON
Assuming the shear stress due to the shear force is negligible, the maximum shear stress in
the spring when a force F is applied is 

Thus the maximum allowable force is

The stiffness of this spring is calculated by using Equation (2.11):

The total changes in length of the spring due to application of the maximum allowable force is 

¢ =

F
k

= 0.518 m

k =

(80 * 109
 N/m2)(0.02m)4

(64)(30)(0.1m3)
= 6.67 * 103 

 

N
m

F
 max 

=

220 * 106 N/m2

6.37 * 104
= 3.45 * 103  N

t =

Fr D
2 J

= F 
(0.1 m)(0.02 m)

2p
32

(0.02 m)4

= 6.37 * 104F
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2.2.3 ELASTIC ELEMENTS AS SPRINGS
Application of a force F to the block of mass m of Figure 2.3 results in a displacement x. The
block is attached to a uniform thin rod of elastic modulus E, unstretched length L, and cross-
sectional area A. Application of the force results in a uniform normal strain in the rod of 

(2.12)

The strain energy per volume is the area under the stress–strain curve, which for an elastic bar:

(2.13)

The total strain energy is

(2.14)

If the force is suddenly removed, the block will oscillate about its equilibrium position. The
initial strain energy is converted to kinetic energy and vice versa, a process which contin-
ues indefinitely. If the mass of the rod is small compared to the mass of the block, then
inertia of the rod is negligible and the rod behaves as a discrete spring. From strength of
materials, the force F required to change the length of the rod by x is

(2.15)

A comparison of Equation (2.15) with Equation (2.4) implies that the stiffness of the rod is 

(2.16)

The motion of a particle attached to an elastic element can be modeled as a particle
attached to a linear spring, provided the mass of the element is small compared to the mass
of the particle and a linear relationship between force and displacement exists for the ele-
ment. In Figure 2.4, a particle of mass m is attached to the midspan of a simply supported
beam of length L, elastic modulus E, and cross-sectional moment of inertia I. The trans-
verse displacement of the midspan of the beam due to an applied static load F is

(2.17)

Thus a linear relationship exists between transverse displacement and static load. Hence if
the mass of the beam is small, the vibrations of the particle can be modeled as the vertical
motion of a particle attached to a spring of stiffness 

(2.18)k =

48EI
L3

x =

L3

48EI
   F

k =

AE
L

F =

A E
L

 x

S = sV =

1

2
E E 

2AL =

1

2
 (E A /L)x 

2

s =

1
2

 sE =

1
2

E E2

E =

F
AE

=

x
L

x

L

A, E FIGURE 2.3
Longitudinal vibrations of a mass
attached to the end of a uniform thin rod
can be modeled as a linear mass-spring
system with .k = AE/L
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In general the transverse vibrations of a particle attached to a beam can be modeled as
those of a particle attached to a linear spring. Let w(z) represent the displacement function of
the beam due to a concentrated unit load applied at z � a. Then the displacement at z � a
due to a load F applied at z � a is 

(2.19)

Then the spring stiffness for a particle placed at z � a is

(2.20)k =

1
v(a)

x = v(a)F

x

x

L/2 L/2

m

m

48EI

(a)

(b)

k =
L3

FIGURE 2.4
The transverse vibrations
of a machine attached to
the midspan of a simply
supported beam (a) mod-
eled by a mass-spring
system and the stiffness
of the spring is 48 EI/L3.
(b) provided the mass of
the beam is small in com-
parison to the mass of the
machine.

EXAMPLE 2 . 2
A 200-kg machine is attached to the end of a cantilever beam of length L � 2.5 m, elastic
modulus E � 200 � 109 N/m2, and cross-sectional moment of inertia 1.8 � 10–6 m4.
Assuming the mass of the beam is small compared to the mass of the machine, what is the
stiffness of the beam?

SO LU T I ON
From Table D.2 the deflection equation for a cantilever beam with a concentrated unit load
at z � L is

(a)

The deflection at the end of the beam is

(b)

The stiffness of the cantilever beam at its   end is 

(c)k =

3 EI
L3 =

3 (200 * 109 N/m2) (1.8 * 10-6 m4)

(2.5 m)3 = 6.91 * 104 N/m

v(L) =

1
EI

 a -

L3

6
+

L
2

L2b =

L3

3EI

v(z) =

1
EI

 a -

1
6

z 3
+

L
2

z 
2b
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Equation (2.18) is used for the stiffness of a pinned-pinned beam at its midspan. The
equation for the stiffness of a cantilever beam at its end is

(2.21)

The equivalent stiffness of a fixed-fixed beam at its midspan is

(2.22)

2.2.4 STATIC DEFLECTION
When a spring is not in its unstreched length when a system is in equilibrium, the spring
has a static deflection. When the system of Figure 2.5(b) is in equilibrium a static force in
the spring is necessary to balance the gravity force. From the FBD of Figure 2.5(b) the force
in the spring is Fs � mg. Since the force is the stiffness times the change in length from its
unstretched length, the static deflection is calculated as

(2.23)¢s =

mg

k

k =

192EI

L3

k =

3EI
L3

k

m

mg

kΔs

(a) (b)

FIGURE 2.5
(a) The spring has a static
spring force when the system
is in static equilibrium.
(b) FBD of the mass when the
system is in equilibrium.

r2

r1

m1 m2

m2g

T2T1

kΔs

(a)

R

m1g

(b)

FIGURE 2.6
(a) System of Example 2.3. (b) FBDs of system
when it is in equilibrium.

EXAMPLE 2 . 3
Determine the static deflection of the spring in the system of Figure 2.6(a).

SO LU T I ON
The FBDs of the system in its equilibrium position are shown in Figure 2.6(b). Summing
forces to zero on the FBD of the left hand block leads to

(a)

Summing moments about the center of the disk leads to as

(b)

from which the static deflection is determined as

(c)¢s =

m1g r1 - m2 
g r2

kr1

m2 
g r2 - (m1g - k¢s 

)r1 = 0

πMO = 0,

T1 = m 1g - k ¢s

πF = 0
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Torsional oscillations occur in the system of Figure 2.7. A thin disk of mass moment
of inertia I is attached to a circular shaft of length L, shear modulus G, and polar moment
of inertia J. When the disk is rotated through an angle from its equilibrium position, a
moment 

(2.24)

develops between the disk and the shaft. Thus, if the polar mass moment of inertia of the
shaft is small compared with I, then the shaft acts as a torsional spring of stiffness

(2.25)

2.3 SPRINGS IN COMBINATION
Often, in applications, springs are placed in combination. It is convenient, for purposes of
modeling and analysis, to replace the combination of springs by a single spring of an equiv-
alent stiffness, keq. The equivalent stiffness is determined such that the system with a com-
bination of springs has the same displacement, x, as the equivalent system when both
systems are subject to the same force, F. A model SDOF system consisting of a block
attached to a spring of an equivalent stiffness is illustrated in Figure 2.8. The resultant force
acting on the block is 

(2.26)

2.3.1 PARALLEL COMBINATION
The springs in the system of Figure 2.9 are in parallel. The displacement of each spring in
the system is the same, but the resultant force acting on the block is the sum of the forces
developed in the parallel springs. If x is the displacement of the block, then the force devel-
oped in the i th  spring is kix and the resultant is 

(2.27)

Equating the forces from Equations (2.26) and (2.27) leads to

(2.28)

2.3.2 SERIES COMBINATION
The springs in Figure 2.10 are in series. The force developed in each spring is the same and
equal to the force acting on the block. The displacement of the block is the sum of the

keq = a
n

i = 1

ki

F = k1x + k2x +
Á

+ knx = aa
n

i = 1

kibx

F = keqx

kt =

JG

L

M =

JG

L
 u

u

I

θ
J, G

L

FIGURE 2.7
The rotational motion of the thin disk
attached to the shaft are modeled by the tor-
sional oscillations of a disk attached to a tor-
sional spring of stiffness k t =

JG
L .

keq

x

m

FIGURE 2.8
Combination of springs
replaced by a single spring so
that the system behaves iden-
tically to the original system.

k1

k2

kn

x

m

FIGURE 2.9
Each of the n springs in the
parallel combination has the
same displacement, but the
resultant force acting on the
FBD of the block is the sum of
the individual spring forces.
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changes in length of the springs in the series combination. If xi is the change in length of
the ith spring, then

(2.29)

Since the force is the same in each spring, xi � F/k and Equation (2.29) becomes 

(2.30)

Since the series combination is to be replaced by a spring of an equivalent stiffness,
Equation (2.26) is used in Equation (2.30), leading to

(2.31)

Electrical circuit components also can be placed in series and parallel and the effect of the
combination replaced by a single component with an equivalent value. The equivalent capac-
itance of capacitors in parallel or series is calculated like that of springs in parallel or series. The
equivalent resistance of resistors in series is the sum of the resistances, whereas the equivalent
resistance of resistors in parallel is calculated by using an equation similar to Equation (2.31).

keq =

1

a
n

i = 1

1
ki

x = a
n

i = 1

F
ki

x = x1 + x2 +
Á

+ xn = a
n

i = 1

x i

k1 k3k2 kn

m

FIGURE 2.10
The springs in the series combination each
develop the same force, but the total displace-
ment of the combination is the sum of the indi-
vidual changes in length.

EXAMPLE 2 . 4
Model each of the systems of Figure 2.11 by a mass attached to a single spring of an 
equivalent stiffness. The system of Figure 2.11(c) is to be modeled by a disk attached to a
torsional spring of an equivalent stiffness. 

SO LU T I ON
(a) The steps involved in modeling the system of  Figure 2.11(a) by the system of Figure 2.8
are shown in Figure 2.12. Equation (2.28) is used to replace the two parallel springs by an
equivalent spring of stiffness 3k. The three springs on the left of the mass are then in series,
and Equation (2.31) is used to obtain an equivalent stiffness. 

If the mass in Figure 2.11(a) is given a displacement x to the right, then the spring
on the left of the mass will increase in length by x, while the spring on the right of the
mass will decrease in length by x. Thus, each spring will exert a force to the left on the
mass. The spring forces add; the springs behave as if they are in parallel. Hence 
Equation (2.28) is used to replace these springs by the equivalent spring shown in 
Figure 2.12(c).

(b) The deflection of the simply supported beam due to a unit load at x � 2 m is cal-
culated using Table D.2

(a)v(z = 2 m) = va2L
3
b =

4L3

243EI
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k 3k
2k

2k

k

m

(a)

(b)

(c)

(d)

k

m

2 m 1 m
E = 210 × 109 N/m2

I = 5 × 10–4 m4

k = 1 × 108 N/m

m

h2 = 20 mm
h1 = 25 mm

b = 13 mm
E = 210 × 109 N/m2

2 m

b

h2
h1

A B C

Gst = 80 × 109 N/m2

Gal = 40 × 109 N/m2
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r2 = 25 mm

r3 = 18 mm

r4 = 30 mm

20 cm
AB: Steel shaft
 with aluminum core

BC: Hollow steel
 shaft

30 cm

r2 r3

r4
r1

FIGURE 2.11
Systems for Example 2.4.
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x

(a)
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13k/5
m

3k/5 2k
m

x

FIGURE 2.12
Steps in replacing the combination of springs in
Figure 2.11 (a) using a single spring of an equivalent
stiffness.
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from which the equivalent stiffness is obtained 

(b)

The displacement of the block of mass m equals the displacement of the beam at the location
where the spring is attached plus the change in length of the spring. Hence the beam and spring
act as a series combination. Equation (2.31) is used to calculate their equivalent stiffness

(c)

(c) The aluminum core of shaft AB is rigidly bonded to the steel shell. Thus the angu-
lar rotation at B is the same for both materials. The total resisting torque transmitted to
section BC is the sum of the torque developed in the aluminum core and the torque devel-
oped in the steel shell. Thus the aluminum core and steel shell of shaft AB behave as two
torsional springs in parallel. The resisting torque in shaft AB is the same as the resisting
torque in shaft BC. The angular displacement at C is the angular displacement of B plus
the angular displacement of C relative to B. Thus shafts AB and BC behave as two torsional
springs in series. In view of the preceding discussion and using Equations (2.28) and
(2.31), the equivalent stiffness of shaft AC is

(d)

where the torsional stiffness of a shaft is kt � JG/L and

(e)

(f)

(g)

Substitution of these values into the equation for keq gives

(h)

(d) Under the assumption that the rate of taper of the bar is small the following
mechanics of materials equation is used to calculate the change in length of the bar due to
a unit load applied at its end:

(i)¢ =

L

L

0

dz
AE

kt,eq = 1.01 * 105
 N # m/rad

ktBC
= =

p

32
3(0.06 m)4

- (0.036 m)44a80 * 109 N
m2 b

0.2 m
= 4.43 * 105 N.m

rad

ktABst

=

p

32
3(0.05 m)4

- (0.04 m)44a80 * 109 N
m2 b

0.3 m = 9.66 * 104 N.m
rad

ktABal

=

p

32
(0.04  m)4a40 * 109 

N
m2 b

0.3 m
= 3.35 * 104 N.m

rad

kteq
=

1

1
ktABal

+ ktABst

+

1
ktBC

keq =

1
1

2.36 * 108   N/m
+

1
1 * 108   N/m

= 7.03 * 107  N/m

k1 =

243EI
4L3 =

243(210 * 109
 
  N/m2)(5 * 10-4 m4)

4(3 m)3 = 2.36 * 108 N/m
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The area varies linearly over the length of the bar . The change in
length is

(j)

Thus, the equivalent stiffness of the shaft is 

(k)

2.3.3 General Combination of Springs
A single degree-of-freedom (SDOF) system is defined such that every particle is kinemati-
cally related to every other particle. Consider a system with n springs of stiffnesses
k1, k2, . . . , kn. Assume the jth spring is attached at a point where the relation between the
displacement of the point of attachment and the generalized coordinate x is x j � jx for
j � 1, 2, . . . , n.  The potential energy in a spring is where x is the change in
length of the spring from its unstretched length. The total potential energy in the n
springs is

(2.32)

Equation (2.32) shows that (for analysis purpose) it is possible to replace a combination of
springs in a linear SDOF system by a single spring of equivalent stiffness at the location
described by the generalized coordinate x. The criterion for the equivalent stiffness is that
the potential energy of the equivalent spring and the potential energy of the original system
be equivalent at all times.

When using an angular coordinate as the generalized coordinate, the potential energy
of a SDOF linear system is

(2.33)

where is an equivalent, torsional viscous-damping coefficient.kt,eq
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=
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=
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n
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EXAMPLE 2 . 5
The system of Figure 2.13 moves in a horizontal plane. Replace the system of springs by
(a) a single spring of equivalent stiffness when x is the displacement of the block of mass 2 kg
and is used as the generalized coordinate and (b) a spring of an equivalent torsional stiff-
ness when the clockwise angular rotation of the disk is used as the generalized coordinate.  

SO LU T I ON
(a) When the block of mass 2 kg moves through a displacement x, as shown in Figure 2.13,
and assuming the cable connecting the block to the disk is inextensible, the point of con-
tact between the disk and the cable have the same velocity. The velocity of the cable is 
and the velocity of a point on the outer edge of the inner disk is r . Thus, 

(a)

Let y be the displacement of the cable attached to the 1 kg block. Its direction is opposite
that of the other block. Assuming the cable is inextensible, the velocity of the cable is the
same as the velocity of the point on the disk in contact with the cable which
is leading to

(b)

Equations (a) and (b) are combined, leading to

(c)

which is true for all time. Integrating and setting y(0) � x (0) � 0 leads to

(d)

The total potential energy developed in the system at an arbitrary time in terms of x is
the sum of the potential energies in the springs

(e) =

1

2
 (5250N/m)x 2

 V =

1
2

 (3000 N/m)x 2
+

1
2

 (1000 N/m)a3
2

 xb2

y =

3
2

x

y# =

3
2

 x#

y# =

3
2

r u
#

3
2r u

#

y#

x# = r u
#

u
#

x# ,

u

r

r

y

x

3000 N/m 1000 N/m

r = 10 cm
θ

3
2

1 kg2 kg FIGURE 2.13
System of Example 2.5 is in a horizontal plane. The combina-
tion of springs are replaced by a single spring of an equivalent
stiffness, so the potential energy of the original system is
equal to the potential energy of the equivalent spring at any
instant.
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The equivalent stiffness of a spring placed on the 2 kg block to model the potential energy
of the system is 5250 N/m.

(b) Using Equations (a) and (b) to give relations between x and and y and leads to the
total potential energy in the system, which is written using as the generalized coordinate as

(f)

Substituting r � 0.1 m gives

(g)

Thus, the equivalent torsional stiffness of the system when using as the generalized coor-
dinate is 52.5 N m/rad, which implies that the springs can be replaced by a single torsional
spring of stiffness 52.5 N m/rad attached to the pulley.

2.4 OTHER SOURCES OF POTENTIAL ENERGY
Any conservative force has an associated potential energy function. In addition to the spring
force, this includes gravity, buoyancy, and a parallel-plate capacitor. Gravity and buoyancy
are considered.

2.4.1 GRAVITY
The force due to the presence of a body of mass m in a gravitational field is mg directed
toward the center of the earth applied at the mass center of the body. Gravity is a conser-
vative force with a potential energy of

(2.34)

where h is the distance of the mass center above a reference position (the datum). The
potential energy is a function of only the vertical position of the mass center.

V = mgh

#

#

u

V =

1
2

 a52.5  

N. m
r
bu2

V =

1
2

 (3000 N/m)(r u)2
+

1
2

 (1000 N/m)a3
2

 r ub2

u

uu

EXAMPLE 2 . 6
A bar is hanging in equilibrium in the position shown in Figure 2.14(a). Determine the
potential energy of the bar in terms of the counterclockwise angular position of the bar
from its equilibrium position when (a) the datum is taken to be the horizontal plane at 
the bottom of the bar when in equilibrium, (b) the datum is taken as the horizontal plane
through the mass center when the bar is in equilibrium, and (c) the datum is taken to be
the horizontal plane through the pin support.

SO LU T I ON
(a) As the bar swings through an angle , as illustrated in Figure 2.14(b), the mass center
is a distance 

(a)

and has a potential energy with respect to the datum of

(b)V = mg 
L
2

 (2 - cos u)

h =

L
2

+

L
2

 (1 - cos u)

u

u
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(b) Using a horizontal plane through G as a datum, we have

(c)

(c) Using a horizontal plane through O as a datum, we have 

(d)V = -mg 
L
2

 cos  u

V = mg 
L
2

 (1 - cos u)

G

θ θ

L
2

L
2

L
2

L
2

(a)

L
2

L
2

(b)

cosθ
L
2

(1 – cosθ) G FIGURE 2.14
(a) The point of application of the gravity force
mg is at the mass center of the bar.
(b) Diagram of a bar for an arbitrary value of ,
illustrating the geometry used in the calcula-
tion of the potential energy.

u

Calculate the total potential energy of the system of Figure 2.15 as the mass is displaced a
distance x downward form the system’s equilibrium position. Use a horizontal plane
through the mass when the system is in equilibrium as the datum.

SO LU T I ON
When the system is in equilibrium, the spring has a static deflection, . Thus, as the
mass moves down a distance x from the equilibrium position, the potential energy in the
spring is 

(a)

Adding to this, the potential energy due to gravity Vg � � mgx yields

(b)

where is the potential energy in the spring when the system is in equilibrium.
Thus, the total potential energy is expressed as the potential energy of the spring with
respect to the equilibrium position plus the potential energy of the system when it is in
equilibrium.

V0 =

m 2g 2

2k

 =

1

2
k x 2

+ V0

 =

1
2

 akx 2
- 2mgx +

m2g 2

k
b - mg x

 =

1
2

k  ax +

mg

k
b2

- mg x

V =  
1
2

k (x + ¢)2
- mg x

V =

1

2
k(x + ¢)2

¢ =
mg
k

EXAMPLE 2 . 7

x
m

k

FIGURE 2.15
The potential energy due to
gravity cancels with the
potential energy of the static
spring force as the mass
moves from equilibrium.
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2.4.2 BUOYANCY
When a solid body is submerged in a liquid or floating on the interface of a liquid and
air, a force acts vertically upward on the body because of the variation of hydrostatic pres-
sure. This force is called the buoyant force. Archimedes’ principle states that the buoyant
force acting on a floating or submerged body is equal to the weight of the liquid displaced
by the body.

EXAMPLE 2 . 8
A sphere of mass 2.5 kg and radius 10 cm is hanging from a spring of stiffness 1000 N/m
in a fluid of mass density 1200 kg/m3. What is the static deflection of the spring?

SO LU T I ON
The spring force must balance with the gravity force and the buoyancy force as shown on
the free-body diagram in Figure 2.16.

Archimedes’ principle is used to calculate the buoyant force as

The static deflection is calculated as

¢st =

mg - FB

k
=

(2.5 kg)(9.81 m/s2) - 49.3  N

1000  N/m
= -0.0185 m

FB =

4
3

 rg pr3
=

4
3 (1200 kg/m3)p(9.81 m/s2)(0.1 m)3

= 49.3 N

k¢st + FB - mg = 0

FB

mg

k∆st

FIGURE 2.16
FBD of a sphere attached to a
spring and submerged in a
liquid.

FB = mg + ρgAx

G

x + ∆
ρ

FIGURE 2.17
Oscillations of a cylinder on a free
surface can be modeled by a SDOF
system where the buoyant force is
the source of potential energy.

Consider a body floating stably on a liquid-air interface. The buoyant force balances
with the gravity force. If the body is pushed farther into the liquid, the buoyant force
increases. If the body is then released, it seeks to return to its equilibrium configuration.
The buoyant force does work, which is converted into kinetic energy and oscillations about
the equilibrium position ensue. 

The circular cylinder of Figure 2.17 has a cross-sectional area A and floats stably on
the surface of a fluid of density . When the cylinder is in equilibrium, it is subject to a
buoyant force mg and its center of gravity is a distance from the surface. Let x be the
vertical displacement of the center of gravity of the cylinder from this position. The additional

¢

r
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volume displaced by the cylinder is xA. According to Archimedes’ principle, the buoyant
force is

(2.35)

Calculations show that the work done by the buoyant force as the cylinder’s center of grav-
ity moves between positions x1 and x2 is 

(2.36)

and is independent of path. Hence the buoyant force is conservative. Its effect on the cylin-
der is the same as that of a linear spring of stiffness gA. The oscillations of the cylinder on
the liquid-gas interface can be modeled by a SDOF mass-spring system. 

2.5 VISCOUS DAMPING
Viscous damping occurs in a mechanical system when a component of the system is in con-
tact with a viscous liquid. The damping force is usually proportional to the velocity 

(2.37)

where c is called the viscous damping coefficient and has dimensions of (force)(time)/ (length).
Viscous damping is often added to mechanical systems as a means of vibration control.

Viscous damping leads to an exponential decay in amplitude of free vibrations and a reduc-
tion in amplitude in forced vibrations caused by a harmonic excitation. In addition, the
presence of viscous damping gives rise to a linear term in the governing differential equa-
tion, and thus does not significantly complicate the mathematical modeling of the system.
A mechanical device called a dashpot is added to mechanical systems to provide viscous
damping. A schematic of a dashpot in a one degree-of-freedom system is shown in 
Figure 2.18(a). The free-body diagram of the rigid body, Figure 2.18(b), shows the viscous
force in the opposite direction of the positive velocity.

A simple dashpot configuration is shown in Figure 2.19(a). The upper plate of the
dashpot is connected to a rigid body. As the body moves, the plate slides over a reservoir of
viscous liquid of dynamic viscosity . The area of the plate in contact with the liquid is A.
The shear stress developed between the fluid and the plate creates a resultant friction force
acting on the plate. Assume the reservoir is stationary and the upper plate slides over the

m

F = cv

r

U1:2 =

1
2
rg A x 2

1 -

1
2
rg A x 

2
2

FB = mg + rg Ax

m

c

k
kx

x

(a) (b)

cx· FIGURE 2.18
(a) Schematic of SDOF mass-spring-dashpot
system. (b) Dashpot force is and
opposes the direction of positive velocity.

cx#
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liquid with a velocity v. The reservoir depth h is small enough that the velocity profile in
the liquid can be approximated as linear, as illustrated in Figure 2.19(b). If y is a coordi-
nate  measured upward from the bottom of the reservoir,

(2.38)

The shear stress developed on the plate is determined from Newton’s viscosity law

(2.39)

The viscous force acting on the plate is 

(2.40)

Comparison of Equation (2.40) with Equation (2.37) shows that the damping coefficient
for this dashpot is  

(2.41)

Equation (2.41) shows that a large damping force is achieved with a very viscous fluid, a
small h, and a large A. A dashpot design with these parameters is often impractical and thus
the device of Figure 2.19(a) is rarely actually used as a dashpot.

This analysis assumes the plate moves with a constant velocity. During the motion of
a mechanical system, the dashpot is connected to a particle which has a time-dependent
velocity. The changing velocity of the plate leads to unsteady effects in the liquid. If the
reservoir depth h is small, the unsteady effects are small and can be neglected.

A more practical dashpot is a piston-cylinder arrangement, as shown in Figure 2.20.
The piston slides in a cylinder of viscous liquid. Because of the motion, a pressure difference

c =

m A

h

F = tA =

m A

h
 v

t = m
du
dy

= m
v
h

u(y) = v 
y

h

υ

(a)

(b)

h

υ

vy

Plate of area A

Viscous fluid

u(y) =

ρ, μ
h

FIGURE 2.19
(a) Simple dashpot model where
plate slides over a fixed reservoir of
a viscous liquid. (b) Since h is small, a
linear velocity profile is assumed in
the liquid.

x·

FIGURE 2.20
A piston and cylinder device that
serves as a viscous damper.
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is formed across the head of the piston which is proportional to the velocity of the piston.
The pressure times the area of the head is the damping force.

A torsional viscous damper is illustrated in Figure 2.21. The shaft is rigidly connected
to a point on a body undergoing torsional oscillations. As the disk rotates in a dish of vis-
cous liquid, a net moment due to the shear stresses developed on the face of the disk acts
about the axis of rotation. The moment is proportional to the angular velocity of the shaft 

(2.42)

where ct is the torsional viscous damping coefficient and has dimensions of force-length-time.
Any form of damping where the damping force is proportional to the velocity is

referred to as viscous damping. Viscous damping can be produced by a body moving
through a magnetic field, a body oscillating on the surface of a lake, or by the oscillations
of a column of liquid in a U-tube manometer.

The schematic representation for viscous damping when present in mechanical systems
is shown in Figure 2.22. The force developed in the dashpot is equal to and opposite of the
force from the damper on the body. The force resists the motion of the system and is drawn
to show it acting in the opposite direction of the velocity. The direction of the force takes
care of itself. If the velocity is negative, the actual damping force is acting in the direction
of positive velocity. However, it is drawn on the FBD in the direction of negative velocity
and has a negative value, thus being in the positive direction.

The viscous damping force is the damping coefficient times the velocity of the point
where the dashpot is attached acting in the opposite direction of the positive velocity of
that point.

M = ct u
#

θ⋅
FIGURE 2.21
A disk rotates in a dish of a viscous
liquid, producing a moment about the
axis of the shaft and acting as a
torsional viscous damper.

cx· > 0

x·

cx· < 0

x·

c

x

(a) (b) (c)

FIGURE 2.22
(a) Schematic of a viscous damper in
a mechanical system. (b) The viscous
damping force is always drawn as the
opposite of the direction of positive
velocity. (c) When velocity is nega-
tive, the viscous clamping force is still
drawn to the left, but since it is nega-
tive, it goes toward the right.
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2.6 ENERGY DISSIPATED BY VISCOUS DAMPING
Rewriting the principle of work and energy, Equation (1.47) applied to a system is

(2.43)

and shows that work done by non-conservative forces is the difference in total energies.
Viscous damping is a non-conservative force. After application of viscous damping,

, and the work done by viscous damping is negative. The viscous
damping force always opposes the direction of motion. The work done by a viscous damper
between the initial position is described by x � 0 and an arbitrary position

(2.44)

The work done by discrete viscous dampers in a SDOF system is the sum of the work
done by individual dampers. For a SDOF system, the displacement of all particles is kine-
matically related. In a system with n viscous dampers, the displacement of the ith viscous
damper is related to the generalized coordinate by xi � �i x. The total work done by the
viscous dampers is

(2.45)U1:2 = -a
n

i =  1L

xi

0
ci x

#

i
 

d x i

U1:2 = -

L

x

0
cx#  dx

T2 + V2 6 T1 + V1

U1:2NC
= T2 + V2 - (T1 + V1)

L
4

Lc
4

3L

c

R

4

θ

θ⋅

3Lc
4

θ⋅

c

(a)

(b)

FIGURE 2.23
(a) System of Example 2.9. (b) FBD of system. The
force from the viscous damper on the body is
equal to and opposite the force from the body on
the viscous damper. The force is always drawn
opposite to the positive velocity of the point to
which it is attached.

EXAMPLE 2 . 9
Draw a FBD for the system of Figure 2.23(a) at an arbitrary instant using as the depend-
ent variable and labeling the forces in terms of 

SO LU T I ON
The FBD is shown in Figure 2.23(b). The velocity of particle A at an arbitrary instant is

upward, while the velocity of particle B is downward.3L
4  u

#L
4u

#

u
#

u
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Equation (2.45) is rewritten by introducing the relationship between xi and x as

(2.46)

Now that the integrals all have the same variable of integration and limits, the order of
summation and integration are interchanged to yield

(2.47)

Hence, an equivalent viscous-damping coefficient can be determined for any SDOF
system.

If an angular coordinate is used as a generalized coordinate, Equation (2.47) is mod-
ified as

(2.48)

where is an equivalent, torsional viscous-damping coefficient.ct,eq
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EXAMPLE 2 . 1 0
The system of Figure 2.24 moves in a horizontal plane. 

(a) Determine the equivalent viscous-damping coefficient for the system if x is the dis-
placement of the 2 kg block and is used as the generalized coordinate. 

(b) Determine the equivalent, torsional viscous-damping coefficient if the clockwise
angular displacement of the disk is used as the generalized coordinate.

u

r

r

y

x
2 kg

3000 N/m

1 kg

θ
3
2

1000 N/m

I = 0.04 kg-m2

r = 10 cm

200 N · s/m 400 N · s/m
FIGURE 2.24
System for Examples 2.10 and 2.11.
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SO LU T I ON
(a) Using kinematics, it is found that the relation between the downward displacement of
the 2 kg block x and the upward displacement of the 1 kg block y is Calculating
the work done by the viscous dampers as the system moves between the initial position and
an arbitrary position, we have

(a)

Thus, ceq � 1100 N s/n
(b) Kinematics is used to determine that x � r and where r � 0.1 m.

Calculating the work done by the viscous dampers as the system moves from an initial posi-
tion to an arbitrary position, we have

(b)

Thus, ct,eq  � 11 N m s/rad

2.7 INERTIA ELEMENTS
A particle’s mass is the only inertia property for the particle. The distribution of mass about
the mass center is also important for a rigid body undergoing planar motion. It is described
by a property of the rigid body called the centroidal moment of inertia, defined by

(2.49)

when the coordinates of the rigid body’s mass center are The integration is carried
out over the entire mass of the rigid body. The centroidal moment of inertia has been cal-
culated for common shapes, and the results are tabulated in Table 2.1. 

2.7.1 Equivalent Mass
The kinetic energy of a particle is . The kinetic energy of a rigid body undergoing
planar motion is . For a linear SDOF system, the displacement of any parti-
cle in the system is kinematically dependent upon x. Consider a system composed of n
bodies, particle, and rigid bodies undergoing planar motion. There exists a such that
the displacement of the mass center of the ith body is and there exists a �i such
that the angular rotation of the ith body is If the ith body is a particle, thenui = ni x.

x i = bi x,
bi

1
2m v 2

+
1
2Iv2

1
2mv2

(x, y).

I =

3
m

3(x - x)2
+ (y - y)42 dm 

##

* d c3
2

(0.1 m)u d = -

L

u

0
a11 

N # m . s

rad
 bu#d u

U1:2 = -

L

u

0
(200 N # s/m)[(0.1m)u

#

]d [(0.1 m)u]-

L

u

0
(400 N # s/m) c3

2
(0.1 m)u

# d

y =
3
2 r  uu

#

 = -

L

x

0
(1100  N # s/m) x#  dx

 U1:2 = -

L

x

0
(200  N # s/m) x# dx -

L

x

0
(400 N # s/m) a3

2
 x# bd a3

2
 xb

y =
3
2x.



Modeling of SDOF Systems 77

Slender rod

L

y

x

z Iz =

1
12

mL2

Iy =

1
12

mL2

Ix L 0

Thin disk y

x

r

z

Iz =

1
4

mr 2

Iy =

1
4

mr 2

Ix =

1

2
mr 2

Thin plate

Iz =

1

12
mh 2

Iy =

1
12

mw2

Ix =

1
12

m(w2
+ h 2)

y

z

h

x
w

Circular cylinder

z

y

x

r

L

Iz =

1
12

m(3r 2
+ L2)

Iy =

1

12
 m(3r 2

+ L2 )

Ix =

1

12
mr 2

Sphere y

z
x

r

Iz =

2

5
mr 2

Iy =

2
5

mr 2

Ix =

2
5

mr 2

Moments of inertia of three-dimensional bodiesT A B L E 2 . 1

Body General Shape Centroidal Moments of Inertia

xz

G

yGeneral shape

 Iz =

L
(x 2

+ y 2) dm

 Iy =

L
(x 2

+ z 2) dm

 Ix =

L
(y 2

+ z 2) dm



78 CHAPTER 2

. The total kinetic energy of the system is the sum of the kinetic energies of all bodies
in the system:

(2.50)

Thus, any single degree-of-freedom system has an equivalent mass defined by Equation
(2.50).

If an angular coordinate is used as the generalized coordinate, the kinetic energy is written as

(2.51)

where Ieq is an equivalent moment of inertia. 
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EXAMPLE 2 . 1 1
The system of Figure 2.24 moves in a horizontal plane. 

(a) Determine the equivalent mass when x (the displacement of the 2 kg block) is used
as the generalized coordinate.

(b) Determine the equivalent moment of inertia when (the clockwise angular rota-
tion of the disk) is used as the generalized coordinate.

SO LU T I ON
During the solution of Example 2.10, it is determined that if y is the upward displace-
ment of the 1 kg block, then and . The total kinetic energy
is the kinetic energy of the blocks plus the kinetic energy of the disk:

(a)

Thus, the equivalent mass is 8.25 kg.

(b) During the solution of Example 2.10, it is shown that 
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(b)

Thus, if all of the inertia were concentrated on the disk, the disk would have a moment
of inertia of 0.0825 kg # m2.

2.7.2 INERTIA EFFECTS OF SPRINGS
When a force is applied to displace the block of Figure 2.25(a) from its equilibrium posi-
tion, the work done by the force is converted into strain energy stored in the spring. If the
block is held in this position and then released, the strain energy is converted to kinetic
energy of both the block and the spring. If the mass of the spring is much smaller than the
mass of the block, its kinetic energy is negligible. In this case the inertia of the spring has
negligible effect on the motion of the block, and the system is modeled using one degree
of freedom. The generalized coordinate is usually chosen as the displacement of the block.

If the mass of the spring is comparable to the mass of the block, the single degree-of-
freedom assumption is not valid. The particles along the axis of the spring are kinemati-
cally independent from each other and from the block. The spring should be modeled as a
continuous system.

If the mass of the spring is much smaller than the mass of the block, but not negligi-
ble, a reasonable one degree-of-freedom approximation can be made by approximating the
spring’s inertia effects. The actual system of Figure 2.25(a) is modeled by the ideal system
of Figure 2.25(b) in which the spring is massless. The mass of the block in Figure 2.25(a)
is greater than the mass of the actual block to account for inertia effects of the spring. The
value of meq is calculated such that the kinetic energy of the system of Figure 2.25(b) is the
same as the kinetic energy of the system of Figure 2.25(a) including the kinetic energy of
the spring, when the velocities of both blocks are equal. Unfortunately, calculation of the
exact kinetic energy of the spring requires a continuous system analysis. Thus, an approx-
imation to the spring’s kinetic energy is used.

Let x(t) be the generalized coordinate describing the motion of both the block of Figure 2.25(a)
and the block of Figure 2.25(b). The kinetic energy of the system of Figure 2.25(a) is

(2.52)

where Ts is the kinetic energy of the spring. The kinetic energy of the system of
Figure 2.25(b) is

(2.53)

The spring in Figure 2.25(a) is uniform, has an unstretched length l and a total mass ms.
Define the coordinate z along the axis of the spring, measured from its fixed end, as defined
in Figure 2.26. The coordinate z measures the distance of a particle from the fixed end in
the spring’s unstretched state. The displacement of a particle on the spring, u(z), is assumed
explicitly independent of time and a linear function of z such that u(0) � 0 and u(l ) � x,

(2.54)u(z) =

x
l

 z
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2
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x
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x

(a)

(b)

meq

FIGURE 2.25
(a) Potential energy devel-
oped in the spring is con-
verted into kinetic energy for
both the block and the
spring. (b) An equivalent
mass is used to approximate
inertia effects of the spring.
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Equation (2.54) represents the displacement function of a uniform spring when it is stati-
cally stretched. Consider a differential element of length dz, located a distance z from the
spring’s fixed end. The kinetic energy of the differential element is 

(2.55)

The total kinetic energy of the spring is

(2.56)

Equating T  from Equations (2.52) and (2.53) and using from Equation (2.56) gives

(2.57)

Equation (2.57) can be interpreted as follows: The inertia effects of a linear spring with one
end fixed and the other end connected to a moving body can be approximated by placing
a particle whose mass is one-third of the mass of the spring at the point where the spring
is connected to the body.  

The preceding statement is true for all springs where use of a linear displacement func-
tion of the form of Equation (2.54) is justified. This is valid for helical coil springs, bars
that are modeled as springs for longitudinal vibrations, and shafts acting as torsional
springs. 
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u(z) =
u(l) = x

u(0) = 0

(b)

x
l

z
FIGURE 2.26
(a) The coordinate z is measured along the axis of
the spring form its fixed end when the system is in
equilibrium, . (b) The displacement
of the spring is assumed as a linear function of z.

0 … z … /

EXAMPLE 2 . 1 2
The springs in the system of Figure 2.27(a) are all identical, with stiffness k and mass ms.
Calculate the kinetic energy of the system in terms of (t), including the inertia effects of
the springs. 

SO LU T I ON
Each spring is replaced by a massless spring and a particle of mass ms/3 at the point on the
bar where the spring is attached as shown in Figure 2.27(b). The total kinetic energy of the

u
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system of Figure 2.27(b) is the kinetic energy of the bar plus the kinetic energy of each of
the particles
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FIGURE 2.27
(a) System of Example 2.12. (b) Inertia effects of springs are approximated by placing a particle of
mass at locations where springs are attached.ms /3

The simply supported beam of Figure 2.28 is uniform and has a total mass of 
100 kg. A machine of mass 350 kg is attached at B, as shown. What is the mass of a parti-
cle that should be placed at B to approximate the beam’s inertia effects?

SO LU T I ON
Since the exact expression for the dynamic beam deflection is hard to obtain, an approxi-
mate displacement function is used in the calculation of the beam’s kinetic energy. Let z be
a coordinate along the beam’s neutral axis. Assume that the time-dependent displacement
of any particle a long the beam’s neutral axis can be expressed as

(a)

where x(t) is the deflection of B. An appropriate approximation for w(z) is the static deflection
of the beam due to a concentrated load, P, applied at B, such that B has a unit deflection.

y (z, t) = x (t )v(z)

EXAMPLE 2 . 1 3
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By using the methods of Appendix D, the static deflection due to a concentrated load
at B is found to be

(b)

The load required to cause a unit deflection at z � 2L 3

(c)

Consider a differential element of length dz, located a distance z from the left support.
The kinetic energy of the element is 

(d)

where is the mass density of the beam and A is its cross-sectional area. The beam’s total
kinetic energy is calculated by integrating dT over the entire beam. Substituting the previ-
ous results for w(x, t) in this integral leads to

(e)

The integral is evaluated yielding 

(f)

Noting that the total mass of the beam is  AL, a particle of mass 58.6 kg should be added
at B to approximate the inertia effects of the beam. The system of Figure 2.28(a) is mod-
eled as a SDOF system with a particle of 408.6 kg located at B.
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FIGURE 2.28
(a) System of Example 2.13.
(b) Static deflection of beam
due to concentrated load at B.
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2.7.3 ADDED MASS
Consider a mass-spring system immersed in an inviscid fluid, as shown in Figure 2.29. The
spring is stretched from its equilibrium configuration and the mass released. The ensuing
motion of the mass causes motion in the surrounding fluid. The strain energy initially
stored in the spring is converted to kinetic energy for both the mass and the fluid. Since
the fluid is inviscid, energy is conserved

(2.58)

The inertia effects of the fluid can be included in an analysis by using a method similar to
that used in Section 2.7.2 to account for the inertia effects of springs. An imagined parti-
cle is attached to the mass such that the kinetic energy of the particle is equal to the total
kinetic energy of the fluid. If x is the displacement of the mass, the total kinetic energy of
the system is , where

(2.59)

The mass of the particle is called the added mass.
The kinetic energy of the fluid is difficult to quantify. The motion of the body theo-

retically entrains fluid infinitely far away in all directions. The total kinetic energy of the
fluid is calculated from

(2.60)

where v is the velocity of the fluid set in motion by the motion of the body. The inte-
gration is carried out from the body surface to infinity in all directions. If the integration
of Equation (2.60) is carried out, the added mass is calculated from  

(2.61)

Potential flow theory can be used to develop the velocity distribution in a fluid for a body
moving through the fluid at a constant velocity. This velocity distribution is used in
Equations (2.60) and (2.61) to calculate the added mass. Table 2.2 is adapted from Wendel
(1956) and Patton (1965) and presents the added mass for common body shapes.
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FIGURE 2.29
Oscillations of a submerged body create kinetic energy
in a fluid. The inertia of the fluid can be approximated
by a particle added to the mass of the body.
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Rotational motion of a body in a fluid also imparts motion to the fluid resulting in
rotational kinetic energy of the fluid. The inertia effects of the fluid are taken into account
by adding a disk of an appropriate moment of inertia to the rotating body. If is the angu-
lar velocity of the body, the added mass moment of inertia is calculated from 

(2.62)

Note that the added mass moment of inertia is zero if the body is rotating about an axis
of symmetry. Both the added mass and added moment of inertia terms are negligible for
bodies moving in gases. Table 2.3 presents added moments of inertia for a few common
bodies. It is adapted from Wendel (1956).

2.8 EXTERNAL SOURCES
A non-conservative force is one whose work depends upon the path traveled by the particle
to which the force is attached. Viscous damping and externally applied forces are examples
of non-conservative forces. The work done by an external force is

(2.63)

where x (t1) � x1 and x (t2) � x2.
Let x represent the generalized coordinate defined for a SDOF system. Suppose n exter-

nal forces are applied to the system whose points of application are 
The total work by the external forces are

xi = ei x, i = 1, 2, Á , n.
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(2.64)

The power delivered by an external force F(t) is

(2.65)

Work is a cumulative effect, whereas power is instantaneous.
Sinusoidal forces are easy to generate by an actuator. Sometimes the dynamics of the

system provides harmonic forces, such as reciprocating engines or any type of rotating
machinery. Impulsive forces are large forces generated over a short period of time, such as
the action of a hammer. Transient forces are generated over a period of time.
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EXAMPLE 2 . 1 4

An applied force has the form F(t) � 100 sin(50t) N. 
(a) Determine the work done by the force between time 0 and an arbitrary time t if 

x(t) � 0.002 sin(50t � 0.15) m.
(b) Determine the work done by the force between 0 s and 0.01 s. 
(c) Determine the power delivered by the force at 0.01 s. 

SO LU T I ON
(a) The work done by the force is

(b) The work between 0 s and 0.01 s is W (0.01)

(c) The power delivered to the system at t � 0.01 s is

Motion input is generated by kinematic mechanism, such as a cam and follower system or
a Scotch yoke. Motion input also occurs through the wheels on a car following the road con-
tour. The work done by the motion input depends upon the system. Consider a mass-spring

= 4.50 N # m/s

P = F (t )x# = 3100  sin (0.5) N4 C (0.002 m)(50 rad/s) cos (0.5 - 0.15) D
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and viscous-damper system of Figure 2.30. The spring and viscous damper are connected to a
moveable support which has a prescribed displacement y(t). The motion causes work in the
spring and viscous damper. If x is the chosen generalized coordinate and represents the dis-
placement of the mass, the change in length of the spring is y � x and the velocity developed
in the viscous damper is . The work done by the parallel combination of the spring and
viscous damper on the body is

(2.66)

where is the work done by the non-conservative damping force. Hence, the
equivalent force due to the motion input is

(2.67)Feq = ky + cy#
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EXAMPLE 2 . 1 5
A car is traveling on a bumpy road that is approximated by 

(a)

The car has a constant horizontal velocity of 60 m/s. The car is modeled using a simplified
suspension system consisting of a mass attached to a spring in parallel with a viscous
damper. The spring and viscous damper combination is attached to the wheels’ axis which
follow the road contour. 

(a) What is the time dependent displacement imparted to the suspension system? 
(b) What is the acceleration imparted to the suspension system?
(c) What is the equivalent force felt by the vehicle through a suspension system of

stiffness 20,000 N/m and damping coefficient 1000 N # s/m?

SOLUT ION
(a) The car is traveling at a constant speed of 60 m/s; thus, in time t, it travels z � 60t.
The displacement imparted to the vehicle is 

(b)

(b) The acceleration imparted to the suspension system is 

(c)

(c) The equivalent force is given by Equation (2.65) as

(d)= [40sin(120t) + 240cos(120t)] N

(120)[0.002cos(120t)m/s]Feq = (20000 N/m) [0.002  sin(120t) m] + (1000 N # s/m)

y
$

= - (0.002)(120p)2 sin (120pt) = -2.84 * 102 sin(120pt) m/s2

y (t) = 0.002 sin32p(60t)4 = 0.002 sin(120pt)

y (z) = 0.002sin(2pz) m

k c

m

x

y(t)

FIGURE 2.30
A mass-spring and viscous-
damper system with the
spring and viscous damper
attached to a moveable sup-
port. The motion of the sup-
port induces both the spring
force and viscous-damping
force to do work on the
system.
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2.9 FREE-BODY DIAGRAM METHOD
Newton’s laws, as formulated in Chapter 1, are applied to free-body diagrams of vibrating
systems to derive the governing differential equation. The following steps are used in appli-
cation to a SDOF system. 
1. A generalized coordinate is chosen. This variable could represent the displacement of

a particle in the system. If rotational motion is involved, the generalized coordinate
could represent an angular displacement.

2. Free-body diagrams are drawn showing the system at an arbitrary instant of time. In
line with the methods of Section 1.7, two free-body diagrams are drawn. One free-
body diagram shows all external forces acting on the system. The second free-body dia-
gram shows all effective forces acting on the system. Recall that the effective forces are
a force equal to , applied at the mass center and a couple equal to 

The forces drawn on each free-body diagram are annotated for an arbitrary
instant. The direction of each force and moment are drawn consistent with the posi-
tive direction of the generalized coordinate. Geometry, kinematics, constitutive equa-
tions, and other laws valid for specific systems can be used to specify the external and
effective forces.

3. The appropriate form of Newton’s law is applied to the FBD. If the FBD is that of a
particle, the appropriate conservation law is If the FBD is that of a rigid
body undergoing planar motion, the conservation laws are and

If the external and effective force method is used, the appropriate
equations are .

4. Applicable assumptions are used along with algebraic manipulation. The result is a
governing  differential equation.
Forces are drawn on the FBDs at an arbitrary instant. The force from the spring on the

FBD (from Newton’s third law) is equal and opposite to the force from the body on 
the spring. If the spring is stretched, it is in tension, and the force in the spring pulls 
on the spring, as shown in Figure 2.31(a). Equal and opposite to it is the spring force acting
away from the body. If the spring is in compression, the force in the spring pushes against

(πF)ext = (πF)eff

πMG = Ia.
πF = m  a

πF = m a.

I  a.m   a

(a)

(b)

x < 0

(c)

=
50 N–50 N

FIGURE 2.31
(a) Spring is in tension where force from a spring on
a block is away from the block. (b) Spring is in com-
pression were the force from a spring on a block
pushes on the block. (c) A � 50 N force pulling on
the block is equivalent to a 50 N force pushing on
the block.
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the spring, as shown in Figure 2.31(b). Equal and opposite again, the spring force is acting
against the body. Let x represent the displacement of the particle to which the spring is
attached. If the spring force is drawn for a positive value of x, it is labeled kx and is drawn
acting away from the body. Now if the spring is in compression, x takes on a negative value.
If the spring force is drawn acting away from the body and x is negative, it is actually acting
against the body as shown in Figure 2.31(c). Thus, the spring force is always drawn in the
direction opposite to the that of positive displacement of the point to which it is attached.
Then the direction of the spring force always takes care of itself.

The force from a viscous damper always opposes the direction of motion of the point
to which it is attached on a FBD of a SDOF system. If x represents the displacement of the
particle to which a viscous damper is attached, then its velocity is . The force from the vis-
cous damper drawn on the FBD opposes the direction of positive . If the velocity of the
particle is in the opposite direction and is negative, it is the same situation shown 
Figure 2.32(c) where a negative force on a FBD is actually in the opposite direction. Thus,
the force from a viscous damper always opposes the direction of positive motion of the par-
ticle to which it is attached. Like the spring force, the direction always takes care of itself.

When the effective force diagram is drawn, the effective forces are drawn to be consis-
tent with the positive direction of the generalized coordinates.

x#
x#

x#

(a)

(b)

cx·

cx·

(c)

=
|cx· |

x
.

x
.

x

c
m

FIGURE 2.32
The sign of the viscous-damping force takes care of itself if
it is drawn to the opposite of the positive motion of the
point to which the viscous damper is attached.

EXAMPLE 2 . 1 6
The block of Figure 2.33(a) slides on a frictionless surface. Derive the differential equation
governing the motion of the system using x as the displacement of the system from its equi-
librium position and as the generalized coordinate. 

SO LU T I ON
The free-body diagram of Figure 2.33(b) shows the forces acting on the block at an arbi-
trary instant. The spring force is kx and is drawn away from the block, indicating the spring
is in tension for a positive x. The damping force is labeled and is drawn opposite the pos-
itive direction of motion.

cx#
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Applying Newton’s law to the free-body diagram in the x direction leads to

(a)

Rearranging the equation so that all terms involving the generalized coordinate are on one
side yields

(b)

Equation (b) is the governing differential equation. The values of x(0) and must be
specified before solving.

x#(0)

m x
$

+ cx# + kx = F (t)

- kx - cx# + F (t) = mx
$

(a)

(b)

F(t)

kx

cx·

mg

m

c

F(t)

k

FIGURE 2.33
(a) System of Example 2.16. Mass-spring and viscous-damper
system sliding on a frictionless surface with an external force.

A thin disk of mass moment of inertia I is attached to a fixed shaft of length L. The polar
moment of inertia of the shaft is J and it is made from a material of shear modulus G, as
shown in Figure 2.34(a). A moment M(t) is applied to the disk. Derive the differential
equation governing the clockwise angular displacement of the disk .

SO LU T I ON
The effect of the shaft is to produce a resisting moment

(a)

on the disk. The disk undergoes pure rotational motion about the axis of the shaft. A
FBD of the disk at an arbitrary time is shown in Figure 2.34(b). Applying to
the disk and noting that leads to 

(b)

(c)I u
$

+

JG

L
 u = M(t)

-

JG

L
 u + M(t) = Iu

$

a = u
$

πMG = Ia

M =

JG

L
 u

u

EXAMPLE 2 . 1 7

θ
M(t)

M(t)
JG
L

(a)

(b)

FIGURE 2.34
(a) System of Example 2.17.
The angular displacement of
the disk is the chosen gen-
eralized coordinate. (b) FBD
of the system at an arbitrary
instant.

u
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EXAMPLE 2 . 1 8
The system of Figure 2.35 lies in a horizontal plane on a frictionless surface. Derive the dif-
ferential equation governing the displacement of the mass.

SO LU T I ON
Let x represent the displacement of the mass. The disks move together. Assuming the cable
connecting the block to the disk is inextensible, the change in length of the cable is x,
which must be the amount of cable taken up or let out by the disk. If represents the
clockwise angular rotation of the disk, the amount of cable let out is equal to the arc length
subtended by as

(a)

Equation (a) is valid for all time. It can be differentiated leading to and 
This is consistent with use of the relative velocity and relative acceleration equations
applied between the center of the disk and the point instantaneously releasing the cable.
The acceleration of the point also has a component equal to directed toward the center
of rotation. Using the same principle, the spring is stretched by 2x. 

r u
#

2

x
$

= r u
$

.x# = r u
#

x = r u

u

u

2r

r

km

I

(a)

=

F(t)

R

2kx

External forces

(b)

F(t)
mẍ

m

I

Effective forces

(c)

ẍ
r

FIGURE 2.35
(a) System of Example 2.18 lies in a horizontal
plane. (b) FBDs of the system at an arbitrary
instant. The system consists of the disk and the
block.
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FBD’s illustrating the external forces for the system and the effective forces are shown
in Figure 2.35(b). Applying to these FBDs yields

(b)

which is rearranged to

(c)a1
r

+ mrb x
$

+ 4krx = rF (t)

- k(2x)(2r) + rF(t) = I a x
$

r
b + mx

$

(r)

(πMO 
)ext = (πMO  

)eff

EXAMPLE 2 . 1 9
A thin disk of mass m and radius r, has a spring of stiffness k, and has a viscous
damper of damping coefficient c attached at its mass center, as shown in Figure 2.36(a). The
disk rolls without slipping. Derive a differential equation governing the displacement of the
mass center.

SO LU T I ON
Let x be the displacement of the disk’s mass center. When the disk rolls without slipping
the friction force is less than the maximum available friction force where N is the
normal force. The point of contact between the disk and the surface has a velocity of zero.
Use of the relative velocity equation between the point of contact and the center of mass
yields

(a)

The mass center only has a velocity and an acceleration in the horizontal direction; thus,
Equation (a) can be differentiated to yield

(b)

When the disk rolls without slipping, the kinematic condition of Equation (b) exists
between the disk’s angular acceleration and the acceleration of the mass center. Noting that

a = r a

v = vC + vG>C = r vi

mN

I =
1
2 mr 2,

F

kx + cx
.

mx·
.

mr2

=

External forces Effective forces

mg

No slip

Thin disk of
mass m and
radius r

c

μ

k

N

1
2

x·
.

r FIGURE 2.36
(a) System of Example 2.19. The disk
rolls without slipping. (b) FBDs of the
system at an arbitrary instant. The
friction force is less than the maxi-
mum available friction, and a kine-
matic relationship exists between the
angular acceleration and the acceler-
ation of the mass center.
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FBDs of the disk at an arbitrary instant are shown in Figure 2.36(b). Summing
moments on these FBDs according to leads to

(c)

(d)
3
2

 mx
$

+ cx# + kx = 0

-kx (r) - cx# (r) =

1
2

mr 
2a x

$

r
b + mx 

$

(r)

(πMC  
)ext = (πMC 

)eff

a = x
$

,

EXAMPLE 2 . 2 0
An accelerometer used in micro-electromechanical (MEMS) applications is shown in
Figure 2.37(a). The accelerometer consists of a rigid bar between two massless fixed-fixed
beams that are acting like springs. The bar is free to vibrate in the surrounding medium,
which provides viscous damping. Derive a differential equation for the free vibrations of
the accelerometer using a one degree-of-freedom model.

SO LU T I ON
The system is modeled, as in Figure 2.37(b), as a rigid bar attached to two identical springs.
The mass of the bar is

(a)

(b)

(c)

beams

200  µm

20
0 

µm mass

Top view Cross-section of mass

Cross-section of beams

Side view

Direction
of vibration

silicone

E = 1.9 × 1011 N/m2

20 mm

0.5 mm

1 mm

0.5 mm

c k

m

h1 = 15 mm

h2 = 10 mm

FIGURE 2.37
(a) MEMS accelerometer
consists of a rigid bar
between two fixed-fixed
beams which vibrates in a
viscous liquid. (b) SDOF
model of system.
(c) Calculation of viscous
damping coefficient.
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(a)

The moment of inertia of the cross section of one beam is

(b)

The equivalent stiffness is twice the stiffness of a fixed-fixed beam at its midspan. From
Appendix D, it is calculated as 

(c)

An equivalent viscous-damping coefficient is calculated using an approximate linear veloc-
ity profile in the surrounding fluid. The fluid on the top and bottom of the beam is in
motion due to the vibrations of the beam as shown in Figure 2.37(c). The fluid above the
beam has a velocity profile of

(d)

where y is a coordinate into the fluid from the fixed surface. The shear stress acting on the
beam is calculated using Newton’s viscosity law as 

(e)

and the resultant force on the surface of the beam is

(f)

Using a similar analysis, the force on the lower surface of the beam is

(g)

The total damping force is expressed as

(h)

from which the equivalent viscous damping coefficient is calculated as

a 1

15 * 10-
 
6  m

+

1

10 * 10-
 
6  m 

b
= (740 * 10-6 N # s/m)(200 * 10-6  m)(20 * 10-6  m)

ceq = mL d a 1
h1

+

1
h2

b

F = mL d a 1
h1

+

1
h2

bv

F2 = mLd  

v
h2

F1 = tL d = mL d  

v
h1

t = m 

du
dy

= m
v
h1

u( y) =

v
h1

y

 

= 2
192(1.9 * 1011 N/m2)(4.17 * 10-26 m4)

(200 *  10-6 m)3
= 0.380 N/m

keq = 2a192EI

L3 b

I =

1

12
th 3

=

1
12

(0.5 * 10-6)(1.0 * 10-6 m)3
= 4.17 * 10- 26 m4

* (200 * 10-6 m) = 4.6 * 10-12kg

= a2.3 
g

cm3 b a a100 cm
m
b3a a 1 kg

1000 g
b (20 * 10-

 
6

 m)(0.5 * 10-6)

meq = rdtL
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(i)

The mathematical model for the free response of the system is

(j)

2.10 STATIC DEFLECTIONS AND GRAVITY
Static deflections are present in springs due to an initial source of potential energy, usu-
ally gravity. The static force developed in the springs form an equilibrium condition with
the gravity forces. The generalized coordinate is generally measured from the equilibrium
position of the system. For a linear system, when the differential equation governing the
motion is derived, the equilibrium condition appears in the differential equation. It is,
of course, set equal to zero. The static spring forces cancel with the gravity forces that
cause them in the differential equation. Thus, neither are drawn on the FBD showing
the external forces.

4.6 *  10-12
 x
$

+ 4.93 * 10-7x# + 0.380x = 0

= 4.93 * 10-7  N # s/m

EXAMPLE 2 . 2 1
A hanging mass-spring and viscous-damper system is illustrated inFigure 2.38(a). Derive
the differential equation governing the motion of the system. 

SO LU T I ON
Let x measure the displacement of the mass (positive downward) from the system’s equilib-
rium position. When the system is in equilibrium, a static spring force is developed due to
gravity. Summing forces to zero on the FBD (drawn when the system is in equilibrium, as
shown in Figure 2.38(b)) leads to the equilibrium condition 

(a)

where is the static deflection in the spring.
When the mass has deflected a distance x downward, the spring force is the spring force

that is present in equilibrium k plus the additional force developed from equilibrium kx.
Applying in the downward direction to the FBD of the particle (drawn at an
arbitrary instant, as shown in Figure 2.38(c)) leads to 

(b)mg - k (x + ¢s) - cx# + F(t ) = mx
$

πF = m a
¢s

¢s

mg - k¢S = 0

(a)

k c

m

F(t)

(b)

mg

kΔs

(c)

mg

cẋ

F(t)

k(x + Δs)

FIGURE 2.38
(a) System of Example 2.21. (b) FBD of the system
drawn when the system is in equilibrium. (c) FBD
drawn at an arbitrary instant. The differential equa-
tion governing the motion of the system is the
same as the sliding mass-spring-viscous system
without friction.
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which rearranges to

(c)

Using the equilibrium condition, Equation (a) in Equation (c) gives 

(d)

The equation governing the displacement of the hanging mass-spring and viscous-damper
system is the same as the sliding mass-spring and viscous-damper system.

The hanging mass-spring and viscous-damper system can be analyzed by considering it
FBD, shown again in Figure 2.39. The FBD can be broken down by drawing a FBD show-
ing the spring, viscous damper, and external forces plus a FBD showing the gravity and static
spring force. The resultant of the gravity and static spring force is zero, so one only needs
the first FBD. It is not necessary to show the static spring force or gravity on the FBD. 

The above result, not needing to show the gravity force or the static spring force on the
FBD, is valid only for deriving the differential equation of motion. If another goal 
(such as obtaining a reaction) is desired, the static spring forces and gravity must be
included on the FBD.

mx
$

+ cx# + kx = F(t)

mx
$

+ cx# + kx = F (t) + mg - k¢S

mg

cẋ

F(t)

=

k(x + Δs) cẋ

F(t)

kx

=

cẋ

F(t)

kx

+

kΔs

mg

FIGURE 2.39
(a) FBD of hanging mass-spring
and viscous-damper system can
be drawn such that it is the
same as the FBD of the sliding
mass-spring and viscous-damper
system.

Consider the system of Figure 2.40(a). Let x describe the downward displacement of ml
from the system’s equilibrium position. 

(a) Derive the differential equation governing x(t).
(b) Determine the reaction at the center of the disk at the pin support in terms 

of 

SO LU T I ON
A FBD of the system in equilibrium is shown in Figure 2.40(b). Summing moments about
the pin support to zero with positive moments counterclockwise leads to

(a)

FBDs illustrating the external forces and effective forces at an arbitrary instant are shown
in Figure 2.40(c). Using and on these FBDs lead to

(b)= m1x
$

 (2r) + m2

x
$

2
 (r) + I 

x
$

2r

- k (x + ¢s1)(2r) + m1g (2r) - k a x
2

- ¢s2b (r) - m2g (r)

(πMO 
)ext(πMO  

)eff

m1g (2r) - k¢s1(2r) - m2g (r) + k¢s2(r) = 0

x, x# ,  and  x$.

EXAMPLE 2 . 2 2
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which cleans up to

(c)

Use of Equation (a) in Equation (c) gives

(d)

(b) Applying in the vertical direction to the FBD of external forces,
positive downward yields

(e)

which is solved for R as

(f)

From this point, it is assumed that for all linear systems the generalized coordinate will
be measured from the system’s equilibrium position, and the only goal is to derive the dif-
ferential equation. Then the static spring force and the gravity force that causes it will not
be drawn on a FBD showing external forces.

R = mp 
g + m1g + m2g -

1

2
k x - k (¢s1 - ¢s2) + a1

2
 m2 - m1b x$

mp 
g + m1g + m2 

g - k (x + ¢s1) + k a x
2

- ¢s 2b -R = m1x
$

- m2

x
$

2

(πF)ext = (πF)eff

a 1

2r
+ 2r m1 + r m 2b x

$

+

5

2
kr x =  0

a 1

2r
+ 2r m1 +

r
2

 m2b  x$ +

5
2

k r x =  m1g (2r) - k¢s1(2r)- m2g (r) + k¢Q(r )

2r

m1 m2

r

k

I

(a)

k

I

(c)

ẍ
r

x
m1g m2g

mpg

(b)

mpg

R

R

kΔs1
kΔs2

k(x + Δs1
) k(    – Δs2

)x
2

m1ẍ1 m2
ẍ2

2

FIGURE 2.40
(a) System of Example 2.22. (b) FBD of
static equilibrium position. (c) FBDs of
system at an arbitrary instant.
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2.11 SMALL ANGLE OR DISPLACEMENT ASSUMPTION
Nonlinear differential equations occur when the generalized coordinate appears nonlinearly
in the differential equation. Examples of nonlinear differential equations are

(2.68a)

(2.68b)

(2.68c)

Equation (2.68a) occurs for a mass-spring and viscous-damper system when the spring has
a cubic nonlinearity. Equation (2.68b) occurs for a system where air resistance is included
in the modeling. An equation such as Equation (2.68c) could occur in the modeling of the
vibrations of a bar about the equilibrium position.

The exact solution of few nonlinear equations are known. Methods to handle nonlin-
earities in differential equation (mostly approximate methods) are considered in 
Chapter 12. A linearization method is sought for the differential equations. It is clear that
linearization of Equations (2.68a) or (2.68b) simply requires neglecting the nonlinear
terms in comparison to the linear terms. The linearization of Equation (2.68c) is not quite
as simple.

u
$

+ 3 u 

$

cos u + 200 cos  usin u = 0

 mx
$

+ ax# 2
+ k1x = 0

 mx
$

+ cx# + k1x + k3x
3

= 0

θ

(b)(a)

mg

m

T

L

θ

FIGURE 2.41
(a) System of Example 2.23. (b) FBD of particle at arbitrary
instant.

Derive the differential equation governing the motion of the simple pendulum of 
Figure 2.41(a) using as the counterclockwise angular displacement of the pendulum from
the system’s horizontal equilibrium position and as the generalized coordinate. 

SO LU T I ON
The FBD of the system at an arbitrary time is illustrated in Figure 2.41(b). Summing
moments about the fixed axis of rotation O using leads to 

(a)- mgL   sin u = mL2u
$

πM0 = IOa

u

EXAMPLE 2 . 2 3



98 CHAPTER 2

Equation (a) is arranged to

(b)

The differential equation derived in Example 2.23 is nonlinear because sin is a transcen-
dental, not linear, function of . Consider the Taylor series expansion for sin about � 0 as

(2.69)

Suppose � 0.1 rad. Thus,

(2.70)

Thus, the approximation for a small of

(2.71)

for � 0.1 rad � 5.1°( has an error of 1.167 percent. This provides confidence in the small
angle approximation. Using this approximation in the differential equation of 
Example 2.23 gives

(2.72)

which is a linear differential equations.
Consistent with the small angle approximation, truncation of Taylor series expansions

about � 0 for other trigonometric functions yields
(2.73)

(2.74)

(2.75)

The small angle assumption may be made a priori, before the differential equation is
derived. Consider the spring in the system Figure 2.42(a). It has an unstretched length .
When the bar rotates through an angle , the spring moves to a new position, as shown in
Figure 2.42(b). The change in length of the spring is 

(2.76)

It is consistent with the small angle assumption to approximate the change in length of the
spring by L . The spring force would be at an angle to the vertical. However, it is also
consistent with the small angle assumption to draw the spring force vertically and label it
kL , as shown in Figure 2.42(c). The distance for taking moments about the pin support
is L cos .u L L
u

uu

d = 2(/ + L sin u)2
+ (L - L cos u)2

- /

u

/

1 -  cos u L

1
2

 u 
2

tan u L 0

 cos u L 1

u

u
$

+

g

L
 u =  0

u

 sin u L u

u

 = 0.099833 +
Á

 = 0.1 - 1.67 * 10-4
+ 8.33 * 10-8

-
Á

  sin (0.1) = 0.1 -

(0.1)3

6
+

(0.1)5

120
-

Á

u

 sin u = u -

u3

6
+

u5

120
-

Á

uuu

u

u
$

+  
g

L
  sin u = 0
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kLθ

Rx

Ry

kδ

(a)

(b)

(c)

Rx

Ry

FIGURE 2.42
(a) The spring has an unstretched length . (b) When the system
moves to a new position described by the generalized coordinate
, the change in length of the spring is a nonlinear function of .

(c) Consistent with the small angle assumption, the spring force is
drawn vertically and labeled kL .u

uu

/

EXAMPLE 2 . 2 4
Derive the differential equation governing the motion of the bar of Figure 2.43(a). Use 
as the clockwise angular displacement of the bar from the system’s equilibrium position and
as the chosen generalized coordinate. Assume a small .

SO LU T I ON
The small angle assumption will be used; thus, the differential equation will be linearized.
Static deflections exist in the springs due to gravity. The static equilibrium position is
defined by an angle , and is measured relative to this angle. It is assumed that is small
and does not affect the lengths required for the moments. Indeed, under these conditions,

is taken to be zero without loss of generality.
FBDs showing the external forces and the effective forces at an arbitrary instant are

shown in Figure 2.42(b). The forces are drawn on the FBD with the small angle assump-
tion already made. The spring forces are labeled assuming small displacements with sin

. They also remain vertical, which is consistent with the small angle assumption. The
damping force is labeled as , which is derived from the relative velocity equation but is
drawn vertical to be consistent with the small angle assumption.  

This problem involves rotation about a fixed axis at O, so either or
is applicable. The latter is used here, applying 

to the FBDs of Figure 2.43(b) and leading to

(a)

Rearranging Equation (a) gives 

(b)4m u
$

+ c u
#

+ 20k u = 0

- k 
L
3

 uaL
3
b - k 

2
3

 L ua2L
3
b - c 

L
6

 u
# aL

6
b =

1
12

 mL2
 u
$

+ m 
L
6

 u
$aL

6
b

(πMO 
)ext = (πMO )eff(πMO 

)ext = (πMO )eff

πMO = IOa

c  

L
6  u

#
uLu

us

usuus

u

u
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2.12 EQUIVALENT SYSTEMS METHOD
It has been shown that the potential energy for a linear SDOF system with chosen gener-
alized coordinate x can be expressed as where is the potential energy 

in its equilibrium position, the kinetic energy is expressed as , the work done
by the viscous-damping forces as the generalized coordinate moves between x1 and x2 can
be written as , and the work done by all other external forces between

times tl and t2 is . Application of the principle of work and energy between 

position 1 and position 2 for the system where x (t1) � x1 and position 2 defines an arbi-
trary position of the system

(2.77)

Substituting the given expression for both kinetic and potential energy and separating the
work done by both viscous and external forces leads to

(2.78)

Noting that T1, V1, and V0 represent kinetic and potential energy at a specific instant of time
and therefore are constants, differentiation of Equation (2.78) with respect to time gives

(2.79)

Note that

(2.80)

(2.81)
d
dt

(x# 2) = 2x#  x
$

d
dt

 (x 2) = 2x x#

-

d
dt

 a
L

x

x1

ceqx
#dxb +

d
dt

 a
L

t

t1

Feqx
#dtb =

1
2

meq 
d
dt

 (x# 2) +

1
2

keq 
d
dt

 (x 2)

T1 + V1 -

L

x

x1

ceqx
#dx +

L

t

t1

Feqx
#dt =

1
2

meqx
# 2

+

1
2

keqx
2

+ V0

T1 + V1 + U1:2 = T + V + V0

1
t2
t1
Feqx

#dt

U1:2 = - 1
x2
x1 

ceqx
#dx

T =
1
2meqx

# 2

V0V =
1
2keqx

2
+ V0

k

k θ

k

c

Ox
Oy

G

L
3

L
3

k θ2L
3

c θ̇L

G

6
m θ̈L

6

m mL2θ̈θ̈ 2L
6

1
12

L
2

L
6

(a)

(b)

=

O

FIGURE 2.43
(a) System of Example 2.24.
(b) FBDs drawn at an arbitrary
instant using the small angle
assumption, ignoring static
spring forces and the gravity
forces that cause them.
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and

(2.82)

Equation (2.79) becomes

(2.83)

Equation (2.80) has two solutions: (the static case) and x. This satisfies 

(2.84)

Equation (2.84) is the differential equation for any linear, single degree-of-freedom
system. It only requires identification of , and . That is, any linear SDOF 
system is modeled by a mass-spring and viscous-damper system with equivalent coeffi-
cients, as in Figure 2.44. The equivalent mass is identified from the quadratic form of
kinetic energy in . The equivalent stiffness is identified from the quadratic
form of potential energy in . The equivalent viscous-damping coefficient is 
identified from the energy dissipation in The work done by external

forces, shown as is used to calculate .
If an angular coordinate is chosen as the generalized coordinate, the appropriate form

of Equation (2.84) is

(2.85)

The appropriate equivalent systems model is a thin disk of moment of inertia Ieq attached
to a shaft of torsional stiffness kt,eq in parallel with a torsional viscous-damper coefficient
ct,eq as shown in Figure 2.45.

Iequ
$

+ ct,equ
#

+ kt,equ = Meq(t )

Feq(t)1
t2

t1
Feq x# dt,

U1:2 = - 1
x2

x1
ceq x

#

dt.
V =

1
2keqx

2

T =
1
2meqx

# 2

Feq(t)meq, ceq, keq

meq x
$

+ ceqx
#

+ keqx = Feq(t )

x# = 0

Feqx
#

- ceqx
#

= meq x
$

x# + keqx x#

d
dt
a
L

x

x1

ceqx
#d xb =

d
dt
a
L

t

t1

ceqx
# 2dtb = ceqx

# 2

x

ceq

keq

meq Feq (t)

FIGURE 2.44
Equivalent mass-spring and viscous-damper system when a
linear displacement is chosen as the generalized coordinate.x

kt,eq
ct,eq

Ieq

Meq (t)

θ

FIGURE 2.45
Equivalent torsional system used when an angular
coordinate is chosen as the generalized coordinate.u
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Use the equivalent systems method to derive the differential equation governing the
motion of the bar of Figure 2.43(a) and Example 2.24 using as the clockwise angular dis-
placement of the bar from the system’s equilibrium position and as the chosen generalized
coordinate. Assume small .

SO LU T I ON
The kinetic energy of the bar at an arbitrary instant is

(a)

Thus, . The potential energy of the system at an arbitrary instant is

(b)

The equivalent torsional stiffness is . The work done by the viscous damper

between an initial position and an arbitrary position is

(c)

Hence, the equivalent torsional stiffness is . The differential equation governing is

(d)

Equation (d) reduces to Equation (b) of Example 2.24.
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=
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=
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=
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+
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12
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u

EXAMPLE 2 . 2 6
Use the equivalent system method to derive the differential equation governing the free
vibrations of the system of Figure 2.46. Use x, the displacement of the mass center of the
disk from the system’s equilibrium position, as the generalized coordinate. The disk rolls
without slipping, no slip occurs at the pulley, and the pulley is frictionless. Include an
approximation for the inertia effects of the springs. Each spring has a mass ms.

SO LU T I ON
Let be the clockwise angular rotation of the pulley from the system’s equilibrium position
and xB be the downward displacement of the block, also measured from equilibrium. Then

(a)

Eliminating between these equations leads to xB � 2x. Since the disk rolls without slip,
its angular velocity is The inertia effect of each spring is approximated by plac-
ing a particle of mass ms/3 at the location where the spring is attached to the system.

vD = x#  /rD.
u

x = r u xB = 2r u

u

EXAMPLE 2 . 2 5
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To this end it is imagined that a particle of mass ms/3 is attached to the center of the disk
and a particle of mass ms/3 is attached to the block. The total kinetic energy of the system,
including the kinetic energies of the imagined attached particles is

(b)

The equivalent mass is

(c)

The potential energy of the system at an arbitrary instant is

(d)

Comparison to the quadratic form of potential energy leads to keq � 5k.
The work done by the viscous dampers between two arbitrary instants is 

Comparison with the general form of work done by a viscous damper leads to ceq � 5c.
The differential equation governing free vibration of the system is 

a19

2
 m +

IP

r 2 +

5
3

 msbx
$

+ 5cx# + 5kx = 0

U1:2 = -

L

x2

x1

cx#  dx -

L

x2

x1

c (2x#) d (2x) = -

L

x2

x1

5cx# dx

V =
1
2kx 2

+
1
2k (2x)2

=
1
2(5k)x 2

meq =

19

2
 m +

1P

r 2 +

5

3
 ms

 =

1

2
 a19

2
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r 2 +
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3
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bx# 2
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1

2
mx# 2

+

1

2
 a1
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Db  a x#

rD
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+
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2
IP a x#

r
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+

1

2
 (2m)(2x#)2

+

1

2
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3
x# 2

+

1

2
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3
(2x# )2

 T =

1
2

mx# 2
+

1
2
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D +

1
2

IP u
#
2

+

1
2

(2m)x 

#
2
B + Ts1

+ Ts2

k

k

xB = 2x

c

c

x

rD 2r

2m

Ipr

FIGURE 2.46
The system of Example 2.26 is
modeled by the equivalent system
of Figure 2.44.

EXAMPLE 2 . 2 7
The slender rod of Figure 2.47 will be subject only to small displacements from equilib-
rium. Use the equivalent systems method to derive the differential equation governing the
motion of the rod using , the counterclockwise angular displacement of the rod from its
equilibrium position, as the generalized coordinate.

u
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SO LU T I ON
The kinetic energy of the bar at an arbitrary instant is

(a)

Comparison with the quadratic form of kinetic energy leads to Ieq � mL2/9.
The potential energy in the system is due to gravity. Choosing the plane of the pin sup-

port as the datum, the potential energy of the system at an arbitrary instant is

(b)

For small the Taylor series expansion for truncated after the second term leads to
an approximation for the potential energy as 

(c)

Comparison with the quadratic form of potential energy leads to kt,eq � mgL/6. Since the
datum was chosen as the plane of the pin support, the system has a potential energy of 
V0 � –mgL/6 when it is in equilibrium.

Equation (2.84) is used to write the differential equation governing the motion of the
system as

(d)
1
9

mL2
 u
$

+

1
6

 mgL u = 0

V = -mg 
L
6
a1 -

1
2

 u2b =

1
2

 mg L
6

 u2
- mg L

6

cos uu,

V = -mg 
L
6

 cos u

T = =

1

2
 maL

6
 u
# b2

+

1
2
a 1

12
 mL2bu# 2 =

1
2
a1

9
 mL2bu#

  

2

EXAMPLE 2 . 2 8
A simplified model of a rack-and-pinion steering system is shown in Figure 2.48. A gear of
radius r and polar moment of inertia J is attached to a shaft of torsional stiffness kt. 
The gear rolls without slip on the rack of mass m. The rack is attached to a spring of stiff-
ness k. Derive the differential equation governing the motion of the system using x, the
horizontal displacement of the rack from the system’s equilibrium position, as the general-
ized coordinate.

SO LU T I ON
Since there is no slip between the rack and the gear, � x/r, where is the angular displace-
ment of the gear from equilibrium. The kinetic energy of the system at an arbitrary instant is

(a)

from which the equivalent mass is determined as meq � m � J/r2. The potential energy of
the system at an arbitrary instant is 

(b)

from which the equivalent stiffness is determined as keq � k � kt/r
2. The differential equation is

(c)am +

J

r 2 b  x
$

+ akt

kt

r 
2 bx = 0

V = =

1

2
k x 2

+

1
2

kta x
r 2 b =

1
2
ak +

kt

r 2 bx 2

T = =

1

2
 mx# 2

+

1

2
 J a x#

r
b2

=

1

2
am +

J

r 2 bx# 2

uu

2L
3

θ

L
3

FIGURE 2.47
The compound pendulum is
modeled by the equivalent tor-
sional system of Figure 2.45.
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Gear of radius r, polar
moment of inertia J

Rack of
mass m

k

kt

x
FIGURE 2.48
Model of the rack-and-pinion system of
Example 2.28.

EXAMPLE 2 . 2 9
A simplified transmission system is shown in Figure 2.49. A motor supplies a torque, which
turns a shaft. The shaft has a gear on it, which meshes to a second gear designed such that
the speed of the second shaft is greater than the first. The shafts are mounted on identical
bearings each with a torsional damping coefficient ct. Let be the angular velocity of the
shaft directly connected to the motor. Derive a differential equation governing , which is
angular displacement of the shaft directly connected to the motor.

SO LU T I ON
The meshing gears imply a relationship between the angular velocities of the shafts. The
gear equation gives

(a)

The total kinetic energy of the shafts is

(b)

Thus, the equivalent moment of inertia is The work done by the tor-
sional viscous dampers is

(c)

The equivalent viscous damping coefficient is 

The work done by the external moment supplied by the motor is 

(d)

The equivalent moment is Meq(t) � M(t).
Thus the differential equation governing the angular displacement of the shaft is

(e)cJ1 + an1

n2
b2

J2 du$1 + ct 
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n2
b2 du# 1 + M(t )
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L
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1dt
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 u
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1
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2
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2.13 BENCHMARK EXAMPLES
In this section, the benchmark examples introduced in Section 1.8 are considered. The
free-body diagram method is used to derive the differential equations for the machine
mounted on a beam and for the simplified vehicle suspension system.

2.13.1 MACHINE ON A FLOOR IN AN INDUSTRIAL PLANT
A machine is mounted on the floor of an industrial plant. The floor is modeled as a 
W14�30 steel fixed-pinned beam. The appropriate SDOF model is that of a mass sus-
pended from a spring of appropriate stiffness, as shown in Figure 2.50(a). The stiffness is
calculated using Appendix D. The equation for the deflection of a fixed-free beam due to
a unit concentrated load at x � a evaluated for x < a is

(a)

The machine is located at a � 0.6L. Substituting this value into Equation (a) leads to

(b)

The stiffness is the reciprocal of w(0.6L)

(c)

One model is a mass of 31.06 slugs (the mass of the machine) attached to a spring of stiff-
ness 7.74 � 105 lb/ft.

k =

EI
0.00979L3 =

(30 * 106  psi) (291 in4)

0.00979(20 ft)3  a 1 ft
12 in b

2

= 7.74 * 105 lb/ft

w (0.6L) = 0.00979 
L3

EI

w (x) =

1
2EI

 a1 -

a
L
b c a a a2

L2 - 2
a
L

- 2b x 
3

6
+ a a2 -

a
L
b x 

2

2
d

M(t)

J1

J2

Gear with
n2 teeth

Gear with
n1 teeth

c1θ̇1

c2θ̇2

θ1
FIGURE 2.49
Model of the transmission system of Example 2.29.

kb

m + mb,eq

38.8 slugs

7.74 × 105 lb/ft

(a) (b)

FIGURE 2.50
(a) SDOF model for system of the first benchmark
problem. (b) Equivalent mass and equivalent stiffness
are calculated for the model.



Modeling of SDOF Systems 107

The inertia of the beam is included in the model by adding a particle of an appropri-
ate mass to the mass of the machine. The expression for the displacement of the beam due
to a concentrated load P applied at x � 0.6 L is obtained from Appendix D as

(d)

It takes a load of to cause a unit deflection at z � 0.6L. If x is the deflection
where the machine is supported, the beam’s kinetic energy is

(e)

Thus, the equivalent weight of the beam (noting that the weight per foot of a W14 � 30
steel beam is 30 lb/ft) is

(f)

Thus, the equivalent weight of the machine and the beam is 1250.8 lb. The mass of the
machine must be expressed in slugs as

(g)

The system is modeled by a machine of weight 1250.8 lb attached to a spring of stiffness
7.74 � 105 lb/ft as shown in Figure 2.50(b). The differential equation modeling the
system is

(h)

2.10.2 SIMPLIFIED SUSPENSION SYSTEM
A single degree-of-freedom model of a simplified suspension system is shown in Figure 2.51(a).

The “sprung mass,” which is the mass of the main vehicle, is modeled as a particle con-
nected to the axle by the suspension system. The suspension system is modeled as a spring
in parallel with a viscous damper. The wheel is assumed to be rigid (an assumption to be
examined later) and it traverses the road contour. Let m be the mass of the vehicle, k the
stiffness of the spring, and c the damping coefficient of the viscous damper. Let y( ) be
the road contour. If the vehicle travels with a constant horizontal velocity y, then the vehi-
cle travels a distance � vt in time t. Thus, the wheel experiences y(vt).j

j
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 c 0.84Lz - 0.0946t3 z 6 0.6L
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Applying Newton’s law to a free-body diagram of the vehicle drawn at an arbitrary
instant in Figure 2.51(b), we have

(a)

which is rearranged to

(b)

The model of the suspension system is that of a mass-spring and viscous-damper system
subject to motion input.

Parameters for the suspension system may be m � 300 kg, c � 1200 N s/m, and 
k � 12,000 N/m. Thus, the model for this suspension system is

(c)

2.14 FURTHER EXAMPLES
The small angle assumption, where appropriate, is made in these problems. Assuming all
systems are linear, the generalized coordinate is measured from the system’s equilibrium
position. Thus, the static forces in the spring cancel with the gravity forces, which cause
them, and neither are included on the FBDs.

300x
$

+ 1200x# + 12,000x = 1200y# + 12,000y

#

m x
$

+ c x# + kx = c y# + ky

-k(x - y) - c (x# - y# ) = mx
$

m
x(t)

k(y – x) c(ẏ – ẋ)y(t)

ck

(a) (b)

FIGURE 2.51
(a) SDOF model for simplified suspension system.
Model ignores the stiffness of the tires and the mass
of the axle. (b) FBD of the system at an arbitrary
instant.

EXAMPLE 2 . 3 0
A mass of 30 kg (shown in Figure 2.52(a)) is hung from a spring of stiffness k � 2.5 � 105 N/m,
which is attached to an aluminum beam (E � 71 � 109 N/m2, � � 2.7 � 103 kg/m3) of
moment of inertia I � 3.5 � 10–8 m4 and of length 35 cm. The beam is supported at its
free end and by a circular aluminum cable of diameter 1 mm and length 30 cm. 

(a) Determine the equivalent stiffness of the assembly.
(b) Write the differential equation governing in the motion of the mass.

SO LU T I ON
The stiffness of the beam is

(a)

The equivalent stiffness of the cable is

(b)

The beam and cable behave as two springs in parallel, because they have the same displace-
ments at their end. The discrete spring is in series with the parallel combination, because

kc =

EA
L

=

(71 * 109 N/m2) p(5 * 10-4)2

0.30 m = 1.86 * 105 N/m

kb =

3EI
L3 =

3(71 * 109 N/m2)(3.5 * 10-8 m4)

(0.35 m)3 = 1.74 * 105 N/m
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the displacement of the mass is the sum of the displacement of the spring and the displace-
ment of the end of the beam. The equivalent model is shown in Figure 2.52(b). The 
equivalent stiffness of the combination is

(c)

(b) The differential equation for a SDOF model of the motion of the mass (assuming
the beam and the column are massless) is

(d)30x
$

+ 1.48 * 105x = 0

 = 1.48 * 105 N/m

 =

1
1

2.5 * 105 N/m
+

1

(1.74 * 105 N/m) + (1.86 * 105 N/m)

 keq =

1
1

k
+

1
kb + kc

35 cm
30 cm

Aluminum

30 kg

Aluminum

1 mm diameter

I = 3.5 × 10–8 m4

2.5 × 105 N/m

30 kg

kcable

k

kbeam

(a) (b)

x x

FIGURE 2.52
(a) System of Example
2.30. Mass is suspended
from a beam supported
by a column. (b) Beam
and column are modeled
by springs resulting in the
equivalent systems model
shown.

EXAMPLE 2 . 3 1
A schematic diagram of a compactor is shown in Figure 2.53(a). The compactor is a cylin-
der of mass 35 kg, radius 0.9 m, and length 1.5 m. To each end of the cylinder, a viscous
damper of damping coefficient c � 1000 N m/s is connected to the center, while a spring
of stiffness k � 1.4 � 105 N/m is connected to a point 0.2 m from the center. 

(a) Derive a mathematical model for the unforced motion of the cylinder if it rolls
without slipping. 

(b) Derive a mathematical model for the unforced motion of the cylinder when it rolls
and slips with a coefficient of friction of 0.25.

SO LU T I ON
(a) The free-body diagram method is used with projections of the diagrams showing the
equivalent and effective forces in Figure 2.53(b). When the cylinder rolls without slipping,
there is an unknown friction force between the cylinder and the ground. Additionally, a

#
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kinematic relationship exists between the displacement of the mass center and the angular
acceleration . When the mass center of the disk has moved a distance x from equi-
librium, the spring has also changed in length where r 5 0.2 m and is the angular rota-
tion of the disk. Since x � R , the change in length of the spring is x. Summing
moments on these FBDs using ( Mc)ext � ( Mc)eff gives

(a)

(b)

Substituting given values, noting the moment of inertia of a circular cylinder about the
axis of rotation is , leads to

(c)

(b) if the disk rolls and slips, the friction force is equal to the maximum allowable friction force
equal to N, and there is no kinematic relationship between the angular acceleration and them

52.5x
$

+ 2000x# + 4.18 * 105x = 0

I =
1
2mR2

a 1
R2 + mb x

$

+ 2cx# + 2ka1 +

r
R
b2

x = 0

- (2cx#)R - c2k a1 +

r
R
bx d (r + R )x = I a x

$

R
b + (mx 

$

)R

gg
A1 +

r
R Bu

ur u

a = Ra

Iα

2k (1+
r
R

) x

μmg

mg

External forces Effective forces

=

mg

N

N

F

Ix
.

2cx
.

2cx
.

R

mẍ
2k (1+

r
R

) x

External forces Effective forces

x

Cylinder

(a)

(b)

(c)

mẍ

FIGURE 2.53
(a) System of Example 2.31. A compactor
is modeled as a cylinder with viscous
dampers attached at the center and
springs attached at a point above the
center. (b) FBDs of the compactor, assum-
ing it rolls without slipping. (c) FBDs of the
compactor in the case of slipping.
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acceleration of the mass center. The appropriate FBDs are shown in Figure 2.53(c). Summing
moments about the point contact using the FBDs and , we have

(d)

Summing moments about the center of the disk using these FBDs and
, we have

(e)

Substituting Equation (e) into Equation (d) leads to

(f)

Equation (f ) is derived assuming . The right-hand side is positive if . Upon
substitution of given values and taking into account the sign dependence of the right-hand
side on Equation (f ) becomes

(g)35x
$

+ 2000x# + 3.08x105
= e -77.25 x# 7 0

77.25 x# 6 0

x#

x# 6 0x# 7 0

mx
$

+ 2c x# + 2k a1 +

r
R
bR = -mmgR

- c2k a1 +

r
R
bx dr + mmg R = Ia

(πMG 
)ext = (πMG 

)eff

- (2cx#)R - c2k a1 +

r
R
bx d (r + R )x =  Ia + (mx

$
 )R

(πMC 
)ext = (πMC 

)eff

EXAMPLE 2 . 3 2
Consider the system shown in Figure 2.54(a). A thin rod of mass m is pinned at O at a dis-
tance of from its left end is attached to a viscous damper of damping coefficient c at its
left end. Attached to its right end is a cubic block of side d and mass m which is initially
half submerged in a liquid of mass density . 

(a) Determine the value of d such that the equilibrium position is the horizontal con-
figuration of the bar. 

(b) Determine the equation of motion for small oscillations about the horizontal equi-
librium position. Use as the chosen generalized coordinate.

SO LU T I ON
When the system is in equilibrium, the moment of the gravity force must balance with the
moment of the buoyant force acting on the block. For the horizontal configuration whose
free-body diagram is shown in Figure 2.54(b), summing moments about the pin support

leads to

(a)

The buoyant force is equal to the weight of the fluid displaced by the block. For half of
the cube to be submerged,

(b)

Using Equation (b) in Equation (a) leads to 

(c)a 7
10
br 

d  
3

2
=

2
10

 mg Q d = a4mg

7r
b

1
3

FB = rd 
2a d

2
b = r 

d 
3

2

- mg a2L
10
b + FBa7L

10
b = 0

πMO = 0,

u

r

3L
10
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(b) When the bar has an angular displacement from its, equilibrium position, the
buoyant force acting on the block (assuming small ) becomes

(d)

Summing moments about the point of support using the free-body diagrams of Figure 2.54(c),
leads to

(e)

After subtracting the equilibrium condition of Equation (a), Equation (d) becomes

. (f)

(g)184 mu
$

+ 27c u
#

+ 147 rd 
2u =
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L
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+
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FIGURE 2.54
(a) System of Example 2.32. A
cube is at the end of a thin bar
and is partially submerged in a
liquid when acted on by a time
dependent force. (b) FBD of the
equilibrium position. (c) FBDs at
an arbitrary instant. The gravity
force and static buoyancy force
cancel with each other when
deriving the differential equation.
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EXAMPLE 2 . 3 3
Use the free-body diagram method to derive the differential equation governing the motion
of the system shown in Figure 2.55(a). Use as the clockwise angular displacement of the
bar measured from the system’s equilibrium position and as the chosen generalized coordi-
nate. Assume small .

SO LU T I ON
FBDs showing the external forces and the effective forces acting on the bar at an arbitrary
instant are shown in Figure 2.55(b). The small angle assumption implies that sin 

and the springs remain vertical. Thus, a linear differential equation will be
derived, and it can be assumed that static spring forces cancel with gravity when deriving
the differential equation. Summing moments about the point of support

and using the FBDs, we have

(a)

which reduces to

(b)m
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 u + 4c u
#

+ 3k u = 0

- c a2L
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# b a 2L
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3
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1
12

mL2u
$

+ maL
6

 u
$b aL

6
b

(πMO 
)ext = (πMO 

)eff

cos u L 1,
u L u,
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m θL
6

˙

=

External forces Effective forces

2k θL
3

k θL
3

c θ2L
3

˙

Rx
Ry

(b)

θ

L
3

L
3

L
3

k

c

2k

(a)

FIGURE 2.55
(a) System of Example
2.33. The small angle
assumption is used to
linearize the differential
equation a priori. (b) FBDs
of the system at an arbi-
trary instant.

EXAMPLE 2 . 3 4
Derive the differential equation governing the motion of the system of Figure 2.56. The
system is in equilibrium when the bar is in the vertical position. Use the equivalent systems
method using the angular coordinate as the counterclockwise angular displacement of the
bar when it is in equilibrium and as the generalized coordinate. Assuming small , the disk
rolls without slipping, and there is no friction between the cart and the surface.

u

u
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SO LU T I ON
The displacement of the center of the disk is , and the displacement of the cart is

with both assuming small . The appropriate equivalent systems model is the tor-
sional system whose equation is

(a)

The equivalent moment of inertia is obtained using kinetic energy. The kinetic energy of
the system at an arbitrary instant is

(b)

Noting that, if the disk rolls without slipping, then the moment of inertia of the
thin disk is , and the moment of inertia of the slender bar is .
Equation (b) becomes

(c)

Hence, . 

The potential energy at an arbitrary instant is

(d)

Thus, . The work done by the viscous damping force is
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FIGURE 2.56
The thin rod connects the disk
that rolls without slipping and
the cart which moves on a sur-
face without friction.
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The equivalent viscous damping coefficient is . Hence, the governing differen-
tial equation is

(f)a3
2

md 
a2

+

1
12

mL2
+ mcb

2bu$ + ca2u
#

+ k(a2
+ b2)u = 0

ct,eq = ca2

θ

b
Slender bar of

mass m2

a

c

k

m1

y(t)

(a)

x

k(y –     x) + c(ẏ –     ẋ)
b
a

b
a

(   )
2x

.

a
m2(        )b – a

2
(   )ẍ

a
m2(        )b – a

2
=

External forces Effective forces

Rx

Ry
kx m1ẍm1

(b)

Iθ̈ FIGURE 2.57
(a) The end of the bar
is connected to a
spring and viscous
damper which is given
motion input, perhaps
from a cam and fol-
lower mechanism.
(b) FBDs of the bar at
an arbitrary instant.

EXAMPLE 2 . 3 5
The bar of Figure 2.57(a) is attached to a spring and viscous damper which is attached to
a cam and follower system. The cam is designed such that it imparts a displacement y(t) to
the spring and viscous damper. The bar is designed to impart a linear motion to the cart.
Derive the differential equation governing the motion using x as the displacement of the
cart and as the generalized coordinate. The motion occurs in the horizontal plane.

SO LU T I ON
Assume the displacement of the cart is small. The angular rotation of the bar is related to
the displacement of the cart by . The displacement of the end of the bar where the
spring is attached is . FBDs showing the external and effective force acting
on the bar are shown in Figure 2.57(b). Summing moments about the mass center of the
bar and using these FBDs leads to

(a)+ (m1x 

$

)a + m2a b - a
2
b  

x
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 a b - a

2
b  

k ay -

b
a

 xbb + c ay
#
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b
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x
#bb - (kx)a =

1
12

m2L
2a x

$

a
b

(πMG 
)ext = (πMG 

)eff

y = b u =
b
a x

x = a u
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which is rearranged to

(b)

2.15 CHAPTER SUMMARY

2.15.1 IMPORTANT CONCEPTS
• A spring is a flexible link between two particles in a mechanical system.
• Structural elements may be used as springs.
• A combination of springs may be replaced by a single spring of equivalent stiffness for

purposes of analysis.
• The magnitude of a spring force (drawn at an arbitrary instant on a FBD) is the stiff-

ness of the spring times the change in length of the spring. If one end of 
the spring is fixed, the change in length of the spring is simply the displacement 
of the particle to which the spring is attached.

• The direction of a spring force (drawn on a FBD at an arbitrary instant) is consistent
with the state of the spring for a positive value of the generalized coordinate. If the
spring is stretched, the force is drawn acting away from the body. If the spring is com-
pressed, the force is drawn acting on the body. The direction of the spring force takes
care of itself as motion continues.

• Viscous damping is often used in mechanical systems because the addition of viscous
damping leads to a linear term in the governing differential equation.

• The force from a viscous damper (drawn on a FDB at an arbitrary instant) is equal to
the viscous-damping coefficient times the velocity of the particle to which it is
attached and opposite to the direction of positive velocity of the particle.

• The viscous dampers in a system may be replaced (for analysis purposes) by a single
viscous damper, such that the work done by the single damper is equivalent to the
work done by all viscous dampers.

• All inertia elements in a system may be replaced by a particle (for analysis purposes)
such that the kinetic energy of the particle is equal to the kinetic energy of all inertia
elements.

• The inertia of a spring may be approximated by adding a particle of one third of the
mass of the spring at the location in the system where the spring is attached.

• When a mass is vibrating in a liquid, the motion of the entrained liquid can be approx-
imated by added mass. That is, a particle of an appropriate mass is added to the mass
of the vibrating body. 

• All external forces acting on a system can be replaced (for analysis purposes) by a single
force whose work is equal to the work done by all external forces.

• The free-body diagram method can be used to derive the differential equation of any
SDOF. The method consists of drawing FBDs of the system at an arbitrary instant. If
the system can be modeled as a particle, the appropriate conservation law is 

. If the system can be modeled as a rigid body undergoing planar motion
with rotation about a fixed axis through O, the appropriate equations are πF = m   a
πF = m a

am1a +

m2L
2

12a
+

m2

4a
(b - a)2b x

$

+ c  

b2

a
 x# + k aa +

b2

a
bx = c  

b2

a
y# + k 

b2

a
 y
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and . If the system is composed of more than one body or involves planar
motion of a rigid body, the conservation equations are and

where A is any axis.
• For a linear system, if the generalized coordinate is measured from the system’s equi-

librium position, static forces developed in springs cancel with the gravity forces that
cause them when the differential equation governing the motion is derived. Thus, nei-
ther are included on a FBD or in formulation of potential energy.

• The small angle assumption can be used to linearize a nonlinear differential equation. It can
be applied a priori to deriving the differential equation governing the motion of the system.

• The equivalent systems method can be applied to any linear system. A generalized
coordinate is selected. An equivalent mass is calculated using the kinetic energy of the
system, an equivalent stiffness is calculated using the potential energy of the system,
an equivalent viscous-damping coefficient is calculated using the work done by the 
viscous-damping forces, and an equivalent force is calculated using the work done by
external forces. The differential equation governing the motion of is that of a mass-
spring and viscous-damper system using the equivalent coefficients.

2.15.2 IMPORTANT EQUATIONS
Force-displacement relation for a linear spring

(2.4)

Potential energy developed in a linear spring

(2.6)

Stiffness of a helical coil spring

(2.11)

Stiffness of longitudinal bar

(2.16)

Stiffness of a simply supported beam at its midspan

(2.18)

Stiffness of a cantilever beam at its end

(2.21)

Torsional stiffness of shaft

(2.25)

Equivalent stiffness of n springs in parallel

(2.28)keq = a
n

i = 1

ki

kt =

JG

L

k =

3EI
L3

k =

48EI
L3

k =

AE
L

k =

GD4

64Nr 3

V =

1
2

 k x 2

F = kx

(πMA 
)ext = (πMA 

)eff

(πF)ext = (πF)eff

πMO = I0a
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Equivalent stiffness of n springs in series

(2.31)

Determination of equivalent stiffness for arbitrary combination of springs

(2.32)

Potential energy due to gravity

(2.34)

Force developed in viscous damper

(2.37)

Work done by viscous damping forces

(2.47)

Equivalent mass when linear displacement is used as generalized coordinate

(2.50)

Equivalent moment of inertia when angular coordinate is used as generalized coordinate

(2.51)

Equivalent mass of a system including approximation of inertia effects in springs

(2.57)

Work done by external sources

(2.64)

Small angle assumption

(2.71)

(2.73)

(2.74)

Differential equation governing equivalent mass-spring and viscous-damper system

(2.84)

Differential equation governing equivalent system when chosen generalized coordinate is
an angular coordinate

(2.85)Ieq u
$

+ ct, eq u
#

+ kt, eq 
u = Meq 
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meqx
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+ ceqx
#
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PROBLEMS

SHORT ANSWER PROBLEMS
For Problems 2.1 through 2.15, indicate whether the statement presented is true or false.
If true, state why. If false, rewrite the statement to make it true.
2.1 The differential equation governing the free vibrations of a sliding mass-spring

and viscous-damper system (without friction) is the same as the differential
equation for a hanging mass-spring and viscous-damper system.

2.2 The differential equation governing the motion of a SDOF linear system is
fourth order.

2.3 Springs in series have an equivalent stiffness that is the sum of the individual
stiffnesses of these springs.

2.4 The equivalent stiffness of a uniform simply supported beam at its middle is
3EI/L3.

2.5 The term representing viscous damping in the governing differential equation
for a system is linear.

2.6 When the equivalent systems method is used to derive the differential equation
for a system with an angular coordinate used as the generalized coordinate, the
kinetic energy is used to derive the equivalent mass of the system.

2.7 The equivalent systems method can be used to derive the differential equation
for linear SDOF systems with viscous damping.

2.8 The inertia effects of a simply supported beam can be approximated by placing
a particle of mass one-third of the mass of the beam at the midspan of the
beam. 

2.9 The static deflection of the spring in the system if Figure SP2.9 is mg/k.
2.10 The springs in the system of Figure SP2.10 are in series.

Slender bar
of mass m

L

k

FIGURE SP 2.09

m

k1

k2

FIGURE SP 2.10
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2.11 A shaft can be used as a spring of torsional stiffness JG/L.
2.12 Energy dissipation is used to calculate the equivalent viscous-damping

coefficient for a combination of viscous dampers.
2.13 The added mass of a fluid entrained by a vibrating system is determined by

calculating the potential energy developed in the fluid.
2.14 If it is desired to calculate the reactions at the support of Figure SP2.14, the

effects of the static spring force and gravity cancel and do not need to be
included on the FBD or in summing forces on the FBD.

2.15 Gravity cancels with the static spring force, and hence, the potential energy 
of neither is included in potential energy calculations for the system of
Figure SP2.15.
Problems 2.16 through 2.25 require a short answer.

c

kL
2

L
2

FIGURE SP 2.14

2.16 What is the small angle assumption and how is it used?
2.17 When are the free-body diagrams of a system drawn when they are used to

derive the differential equation of a linear SDOF system?
2.18 What is meant by “quadratic forms”?
2.19 The inertia effects of the spring in a mass-spring and viscous-damper system can

be approximated by adding a particle of what to the mass?
2.20 What is the same in each spring for a combination of springs in parallel?
2.21 In general, how is the equivalent stiffness of a combination of springs

calculated?
2.22 Draw a FBD showing the spring forces applied to the system of Figure SP2.22

at an arbitrary instant. Label the forces in terms of .u
#

L
3

2L

k

3

FIGURE SP 2.15

L

k k

k

3
L
3

L
3

θ

FIGURE SP 2.22
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2.23 Draw a FBD showing the forces developed in the viscous dampers acting on the
bar of Figure SP2.23 at an arbitrary instant. Label the forces in terms of .u

#

2.24 Describe the equivalent systems method.
2.25 When are static spring forces not drawn on the FBD of external forces?
2.26 Can the equivalent systems method be used to derive the differential equation

of a nonlinear SDOF system? Explain.

Problems 2.27 through 2.44 require short calculations.

2.27 What is the equivalent stiffness of springs of individual stiffnesses k1 and k2
placed in series? 

2.28 What is the equivalent stiffness of the springs in the system of Figure SP2.28? 
2.29 What is the equivalent torsional stiffness of the shafts in Figure SP2.29?

θ
c

L
2

L
6

L
2

L
3

L
2

Rigid bar

c c

FIGURE SP 2.23

x

k
k

2k4k

3k

FIGURE SP 2.28

50 cm

Aluminum
r = 20 mm

Steel
r = 15 mm

60 cm

FIGURE SP 2.29

2.30 When a tensile force of 300 N is applied to an elastic element, it has an
elongation of 1 mm. What is the stiffness of the element?

2.31 What is the potential energy developed in the elastic element of Short 
Problem 2.30 when a 300 N tensile force is applied? 

2.32 What is the potential energy in the elastic element of Short Problem 2.30 when
a 300 N compressive force is applied?

2.33 A spring of torsional stiffness 250 N m/rad has a rotation of 2° when a
moment is applied. Calculate the potential energy developed in the spring.

2.34 What is the torsional stiffness of an annular steel shaft (G � 80 � 109 N/m2)
with a length of 2.5 m, inner radius of 10 cm, and outer radius of 15 cm?

2.35 What is the torsional stiffness of a solid aluminum shaft (G � 40 � 109 N/m2)
with a length of 1.8 m and a radius of 25 cm?

2.36 What is the longitudinal stiffness of a steel bar (E � 200 � 109 N/m2) with a
length of 2.3 m and a rectangular cross section of 5 cm � 6 cm?

#



2.42 Evaluate without using a calculator. The argument of the trigonometric
function is in radians.
(a) sin 0.05 (b) cos 0.05
(c) 1-cos 0.05 (d) tan 0.05
(e) cot 0.05 (f ) sec 0.05
(g) csc 0.05

2.43 Evaluate without using a calculator.
(a) sin 3° (b) cos 3°
(c) 1-cos 3° (d) tan 3°

2.44 Calculate the equivalent moment of inertia of the three shafts of Figure SP2.44
when is used as the generalized coordinate. Assume the gears mesh perfectly
and their moments of inertia are negligible.

u2
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2.37 What is the transverse stiffness of a cantilever steel beam (E � 200 � 109 N/m2)
with a length of 10 m and a rectangular cross section with a width of 1 m
and height of 0.5 m?

2.38 Calculate the static deflection in a linear spring of stiffness 4000 N/m when a
mass of 20 kg is hanging from it.

2.39 A spring of unstretched length of 10 cm has a linear density of 2.3 g/cm. The
spring is attached between a fixed support and a block of mass of 150 g. What
mass should be added to the block to approximate the inertia effects of the
spring?

2.40 What is the kinetic energy of the system of Figure SP2.40 at an arbitrary instant
in terms of x, which is the downward displacement of the block of mass m1?
Include an approximation of the inertia effects of the springs. The mass of each
spring is ms.

2.41 Calculate an equivalent torsional-damping coefficient for the system of 
Figure SP2.41 when , which is the clockwise angular rotation of the bar, 
is used as the generalized coordinate.

u

m

mm

x

I

ms

ms

No slip

Thin disk of
mass m2

r2

m1

r1

FIGURE SP2.40
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θ

c c
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FIGURE SP2.41
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J1

θ1

θ2

θ3

J2

J3

Gear with
n2 teeth

Gear with
n4 teeth

Gear with
n3 teeth

Gear with
n1 teeth

FIGURE SP 2.44

2.45 Match the quantity with the appropriate units
(a) spring stiffness, k (i) N m
(b) torsional stiffness, kt (ii) rad
(c) damping coefficient, c (iii) N m/rad
(e) torsional damping coefficient, ct (iv) N m/s
(f ) potential energy, V (v) kg m2

(g) power delivered by external force, P (vi) N/m
(h) moment of inertia, I (vii) N m s/rad
(i) angular displacement � (viii) N s/m

CHAPTER PROBLEMS

2.1–2.8 Determine the equivalent stiffness of a linear spring when a SDOF mass-spring
model is used for the systems shown in Figures P2.1 through P2.8 with x being
the chosen generalized coordinate.

#

##

#

#

#

#

x

20 kg
E = 200 × 109 N/m2

I = 1.15 × 10–4 m4

1 m 1 m

FIGURE P 2.1

x

k

k

L

E, I
Massless beam

m

FIGURE P 2.2

E, I

x

20 kg Massless beam

40 cm60 cm 40 cm

FIGURE P 2.3
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x

E = 210 × 109 N/m2

I = 6.1 × 10–6 m4

L = 2.5 m

8 × 104 N/m

6 × 104 N/m

1 × 105 N/m

m

L
2

3L
2

L
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15
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3rr
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Rigid link

L
2

x

k

r3k

No slip

x

FIGURE P 2.4 FIGURE P 2.5

FIGURE P 2.6 FIGURE P 2.7

FIGURE P 2.8

2.9 Two helical coil springs are made from a steel (E � 200 � 109 N/m2) bar with a radius of 20 mm.
One spring has a coil diameter of 7 cm; the other has a coil diameter of 10 cm. The springs have
20 turns each. The spring with the smaller coil diameter is placed inside the spring with the larger
coil diameter. What is the equivalent stiffness of the assembly?
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x

u

θ

65 cm

r = 10 mm

E = 200 × 109 N/m2

G = 80 × 109 N/m2

FIGURE P 2.10

2.10 A thin disk attached to the end of an elastic beam has three uncoupled modes
of vibration. The longitudinal motion, the transverse motion, and the torsional
oscillations are all kinematically independent. Calculate the following for the
system of Figure P2.10.
(a) The longitudinal stiffness
(b) The transverse stiffness
(c) The torsional stiffness

3 × 105 N/m

5 × 105 N/m4 × 105 N/m

45°

x
45°30°

FIGURE P 2.11

20 μm

0.2 μm

1 μ
m

x
Each layer is
0.1 μm thick

FIGURE P 2.12

2.11 Find the equivalent stiffness of the springs in Figure P2.11 in the x direction.
2.12 A bimetallic strip used as a MEMS sensor is shown in Figure P2.12. The strip,

has a length of 20 m. The width of the strip is 1 m. It has an upper layer
made of steel (E 5 210 3 109 N/m2) and a lower layer made of aluminum (E 5
80 3 109 N/m2) . Each layer is 0.1 m thick. Determine the equivalent
stiffness of the strip in the axial direction.

m

mm

2.13 A gas spring consists of a piston of area A moving in a cylinder of gas. As the
piston moves, the gas expands and contracts, changing the pressure exerted on
the piston. The process occurs adiabatically (without heat transfer), so

where p is the gas pressure, is the gas density, is the constant ratio of specific
heats, and C is a constant dependent on the initial state. Consider a spring
when the initial pressure is p0 and the initial temperature is T0. At this pressure,
the height of the gas column in the cylinder is h. let F � 0A + F be the
pressure force acting on the piston when it has displaced a distance x into the
gas from its initial height.

dr

gr

p = Crg
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(a) Determine the relation between F and x.
(b) Linearize the relationship of part (a) to approximate the air spring by a

linear spring. What is the equivalent stiffness of the spring?
(c) What is the required piston area for an air spring (� � 1.4) to have a stiffness 

of 300 N # m for a pressure of 150 kPa (absolute) with h � 30 cm.
2.14 A wedge is floating stably on an interface between a liquid of mass density , as

shown in Figure P2.14. Let x be the displacement of the wedge’s mass center
when it is disturbed from equilibrium.
(a) What is the buoyant force acting on the wedge?
(b) What is the work done by the buoyant force as the mass center of the

wedge moves from xl to x2?
(c) What is the equivalent stiffness of the spring if the motion of the mass

center of the wedge is modeled as a mass attached to a linear spring?

r

d

r

Length of wedge = L
Mass density of
wedge = ρw

h

FIGURE P 2.14

2.15 Consider a solid circular shaft of length L and radius c made of an elastoplastic
material whose shear stress–shear strain diagram is shown in Figure P2.15(a). If
the applied torque is such that the shear stress at the outer radius of the shaft is
less than �p, a linear relationship between the torque and the angular
displacement exists. When the applied torque is large enough to cause plastic
behavior, a plastic shell is developed around an elastic core of radius r c, as 
shown in Figure 2.15(b). Let be the applied torque which

results in an angular displacement of

(a) The shear strain at the outer radius of the shaft is related to the angular
displacement .The shear strain distribution is linear over a given
cross section. Show that this implies

(b) The torque is the resultant moment of the shear stress distribution over the
cross section of the shaft,

Use this to relate the torque to the radius of the elastic core.

(c) Determine the relationship between T and .
(d) Approximate the stiffness of the shaft by a linear torsional spring. What is

the equivalent torsional stiffness?

udd

T =

L

c

0
2ptr2dr

u =

LtP

rG

u =

g
c
L
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u =

tp L

cG + du

T =

ptp  c2

2 + dT
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c

r

Plastic
shell

Elastic
core

γ

G

τp

(a) (b)

FIGURE P 2.15

�

E
σp

σ

σ = f(E)

(a)

FIGURE P 2.16

2.16 A bar of length L and cross-sectional area A is made of a material whose stress-
strain diagram is shown in Figure P2.16. If the internal force developed in the
bar is such that , the bar’s stiffness for a SDOF model is 
Consider the case where Let be the applied load 

which results in a deflection of .
(a) The work done by the applied force is equal to the strain energy developed

in the bar. The strain energy per unit volume is the area under the
stress–strain curve. Use this information to relate P to .

(b) What is the equivalent stiffness when the bar is approximated as a linear
spring for s 7 sp?

¢dd

¢ =

sp L

E + d¢

P = spA + dPs 7 sp.
k =

AE
L .s 6 sp

2.17 Calculate the static deflection of the spring in the system of Figure P2.17.
2.18 Determine the static deflection of the spring in the system of Figure P2.18.

m1

m2

k

r2

r1

FIGURE P 2.17

m = 20 kg

Spring is stretched
20 mm when bar

is vertical

5 × 103 N/m

1.2 m

0.4 m

FIGURE P 2.18



2.19 A simplified SDOF model of a vehicle suspension system is shown in 
Figure P2.19. The mass of the vehicle is 500 kg. The suspension spring has a
stiffness of 100,000 N/m. The wheel is modeled as a spring placed in series 
with the suspension spring. When the vehicle is empty, its static deflection is
measured as 5 cm.
(a) Determine the equivalent stiffness of the wheel
(b) Determine the equivalent stiffness of the spring combination.

2.20 The spring of the system in Figure P2.20 is unstretched in the position shown.
What is the deflection of the spring when the system is in equilibrium?
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2.21 Determine the static deflection of the spring in the system of Figure P2.21.
2.22 Determine the static deflections in each of the springs in the system of 

Figure P2.22.

m

Suspension
spring

Wheel
stiffness

ks

kw

FIGURE P 2.19

2.23 A 30 kg compressor sits on four springs, each of stiffness 1 � 104 N/m. What is
the static deflection of each spring.

2.24 The propeller of a ship is a tapered circular cylinder, as shown in Figure P2.24.
When installed in the ship, one end of the propeller is constrained from
longitudinal motion relative to the ship while a 500-kg propeller mass is
attached to its other end.
(a) Determine the equivalent longitudinal stiffness of the shaft for a SDOF

model.
(b) Assuming a linear displacement function along the shaft, determine the

equivalent mass of the shaft to use in a SDOF model.

150 kg

3 m

2000 N/m

I = 8.2 × 10–7 m4

E = 210 × 109 N/m2

FIGURE P 2.20

m

k

E, I

L
2

L
2

FIGURE P 2.21

40 cm 20 cm

4 kg

1 × 105 N/m 2 × 105 N/m

FIGURE P 2.22
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r0 = 30 cm
r1 = 20 cm
E = 210 × 109 N/m2

ρ = 7850 kg/m3

r0 r1

10 m

FIGURE P 2.24

2.25 (a) Determine the equivalent torsional stiffness of the propeller shaft of 
Problem 2.24.

(b) Determine an equivalent moment of inertia of the shaft of Problem 2.24 to
be placed on the end of the shaft for a SDOF model of torsional oscillations.

2.26 A tightly wound helical coil spring is made from an 1.88-mm diameter bar
made from 0.2 percent hardened steel (G � 80 � 109 N/m2, � 7600 kg/m3). 
The spring has a coil diameter of 1.6 cm with 80 active coils. Calculate 
(a) the stiffness of the spring, 
(b) the static deflection when a 100 g particle is hung from the spring, and
(c) the equivalent mass of the spring for a SDOF model.

2.27 One end of a spring of mass ms1 and stiffness k1 is connected to a fixed wall,
while the other end is connected to a spring of mass ms2 and stiffness k2. The
other end of the second spring is connected to a particle of mass m. Determine
the equivalent mass of these two springs.

2.28 A block of mass m is connected to two identical springs in series. Each spring
has a mass m and a stiffness k. Determine the equivalent mass of the two
springs at the mass.

2.29 Show that the inertia effects of a torsional shaft of polar mass moment of inertia
J can be approximated by adding a thin disk of moment of inertia J/3 at the
end of the shaft.

2.30 Use the static displacement of a simply supported beam to determine the mass
of a particle that should be added at the midspan of the beam to approximate
inertia effects in the beam.

2.31–35 Determine the equivalent mass or equivalent moment of inertia of the system
shown in Figures P2.31 through P2.35 when the indicated generalized
coordinate is used.

r

x

m

2r

No slip

Sphere of
mass m

k

r

FIGURE P 2.31
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2.36 Determine the kinetic energy of the system of Figure P2.36 at an arbitrary
instant in terms of including inertia effects of the springs.x#

θ
m

L m/2

L/2

A CB

AB and BC are
slender bars

m

L

Slender rod
of mass m

Slender rod
of mass m

m

4L
5

L
3

Rigid massless connector
θ Gear with

n2 teeth

Gear with
n1 teeth

Gear with
n4 teeth

JG4

JG2

JG1

J1

θ1

JG3

Jr

J3

Gear with
n3 teeth

FIGURE P 2.33
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2.37 The time-dependent displacement of the block of mass m of Figure P2.36 is 
x(t) � 0.03e–1.35t sin (4t) m. Determine the time-dependent force in the viscous
damper if c � 125 N s/m.

2.38 Calculate the work done by the viscous damper of Problem 2.37 between t � 0
and t � 1 s.

2.39 Determine the torsional viscous-damping coefficient for the torsional viscous
damper of Figure P2.39. Assume a linear velocity profile between the bottom of
the dish and the disk. 

#

Disk of radius r
Oil of density ρ, viscosity μ
Depth of oil = h

θ⋅

r

FIGURE P 2.39

2.40 Determine the torsional viscous-damping coefficient for the torsional viscous
damper of Figure P2.40. Assume a linear velocity profile in the liquid between
the fixed surface and the rotating cone.

d
h

r

θ̇

Oil of density ρ,
viscosity μ
Come of base radius r,
height h
Gap width, d

FIGURE P 2.40
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2.41 Shock absorbers and many other forms of viscous dampers use a piston moving
in a cylinder of viscous liquid as illustrated in Figure P2.41. For this
configuration the force developed on the piston is the sum of the viscous forces
acting on the side of the piston and the force due to the pressure difference
between the top and bottom surfaces of the piston.
(a) Assume the piston moves with a constant velocity vp. Draw a free-body

diagram of the piston and mathematically relate the damping force, the
viscous force, and the pressure force.

(b) Assume steady flow between the side of the piston and the side of the
cylinder. Show that the equation governing the velocity profile between the

piston and the cylinder is 
(c) Assume the vertical pressure gradient is constant. Use the preceding results

to determine the velocity profile in terms of the damping force and the
shear stress on the side of the piston.

(d) Use the results of part (c) to determine the wall shear stress in terms of the
damping force.

(e) Note that the flow rate between the piston and the cylinder is equal to the
rate at which liquid is displaced by the piston. Use this information to
determine the damping force in terms of the velocity and thus the damping
coefficient.

(f ) Use the results of part (e) to design a shock absorber for a motorcycle that
uses SAE 1040 oil and requires a damping coefficient of 1000 N m/s.#

dp
dx = m 

0v2

0r 2

d

x h

r
D

Vp

Oil of viscosity μ,
density ρ

FIGURE P 2.41

2.42–51 Derive the differential equation governing the motion of the one degree-of-
freedom system by applying the appropriate form(s) of Newton’s laws to the
appropriate free-body diagrams. Use the generalized coordinate shown in
Figures P2.42 through P2.51. Linearize nonlinear differential equations by
assuming small displacements.
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2.52–61 Determine the differential equations governing the motion of the system by
using the equivalent systems method. Use the generalized coordinates shown in
Figures P2.52 through P2.61.
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r
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No slip

x

Thin disk of mass m, radius r

θ

L
2

L
2

m 2m

A B

k ck c
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blocks through rigid links at A and B

FIGURE P 2.48

FIGURE P 2.49
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3

L
3
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C h a p t e r 3

FREE VIBRATIONS
OF SDOF SYSTEMS

3.1 INTRODUCTION
Free vibrations are oscillations about a system’s equilibrium position that occur in the
absence of an external excitation. Free vibrations are a result of a kinetic energy imparted
to the system or of a displacement from the equilibrium position that leads to a difference
in potential energy from the system’s equilibrium position.

Consider the model single degree-of-freedom (SDOF) system of Figure 3.1. When the
block is displaced a distance x0 from its equilibrium position, a potential energy is devel-
oped in the spring. When the system is released from equilibrium, the spring force draws the
block toward the system’s equilibrium position, with the potential energy being converted to
kinetic energy. When the block reaches its equilibrium position, the kinetic energy reaches a
maximum and motion continues. The kinetic energy is converted to potential energy until the
spring is compressed a distance x0. This process of transfer of potential energy to kinetic energy
and vice versa is continual in the absence of nonconservative forces. In a physical system, such
perpetual motion is impossible. Dry friction, internal friction in the spring, aerodynamic drag,
and other nonconservative mechanisms eventually dissipate the energy.

Examples of free vibrations of systems that can be modeled using one degree of free-
dom include the oscillations of a pendulum about a vertical equilibrium position, the
motion of a recoil mechanism of a firearm once it has been fired, and the motion of a vehi-
cle suspension system after the vehicle encounters a pothole.

Free vibrations of a SDOF system are described by a homogeneous second-order ordi-
nary differential equation. The independent variable is time, while the dependent variable
is the chosen generalized coordinate. The chosen generalized coordinate represents the

kx 2
0>2



138 CHAPTER 3

displacement of a particle in the system or an angular displacement and is measured from
the system’s equilibrium position.

The differential equation governing free vibrations of a linear system are derived in
Chapter 2 and is shown to have the form

(3.1)

when a linear displacement x is chosen as the generalized coordinate. The second derivative
term is due to the inertia forces (effective forces) of the system, the first derivative term is
present if there is viscous damping in the system, and the zeroth derivative term is from the
elastic forces. If the energy method is used to derive the differential equation, the second
derivative term is a result of the system’s kinetic energy, the first derivative term is a result
of the work done by the viscous friction forces, and the zeroth order derivative term is a
result of the system’s potential energy.

The general solution of the second-order differential equation is a linear combination
of two linearly independent solutions. The arbitrary constants, called constants of integra-
tion, are uniquely determined upon application of two initial conditions. The necessary ini-
tial conditions are values of the generalized coordinate and its first time derivative at a
specified time, usually t � 0.

The differential equation governing free vibration of a SDOF system is written in a
standard form in terms of two parameters. The form of the solution of the differential
equation depends upon the parameters. For example, the mathematical form of the solu-
tion for an undamped system is simple harmonic motion. The mathematical form of the
solution for a damped system varies with a parameter called the damping ratio.

The response of a system under other forms of damping also is considered. Dry sliding
friction, or Coulomb damping, leads to two differential equations that govern the motion:
one for a positive velocity and another for a negative velocity. This leads to a nonlinear
system, but one whose solution is available. The response of a system with hysteretic damp-
ing (the damping due to energy loss within a material) is characterized by an equivalent
viscous-damping coefficient under certain conditions.

3.2 STANDARD FORM OF DIFFERENTIAL EQUATION
The differential equation governing any SDOF system was shown in Chapter 2 to have the form

(3.2)

If the generalized coordinate is an angular coordinate, then

(3.3)= Meq(t)kt, equ+ kt, equct, equ
#

Iequ
$

+

meqx
$

+ ceqx
#

+ keqx = Feq

meqx
$

+ ceqx
#

+ keqx = 0

k
m m

l l +x0

(a) (b)

xFIGURE 3.1
When the mass is displaced, a
distance x0, a force kx0, and a
potential energy develop
in the spring. When released
from rest, a cyclic motion occurs.
In the absence of any dissipative
mechanisms, the system returns
to the same position at the end
of every cycle.

1
2kx2

0
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Free vibrations occur in the absence of any forcing and as a result of an initial potential or
kinetic energy present in the system at t � 0. Thus, for this chapter, Feq � 0 or Meq � 0.
Without loss of generality, assume the generalized coordinate is a linear displacement and
the differential equation is written in the form of Equation (3.1).

Dividing Equation (3.1) by meq leads to

(3.4)

Equation (3.4) is written in terms of two parameters, and , which have an effect on
the solution. They are defined as

(3.5)

which is the natural frequency of motion and

(3.6)

which is the damping ratio. The reasons for the names of these parameters will become
apparent later. The differential equation is written in terms of these parameters as

(3.7)

Equation (3.7) is called the standard form of the differential equation for SDOF systems.
It is supplemented by two initial conditions:

(3.8)

and

(3.9)

Equation (3.7) is a linear, ordinary homogeneous differential equation with constant
coefficients. A solution of Equation (3.7) is assumed to be of the form

(3.10)

Substitution of Equation (3.10) into Equation (3.7) leads to

(3.11)

The solution is obtained by setting . Using the quadratic formula
to obtain a solution, we have

(3.12)

or

(3.13)

The form of the solution of this differential equation depends upon the values of , the
roots of the characteristic equation. Defining , there are four cases.i = 2-1

a

a = vn(-z � 2z2
- 1)

a =

-2zvn � 2(2zvn)
2

- 4v2
n

2

a2
+ 2zvna + v2

n = 0

Aa2
+ 2zvna + v2

n BAe at
= 0

x(t) = Ae at

x# (0) = x# 0

x (0) = x0

x
$

+ 2zvnx# + v2
nx = 0

z =

ceq

22keqmeq

vn = A
keq
meq

keq
meq

ceq
meq

x
$

+

ceq

meq
 x# +

keq

meq
x = 0
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1. When the roots are purely imaginary, as . The free vibrations are
undamped.

2. When 0 1, the roots are complex conjugates, as . 
The free vibrations are underdamped.

3. When the characteristic equation has only one real root, . The free
vibrations are critically damped.

4. When the characteristic equation has two real roots .
The free vibrations are overdamped.

The solution varies with . The mathematical form of the solution is different for each case.

3.3 FREE VIBRATIONS OF AN UNDAMPED SYSTEM
When the system is undamped, the roots of the characteristic equation given by
Equation (3.12) are purely imaginary, as ni. The general solution is a linear combina-
tion of all possible solutions, thus

(3.14)

where B1 and B2 are constants of integration.
Euler’s identity states

(3.15)

Application of Euler’s identity to Equation (3.14) leads to

(3.16)

or

(3.17)

where C1 � B1 � B2 and C2 � i(B1 – B2) are redefined constants of integration. As defined,
C1 and C2 are real, while B1 and B2 are complex conjugates. Substituting the initial condi-
tions, Equations (3.8) and (3.9), into Equation (3.17) leads to

(3.18)

An alternate and more instructive form of Equation (3.18) is

(3.19)

Expanding Equation (3.19) using the trigonometric identity for the sine of the sum of
angles

(3.20)

gives

(3.21)x(t) = A cos f sin vnt + A sin f cos vnt

 sin(a + b) =  sin a cos b + cos a sin b

x(t) = A  sin (vnt + f)

x(t) = x0 cos vnt +

x# 0
vn

 sin vnt

x(t) = C1 cos vnt + C2 sin vnt

x(t) = B1( cos vnt + i sin vnt) + B2( cos vnt - i sin vnt)

e iu
= cos u + i sin u

x(t) = B1e
ivnt + B2e

-ivnt

v�

z

a = vn(-z � 2z2
- 1)z 7 1

a = -vnz = 1,

a = vn(-z � i21 - z2)6z6

a = �ivnz = 0,
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Equating coefficients of like trigonometric terms of Equations (3.18) and (3.21) leads to

(3.22)

and

(3.23)

Equation (3.19) is an example of the simple harmonic motion discussed in Section 1.6.
The amplitude of the motion is A, the frequency is n, its phase is , and its period is .
The parameter n is called the natural frequency, because it is the frequency at which the
undamped free response occurs naturally.

The undamped motion of a SDOF system is simple harmonic motion. The initial con-
ditions determine the energy initially present in the system. Potential energy is converted
to kinetic energy and vice versa without dissipation. Since energy is conserved, the system
eventually returns to its initial state with the original potential and kinetic energies, com-
pleting one full cycle of motion. The subsequent cycle duplicates the first cycle. The system
takes the same amount of time to execute the second cycle as it does the first. Since no
energy is dissipated, it executes subsequent cycles in the same amount of time. Thus, the
motion is cyclic and periodic. Figure 3.2 illustrates simple harmonic motion of an
undamped SDOF system.

The amplitude A, defined by Equation (3.22), is the maximum displacement from equi-
librium. The amplitude is a function of the system parameters and the initial conditions.
The amplitude is a measure of the energy imparted to the system through the initial con-
ditions. For a linear system

(3.24)

where E is the sum of kinetic and potential energies.

A = A
2E
keq

v

2p
vn

fv

f = tan -1avnx0

x# 0
b

A = Ax 2
0 + a x# 0

vn
b2

T =

t

2π
ωn

π/2 – φ
ωn

x0

x(
t)

–x0

0

A

FIGURE 3.2
Illustration of free response
of an undamped system. The
motion is cyclic and periodic.
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The phase angle , calculated from Equation (3.23) is an indication of the lead or lag
between the response and a pure sinusoidal response. The response is purely sinusoidal with

� 0 if x0 � 0. The response leads a pure sinusoidal response by /2 rad if . The
system takes a time of

(3.25)

to reach its equilibrium position from its initial position.

t = d p - f

vn
    f 7 0

  -

f

vn
         f … 0

x
#

0 = 0pf

f

EXAMPLE 3 . 1
An engine of mass 500 kg is mounted on an elastic foundation of equivalent stiffness
7 � 105 N/m. Determine the natural frequency of the system.

SO LU T I ON
The system is modeled as a hanging mass-spring system. Equation (3.3) with ceq � 0 gov-
erns the displacement of the engine from its static-equilibrium position. The natural fre-
quency is determined by using Equation (3.5)

(a)

or expressed in Hz.

(b)

EXAMPLE 3 . 2

 f =

vn

2p
=

37.4 rad/s
2p rad/cycle

= 5.96 Hz

vn = A
k
m

= A
7 * 105 N/m

500 kg
= 37.4 rad/s

EXAMPLE 3 . 2
A wheel is mounted on a steel shaft (G � 83 � 109 N/m2) of length 1.5 m and radius
0.80 cm. The wheel is rotated 5 and released. The period of oscillation is observed as 2.3 s.
Determine the mass moment of inertia of the wheel.

SO LU T I ON
The oscillations of the wheel about its equilibrium position are modeled as the torsional
oscillations of a disk on a massless shaft, as illustrated in Figure 3.3. The differential equa-
tion for such a system is derived in Example 2.17 as

(a)

Equation (a) is written in the standard form by dividing by I, giving

(b)
$

u +

JG

IL
 u = 0

I 
$

u +

JG

L
 u = 0

°
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The natural frequency is obtained from Equation (b) as

(c)

The natural frequency is calculated from the observed period by

(d)

The moment of inertia of the wheel is calculated using Equation (c) as

(e)I =

JG

Lv2
n

=

p

2
(0.008  m)4(83 * 109  N/m2)

(1.5  m)(2.73 rad/s)2 = 47.7  kg # m2

vn =

2p
T

=

2p rad/cycle

2.3 s/cycle
= 2.73 rad/s

vn = A
JG

IL

FIGURE 3.3
System of Example 3.2. A wheel is mounted on a shaft, and the
period of oscillations is observed, which is used to calculate the
moment of inertia of the wheel.

G = 83 × 109  N/m2

r = 8 mm

θ (t)

1.5 m

EXAMPLE 3 . 3
A mass of 5 kg is dropped onto the end of a cantilever beam with a velocity of 0.5 m/s, as
shown in Figure 3.4(a). The impact causes vibrations of the mass, which sticks to the beam.
The beam is made of steel (E � 210 � 109 N/m2), is 2.1 m long, and has a moment of
inertia I � 3 � 10–6 m4. Neglect inertia of the beam and determine the response of the mass.

SO LU T I ON
Let x(t) represent the displacement of the mass, which is measured positive downward
from the equilibrium position of the mass after it is attached to the beam. As shown in
Figure 3.4(b), the system is modeled as a 5 kg mass hanging from a spring of stiffness

(a)

The natural frequency of free vibration is

(b)

The beam is in equilibrium at t � 0 when the particle hits. However, x is measured
from the equilibrium position of the system with the particle attached. Thus,

(c)x(0) = - ¢st = -

mg

keq

= -

(5  kg)(9.81 m/s2)

2.04 * 105
 N/m

= -2.40 * 10-4
 
 m

vn = A
keq

m
= A

2.04 * 105 N/m
5  kg

= 202.0  rad/s

keq =

3EI
L3 =

3(210 * 109
  N/m2)(3 * 10-6

  m4)

(2.1  m)3 = 2.04 * 105   N/m



144 CHAPTER 3

The initial velocity is . The time history of motion is calculated using
Equation (3.19) as

(d)

where the amplitude A and the phase are determined using Equations (3.22) and (3.23),
respectively:

(e)

(f)f = tan -1 c (202.0 rad/s)(-2.40 * 10-4 m)

0.5 m/s
d = -0.0968  rad = -5.59°

A = A(-2.40 * 10-4
  m)2

+ a 0.5  m/s

202.2  rad/s
b2

= 2.48  mm

f

x(t) = A  sin (202.0t + f)

x# (0) = 0.5  m/s

E = 210 × 109  N/m2

I = 3 × 10–6  m4 

2.04 × 105  N/m

5 kg

x

Velocity = 0.5 m/s

2.1 m

(a)

5 kg

(b)

FIGURE 3.4
(a) System of Example 3.3. A mass is
dropped onto a fixed-free beam. (b) The
system is modeled as a mass hanging from
a spring of equivalent stiffness. Since x is
measured from the equilibrium position of
the system, the initial displacement is the
negative of the static deflection of the
beam.

EXAMPLE 3 . 4
An assembly plant uses a hoist to raise and maneuver large objects. The hoist shown in
Figure 3.5 is a winch attached to a beam that can move along a track. Determine the nat-
ural frequency of the system when the hoist is used to raise a 800-kg machine part at a cable
length of 9 m.

SO LU T I ON
The beam is modeled as a pinned-pinned beam. If the hoist is at its midspan, its stiffness is

(a)kb =

48EI
L3 =

48(200 * 109
  N/m2)(3.5 * 10-4

  m4)

(3.1  m)3 = 1.13 * 108  N/m
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The stiffness of the cable is

(b)

The beam and the cable act as springs in series with an equivalent stiffness of

(c)

The system’s natural frequency is

(d)vn = A
keq

m
= A

9.71 * 107  N/m

800  kg
= 3.48 * 102   rad/s

keq =

1
1

kb

+

1

kc

=

1
1

1.13 * 108   N/m
+

1
6.98 * 108   N/m

= 9.71 * 107   N/m

kc =

AE
L

=

p(0.1  m)2(200 * 109  N/m2)

9  m
= 6.98 * 108   N/m

Cable

(a) (b)

Beam

Beam: L = 3.1 m
 E = 200 × 109 N/m2

 I = 3.5 × 10–4 m4

Cable: E = 200 × 109  N/m2

 r = 10 cm
 L = 9 m

m
kb

ks

FIGURE 3.5
(a) System of Example 3.4 in which a hoisting mechanism
consists of a cable attached to an overhead beam. (b) The
system is modeled as a SDOF system with the stiffness of
the beam and the stiffness of the cable acting as springs
in series.

EXAMPLE 3 . 5
The pendulum of a cuckoo clock consists of a slender rod on which an aesthetically
designed mass slides. If the clock gains time, should the mass be moved closer to or farther
away from the support to correct the tuning?

SO LU T I ON
The pendulum is modeled as a particle of mass m on a rigid, massless rod. The particle is
assumed to be a distance l from its axis of rotation. Summing moments about the point of
support on the free-body diagrams of Figure 3.6 leads to

(a)

Application of the small-angle assumption yields the linearized equation of motion

(b)
$

u +

g

l
  u = 0

$

u +

g

l
  sin u = 0
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from which the natural frequency is calculated as

The period of oscillation is

Since the clock is running fast, the period of the pendulum needs to be increased. Thus l
should be increased and the mass moved farther away from the axis of rotation.

T = 2pA
l
g

vn = A
g

l

FIGURE 3.6
(a) System of Example 3.5 in which the pendulum of a cuckoo clock is a massless rod with a particle
attached. (b) FBDs at an arbitrary instant.

l

mg

Ox

Oy

mlθ 2˙

mlθ̈=

External forces Effective forces

The nonlinear differential equation derived in Example 3.5 is linearized by assuming
small and replacing sin by . The exact nonlinear pendulum equation, Equation (a) of
Example 3.5, is one of the few nonlinear equations for which an exact solution is known.
The solution subject to and is developed in terms of elliptic integrals,
which are well-known tabulated functions.

The period of motion of a nonlinear system is dependent upon the initial conditions,
while the period of a linear system is independent of initial conditions. One method of
assessing the validity of the small-angle approximation for a given amplitude is to compare
the period calculated using the exact solution to the period calculated using the linearized
differential equations for different initial displacements. This comparison is given in
Table 3.1, which shows that the small angle approximation leads to accurate prediction of
the period for amplitudes as large as 40 . For an initial angular displacement of 40 , the
error in the period from using the small angle approximation is only 3.1 percent.

The success of the use of the small-angle approximation in the pendulum example should
give confidence to its use in other problems, where an exact solution is not available.

°°

#

u(0) = 0u(0) = u0

uuu
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3.4 UNDERDAMPED FREE VIBRATIONS
When 0 1, the roots of the equation for are complex conjugates, and the system
is said to be underdamped. The general solution of the governing equation is

(3.26)

which can be rewritten using Euler’s identity as

(3.27)x(t) = e -zvnt  CC1 cos 1vn21 - z22t + C2 sin 1vn21 - z22t D

x(t) = B1e 
(-zvn-ivn21-z2)t

+ B2e 
(-zvn + ivn21-z2)t

a6z6

Ratio of period of simple pendulum, T, calcu-
lated from exact nonlinear solution to period cal-
culated from linearized equation as a function of
initial angle, 0, . Nonlinear period is 4K where

K is the complete elliptic integral of the first
kind with a parameter of sin ( 0/2)u

2p
2g / l

u

T A B L E 3 . 1

0( ) 0( )

2 1.00007 48 1.04571
4 1.00032 50 1.04978
6 1.00070 52 1.05405
8 1.00120 54 1.05851
10 1.00191 56 1.06328
12 1.00274 58 1.06806
14 1.00376 60 1.07321
16 1.00490 62 1.07850
18 1.00618 64 1.08404
20 1.00764 66 1.08982
22 1.00930 68 1.09588
24 1.01108 70 1.10211
26 1.01305 72 1.10867
28 1.01515 74 1.11548
30 1.01738 76 1.12255
32 1.01987 78 1.12987
34 1.02248 80 1.13751
36 1.02528 82 1.14540
38 1.02821 84 1.15368
40 1.03132 86 1.16221
42 1.03463 88 1.17112
44 1.03814 90 1.18035
46 1.04183

T
2p

2g  /l°u
T

2p
2g  /l°u
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The constants of integration are determined by applying the initial conditions, Equation (3.8)
and (3.9), resulting in

(3.28)

An alternative form of the solution is developed by using the trigonometric identity,
Equation (3.20)

(3.29)

where

(3.30)

(3.31)

and

(3.32)

Equation (3.29) is plotted in Figure 3.7. Once free oscillations of a viscously damped
system commence, the nonconservative viscous damping force continually dissipates
energy. Since no work is being done on the system, this leads to a continual decrease in the
sum of the potential and kinetic energies. For underdamped free vibrations, the system
oscillates about an equilibrium position. However, each time it reaches equilibrium, the
system’s total energy level is less than at the previous time. The maximum displacement on
each cycle of motion is continually decreasing. Equation (3.29) and Figure 3.7 show that
the amplitude decreases exponentially with time.

The free vibrations of an underdamped system are cyclic but not periodic. Even though
the amplitude decreases between cycles, the system takes the same amount of time to exe-
cute each cycle. This time is called the period of free underdamped vibrations or the damped
period and is given by

(3.33)Td =

2p
vd

vd = vn21 - z2

fd = tan -1a x0vd

x# 0 + zvnx0

b

A = Ax 2
0 + a x# 0 + zvnx0

vd
b2

x(t) = Ae -zvnt sin (vd t + fd )

x(t) = e -zvnt  cx0 cos 1vn21 - z2t2 +

x# 0 + zvnx0

vn21 - z2
 sin 1vn21 - z2t2 d

t

Ae–ζωnt
1

x(
t)

/x
(0

)

FIGURE 3.7
Free vibrations of an under-
damped SDOF system decay
exponentially.
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Thus, d is called the damped natural frequency. Note that d n and Td T. This is
due to the viscous friction which resists the motion of the system and slows it down.

Consider a mass-spring and viscous-damper system with and . Then

(3.34)

Hence, cos d � , and

(3.35)

The total energy present in an underdamped system at time t is

(3.36)

The total energy in the system at the end of the nth cycle, , is

(3.37)

The energy dissipated as the system executes one cycle of motion is

(3.38)

The ratio of the energy dissipated over a cycle compared to the total energy at the begin-
ning of the cycle is

(3.39)

Equations (3.38) and (3.39) show that the energy dissipated per cycle of motion is con-
stant, and thus, it has a constant ratio. The sequence of energies at the beginning of
each cycle is a geometric sequence with ratio . For example, if 

. The percentage of energy at the end of the nth cycle is (0.717)n times the

initial energy. The larger the damping ratio, the smaller the ratio, and a larger fraction of
energy is dissipated per cycle. Since the sequence of energies is a geometric sequence, the
energy is never completely dissipated, thus indicating that the free vibrations of an under-
damped system continues indefinitely with exponentially decreasing amplitude.

Taking the limit of the energy ratio as the damping ratio approaches one, lim .
All of the energy would be dissipated within the first cycle. This is the origin of the term
underdamped; the damping force is not large enough to ever dissipate all of the energy.

The logarithmic decrement, , is defined for underdamped free vibrations as the natu-
ral logarithm of the ratio of the amplitudes of vibration on successive cycles.

d

z:1
¢En

En
= 1

¢En

En
= 0.717

z = 0.1,1 - e - 4pz>21 -z2

¢En

En

= 1 - e 4pz>21 -z2

 =

1

2
kx 2

0e
-4n zp>11 -z2(1 - e -4pz>11 -z2)

�En = En - En + 1

En = E(nTd) =

1

2
kx 2

0 
e -4n zp>21 -z2

t =
2np
vd

 cos (vd 
t + fd    ) + (1 - z2) cos 2(vd 

t + fd 
) D

- 2z21 - z2 sin (vd t + fd ) =

1

2
 
kx 2

0e
-2zvnt

(1 - z2)
C (1 + z2) sin 2(vd 

t + fd )

 E =

1
2

kx 2
+

1

2
mx# 2

A =

x0

21 - z2

zf sin fd = 21 - z2,

fd =  tan-1a21 - z2

z
b

x# (0) = 0x (0) = x0

7v6vv
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(3.40)

For small ,
(3.41)

The logarithmic decrement is often measured by experiment and damping ratio deter-
mined from

(3.42)

It can be shown that the following equations can also be used to calculate the logarithmic
decrement:

(3.43)

for any integer n and

(3.44)

(3.45)

Equation (3.43) implies that the logarithmic decrement can be determined from ampli-
tudes measured on nonsuccessive cycles, while Equations (3.44) and (3.45) imply that
velocity and acceleration data can also be used to determine the logarithmic decrement.

The free vibrations of an underdamped system decay exponentially with time. When the ini-
tial conditions are x(0) � x0 and , the response of the system is shown in Figure 3.8.x# (0) = 0

d = lna x
$

(t)

x
$

(t + Td )
b

d = lna x# (t)

x# (t + Td 
)
b

d =

1
n

lna x (t)

x (t + nTd )
b

z =

d

24p2
+ d2

d = 2pz

z

 = zvnTd =

2pz

21 - z2

 d = lna x(t)

x (t + Td )
b = lna Ae -zvnt sin (vd t + fd)

Ae -zvn(t + Td ) sin 3vd (t + Td ) + fd4 b

1.2

1

0.8

0.6

0.4

0.2

0

–0.2
0 0.5 1 1.5

t (s)

x/
x 0

2 2.5 3

FIGURE 3.8
Underdamped response due
to initial conditions x(0) � x0
and (0) � 0. The overshoot
is the amplitude at the end of
the first half-period.

x
#
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The absolute value of the displacement after the first half-cycle is called the overshoot. The over-
shoot is calculated by

(3.46)

The percent overshoot is .100
h

x 0
= 100 e -zp>21 -z2

= x0e
-zp>21 -z2

h = -x aTd

2
b = -

x0

21 - z2
 e -zp>21 -z2

 sin (p + fd )

Determine (a) the response of the accelerometer of Example 2.20 if it has an initial veloc-
ity of 30 m/s and an initial displacement of 0 m. (b) What is the value of the displacement
at t � 1 s?

SO LU T I ON
(a) The differential equation governing the free response of the accelerometer is

(a)

Putting the equation in standard form, we have

(b)

The natural frequency is

(c)

and the damping ratio is determined as

(d)

The system is underdamped and the response for the given initial conditions is

(e)

where

(f)

Thus,

(g)

(b) At t � 1 s,

(h)x (10-6  s) = 1.04 * 10-4e -5.36 * 104(10-6) sin 32.82 * 105(10-6)4 = 3.07 * 10-5
  m

m

 = 1.04 * 10-4e -5.36 * 104t( sin 2.82 * 105t)  m

 x (t) =

30 m/s

2.82 * 105 rad/s
e -0.187(2.87 * 105)t sin (2.82 * 105t)

vd = vn21 - z2
= 2.87 * 105  rad/s  21 - (0.187)2

= 2.82 * 105   rad/s

x (t) =

x# 0
vd

e -zvnt sin vdt

z =

1.07 * 105

2(2.87 * 105)
= 0.186

vn = 28.26 * 1010
= 2.87 * 105  rad/s

x
$

+ 1.07 * 105x# + 8.26 * 1010x = 0

4.6 * 10-12
 x
$

+ 4.93 * 10-7x# + 0.380x = 0

m

EXAMPLE 3 . 6
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EXAMPLE 3 . 7
The slender bar of Figure 3.9(a) has a mass of 31 kg and a length of 2.6 m. A 50 N force
is statically applied to the bar at P then removed. The ensuing oscillations of P are moni-
tored, and the acceleration data is shown in Figure 3.9(b) where the time scale is calibrated
but the acceleration scale is not. 

(a) Use the data to find the spring stiffness k and the damping coefficient c.
(b) Calibrate the acceleration scale.

SO LU T I ON
FBDs of the system at an arbitrary instant are shown in Figure 3.9(c). Applying
(∑MO)ext � (∑MO)eff to these FBDs leads to the differential equation of motion:

(a)x
$

+

3c
7m

x# +

27k
7m

x = 0

c = ?

k = ?

50 N

m = 31 kg

1.95 m0.65 m

(a)

4

3

2

1

0

–1

–2

–3
0 0.05 0.1

Time (s)

a(
t)

 (
sc

al
e 

no
t c
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te

d)

0.15 0.2 0.25

(b)

Ry mg k[x(0) + ∆st]

50 N

(c) (d)

External forces Effective forces

R

kx

(   )
2x

.

3
m

x
.

3
c

�     �ẍ
3L/4

1
12

mL2

mxø
3

FIGURE 3.9
(a) System of Example 3.7. (b) Accelerometer data for free vibration response. (c) FBD when system is
in equilibrium. (d) FBDs of system at an arbitirary instant.
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The natural frequency and damping ratio are determined by comparing the preced-
ing equation with the standard form of the differential equation for damped free vibra-
tions as

(b)

(c)

The period of damped free vibrations is determined from the accelerometer data as 0.1 s.
The value of the logarithmic decrement is determined from the accelerometer data and
Equation (3.45) as

(d)

The damping ratio is calculated using Equation (3.42) as

(e)

The damped natural frequency is

(f)

from which the natural frequency is calculated as

(g)

(a) The stiffness is calculated from Equation (b) as

(h)

and the damping coefficient is calculated from Equation (c) as

(i)

(b) A static analysis of the equilibrium position in Figure 3.9(c) provides the initial dis-
placement from equilibrium as

(j)

The initial acceleration is calculated using the governing differential equation as

(k)x
$

(0) = -2zvnx
# (0) - v2

nx (0) = - (63.0)2(0.0016  m) = -6.22  m/s2

x (0) =

F
k

=

50  N

3.19 * 104   N/m
= 1.6  mm

c =

14mvnz

3
=

14(31  kg)(63.0  rad/s)(0.0643)

3
= 585.7  N # s/m

k =

7mv2
n

27
=

7(31  kg)(63.0  rad>s)2

27
= 3.19 * 104   N/m

vn =

vd

21 - z2
=

62.8 rad/s

21 - (0.0644)2
= 63.0  rad/s

vd =

2p
Td

=

2p
0.1  s

= 62.8  rad/s

z =

0.406

24p2
+ (0.406)2

= 0.0644

d = ln c x
$

(0)

x
$

(0.1  s)
d = ln 

3

2
= 0.406

2zvn =

3c
7m

Q z =

3c
14m vn

vn = A
27k
7m
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3.5 CRITICALLY DAMPED FREE VIBRATIONS
When , the free vibrations are said to be critically damped. In this case, there is onlyz = 1

3

2

1

0

Time (s)

ωn = 2.0 rad/s,  x(0) = 1 mm

x(
t)

 (
m

m
)

–1

–2

–3
x(0) = –1.0 mm/s˙ x(0) = 10.0 mm/s˙ x(0) = –15.0 mm/s˙

FIGURE 3.10
Free vibration response for a
system with critical damping.
The damping is just sufficient
to dissipate the energy within
one cycle. Depending on ini-
tial conditions, the response
may overshoot the equilib-
rium position.

The acceleration scale is then calibrated as

(l)1  unit =

6.22  m/s2

3
= 2.07  m/s2

one root of the quadratic equation defining . The root is � n; thus, one solution of the
differential equation is . The second linearly independent solution is obtained by mul-
tiplying the first by t. Thus, the general solution is

(3.47)

Application of the initial conditions leads to

(3.48)

The response of a SDOF system subject to critical viscous damping is plotted in
Figure 3.10 for different initial conditions. If the initial conditions are of opposite sign or
if , the motion decays immediately. If both initial conditions have the same sign or
if , the absolute value of x initially increases and reaches a maximum of

(3.49)

at

(3.50)t =

x# 0
vn(x

#

0 + vnx0)

x
 max 

= e -x# 0/(x
#

0 +vnx0)ax0 +

x# 0

vn

b
x0 = 0
x# 0 = 0

x (t) = e -vnt3x0 + (x# 0 + vnx0)t4

x (t) = e -vnt(C1 + C2t)

e -vnt
va
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If the signs of the initial conditions are opposite and

(3.51)

then the response overshoots the equilibrium position before eventually decaying and approach-
ing equilibrium from the direction opposite that of the initial position. Equation (3.51) is
equivalent to specifying that the initial conditions are opposite and the initial kinetic energy
is greater than the initial potential energy.

Free vibrations with � 1 are called critically damped because the damping force is
just sufficient to dissipate the energy within one cycle of motion. The system never exe-
cutes a full cycle; it approaches equilibrium with exponentially decaying displacement.

A system with critical damping returns to equilibrium the fastest without oscillation.
A system that is overdamped has a larger damping coefficient and offers more resistance to
the motion.

z

x0

x# 0 + vnx0

6 0

EXAMPLE 3 . 8
The recoil mechanisms of large firearms are designed with critical damping to take advan-
tage of the quickest return to the firing position without oscillation. A 52 kg cannon is to
return to within 50 mm of its firing position 0.1 s after maximum recoil. The initial recoil
velocity of the cannon is 2.5 m/s. Determine (a) the stiffness of the recoil mechanism,
(b) the damping coefficient of the recoil mechanism, and (c) the maximum recoil.

SO LU T I ON
The maximum recoil of a critically damped system with a initial velocity v � 2.5 m/s and
an initial displacement of zero is given by Equation (3.49) as

(a)

Take t � 0 to occur at the maximum velocity of the mechanism when and
. The response of the system is given by Equation (3.48) as

(b)

Requiring that the mechanism return to within 50 mm of equilibrium 0.1 s after maxi-
mum recoil leads to

(c)

An iterative solution is used to solve Equation (c), for n � 12.1 rad/s.

(a) The stiffness of the recoil mechanism is

(d)

(b) Since the mechanism is critically damped, we have

(e)c = 2mvn = 2(52  kg)(12.1  rad/s) = 1.26 * 103  N # s/m

k = mv2
n = (52  kg)(12.1  rad/s)2

= 7.61 * 103  N/m

v

0.050 =

2.5
e vn

e -vn(0.1)31 + 0.1vn4

x (t) =

2.5
e vn

e -vnt(1 + vnt) m

x (0) =
2.5
evn

x# (0) = 0

xmax =

2.5  m/s
evn
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3.6 OVERDAMPED FREE VIBRATIONS
When � 1, the characteristic equation has two real roots as 
The general solution of the governing differential equation Equation (3.7) is

(3.52)

Application of initial conditions from Equations (3.8) and (3.9) to Equation (3.52) leads to

(3.53)

Equation (3.53) is plotted in Figure 3.11. The response of an overdamped SDOF
system is not periodic. It attains its maximum either at t � 0 or at

(3.54)t = -  

1

2vn2z2
- 1

 ln ≥ z - 2z2
- 1

z + 2z2
- 1
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vn
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- 12
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- 12 de -vn2z2

- 1t r
x (t) =

e -zvnt

22z2
- 1

 e c x
#

0

vn

+ x01z + 2z2
- 12 d  e vn2z2

- 1t

x (t) = C1e
-vn1z+2z2

- 12t
+ C2e -vn1z-2z2

- 12t

v1,2 = vn1-z � 2z2
- 12.z
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0
0.5 1.0 1.5 2.0

Time (s)

x(
t)

 (
m

m
)

–1

ωn = 3 rad/s,   ζ = 1.2,   x(0) = 1 mm

FIGURE 3.11
Free vibration response for a
system that is overdamped.
The damping force is suffi-
cient to dissipate the energy
within a full cycle.

(c) The maximum recoil given by Equation (a) is

(f)xmax =

2.5  m/s
e vn

=

2.5 m/s
e (12.1  rad/s)

= 76.0  mm
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ζ = 1
ζ = 1.25

FIGURE 3.12
Comparison between the free
response of a critically
damped system and an over-
damped system.

The response of a system that is overdamped is similar to a critically damped system.
An overdamped system has more resistance to the motion than critically damped systems.
Therefore, it takes longer to reach a maximum than a critically damped system, but the
maximum is smaller. An overdamped system also takes longer than a critically damped
system to return to equilibrium. Two systems with the same initial conditions are shown in
Figure 3.12. One system has a damping ratio of 1 and the other of 1.25. It is obvious that
the system that is overdamped is slower.

The restroom door of Figure 3.13 is equipped with a torsional spring and a torsional viscous
damper so that it automatically returns to its closed position after being opened. The door
has a mass of 60 kg and a centroidal moment of inertia about an axis parallel to the axis of
the door’s rotation of 7.2 kg m2. The torsional spring has a stiffness of 25 N m/rad.

(a) What is the damping coefficient such that the system is critically damped?
(b) A man with an armload of packages, but in a hurry, kicks the door to cause it to open.

What angular velocity must his kick impart to cause the door to open 70 ?
(c) How long after his kick will the door return to within 5 of completely closing?
(d) Repeat parts a through c if the door is designed with a damping ratio, � 1.3.z

°

°

##

EXAMPLE 3 . 9



158 CHAPTER 3

SO LU T I ON
The differential equation is derived from the free-body diagrams of Figure 3.13(b),

(a)

Equation (a) is put in the standard form of Equation (3.7) by dividing by � md 2. Then
it is evident that

(b)

and

(c)

(a) For critical damping, the damping ratio is 1. Thus,

(d)

(b) If the kick is given when the door is closed, (0) � 0, the time the maximum displace-
ment occurs is given by Equation (3.50)

(e)t =

1
vn

= 0.88  s

u

ct = 2vn(I + md 2) = 44.0  N # m # s

z =

ct

2vn(I + md 2)

vn = A
kt

I + md 2
= A

25  N # m/rad
7.2  Kg 

# m2
+ (60  kg)(0.45  m)2 = 1.14 rad/s

I

(I + md 2)u
$

+ ctu
#

+ ktu = 0

0.90 m

(a)

2.13 m

θ

mg

External forces Effective forces

ktθ

(b)

=

Iθ̈

ctθ̇ mdθ̇ 2

mdθ̈

FIGURE 3.13
The restroom door of Example 3.9 is modeled
as a SDOF system with a torsional spring and a
torsional viscous damper. (b) FBDs at an arbi-
trary instant.
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and from Equation (3.49) is

(f)

Requiring max � 70 yields

(g)

(c) Applying Equation (3.48) with � 5 gives

(h)

which is solved by trial and error to yield t � 4.658 s.
(d) Setting � 1.3 yields

(i)

From Equation (3.54) the maximum displacement occurs at

(j)

Substituting the preceding result in Equation (3.53) and setting � 70 yields

(k)

which gives

(l)

Applying Equation (3.53) with � 5 yields

(m)

This equation could be solved by trial and error. However, a good approximation is
obtained by neglecting the smaller exponential to give t � 6.2 s. The neglected term at this
time is 0.00081 rad which is only 0.9% of the total angular displacement.

Note that a harder kick is required to open the door when the system is overdamped
than when the system is critically damped even though the time required to open the door
is approximately the same. This reflects the increase in the viscous resistance moment. The
response of the critically damped system against the response of an overdamped system
with � 1.3 is plotted in Figure 3.14. z
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3.7 COULOMB DAMPING
Coulomb damping is the damping that occurs due to dry friction when two surfaces slide
against one another. Coulomb damping can be the result of a mass sliding on a dry sur-
face, axle friction in a journal bearing, belt friction, or rolling resistance. The case of a mass
sliding on a dry surface is analyzed here, but the qualitative results apply to all forms of
Coulomb damping.

As the mass of Figure 3.15 (a) slides on a dry surface, a friction force that resists the
motion develops between the mass and the surface. Coulomb’s law states that the friction
force is proportional to the normal force developed between the mass and the surface. The
constant of proportionality , is called the kinetic coefficient of friction. Since the friction
force always resists the motion, its direction depends on the sign of the velocity.

Application of Newton’s law to the free-body diagrams of Figure 3.15(b) and (c) yields
the following differential equations:

(3.55)

Equations (3.55) are generalized by using a single equation

(3.56)mx
$

+ kx = -mmg   

| x# |

x#

mx
$

+ kx = e -mmg   x# 7 0
   mmg   x# 6 0

m
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ζ = 1.3
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0.4
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)

3 3.5 4 4.5 5

FIGURE 3.14
MATLAB plot of responses of the system of Example 3.8 for a critically damped system and an over-
damped system.
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The right-hand side of Equation (3.56) is a nonlinear function of the generalized coordi-
nate. Thus the free vibrations of a one-degree-of-freedom system with Coulomb damping
are governed by a nonlinear differential equation. However, an analytical solution exists
and is obtained by solving Equation (3.55).

Without loss of generality, assume that free vibrations of the system of Figure 3.15 are ini-
tiated by displacing the mass a distance to the right, from equilibrium, and releasing it from
rest. The spring force draws the mass toward equilibrium; thus the velocity is initially negative.
Equation (3.55) applies over the first half-cycle of motion, until the velocity again becomes zero. 

The solution of Equation (3.55) subject to and with mg on the
right-hand side is

(3.57)

Equation (3.57) describes the motion until the velocity changes sign at t � n when

(3.58)

Equation (3.55) with – mg on the right-hand side governs the motion until the
velocity next changes sign. The solution of Equation (3.55) using Equation (3.58) and

as initial conditions is 

(3.59)x (t) = ad -

3mmg

k
b  cos vnt -

mmg

k
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vn

… t …

2p
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# A pvn
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m
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FIGURE 3.15
(a) A mass slides on a surface with a
coefficient of friction . (b) FBDs at
an arbitrary instant for > 0. (c) FBDs
at an arbitrary instant for < 0.x
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The velocity again changes sign at t � 2 n when

(3.60)

The motion during the first complete cycle is described by Equations (3.57) and
(3.59). The amplitude change between the beginning and the end of the cycle is

(3.61)

The motion is cyclic. The analysis of the subsequent and each successive cycle continues in
the same fashion. The initial conditions used to solve for the displacement during a half-
cycle are that the velocity is zero and the displacement is the displacement calculated at the
end of the previous half-cycle.

The period of each cycle is

(3.62)

Thus Coulomb damping has no effect on the natural frequency.
Mathematical induction is used to develop the following expressions for the displace-

ment of the mass during each half-cycle:

(3.63)

(3.64)

(3.65)

Equation (3.65) shows that the displacement at the end of each cycle is 4 mg/k less
than the displacement at the end of the previous cycle. Thus the amplitude of free vibra-
tion decays linearly as shown, when Equations (3.63) and (3.64) are plotted in Figure 3.16.

The amplitudes on successive cycles form an arithmetic sequence. If xn is the ampli-
tude at the end of the nth cycle then

(3.66)

with x0 � . The solution of this difference equation is Equation (3.65).
The motion continues with this constant decrease in amplitude as long as the restor-

ing force is sufficient to overcome the resisting friction force. However, since the friction
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FIGURE 3.16
Free response of a system with
Coulomb damping. The motion
is cyclic with a linear decay of
amplitude. The period is the
same as the natural period
with motion ceasing with a
permanent displacement.
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causes a decrease in amplitude, the restoring force eventually becomes less than the friction
force. This occurs when

(3.67)

Motion ceases during the nth cycle, where n is the smallest integer such that

(3.68)

When motion ceases a constant displacement from equilibrium of mg/k is maintained.
The effect of Coulomb damping differs from the effect of viscous damping in these

respects:

1. Viscous damping causes a linear term proportional to the velocity in the governing dif-
ferential equation, while Coulomb damping gives rise to a nonlinear term.

2. The natural frequency of an undamped system is unchanged when Coulomb damp-
ing is added, but is decreased when viscous damping is added.

3. Motion is not cyclic if the viscous damping coefficient is large enough, whereas the
motion is always cyclic when Coulomb damping is the only source of damping.

4. The amplitude decreases linearly because of Coulomb damping and exponentially
because of viscous damping.

m

n 7

kd
4mmg
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5. Coulomb damping leads to a cessation of motion with a resulting permanent displace-
ment from equilibrium, while motion of a system with only viscous damping contin-
ues indefinitely with a decaying amplitude.

Since the motion of all physical systems ceases in the absence of continuing external
excitation, Coulomb damping is always present. Coulomb damping appears in many
forms, such as axle friction in journal bearings and friction due to belts in contact with pul-
leys or flywheels. The response of systems to these and other forms of Coulomb damping
can be obtained in the same manner as the response for dry sliding friction.

The general form of the differential equation governing the free vibrations of a linear
system where Coulomb damping is the only source of damping is

(3.69)

where Ff is the magnitude of the Coulomb damping force. The decrease in amplitude per
cycle of motion is

(3.70)�  A =

4Ff

meqv
2
n

x
$

+ v2
nx = e       

Ff

meq
   x# 6 0

-

Ff

meq
   x# 7 0

E XAMP L E 3 . 1 0
An experiment is run to determine the kinetic coefficient of friction between a block and
a surface. The block is attached to a spring and displaced 150 mm from equilibrium. It is
observed that the period of motion is 0.5 s and that the amplitude decreases by 10 mm on
successive cycles. Determine the coefficient of friction and how many cycles of motion the
block executes before motion ceases.

SO LU T I ON
The natural frequency is calculated as

(a)

The decrease in amplitude is expressed as

(b)

which is rearranged to yield

(c)

From Equation (3.68) the motion ceases during the 15th cycle. The mass has a permanent
displacement of 2.5 mm from its original equilibrium position.

m =

¢  A
4 g
v2

n =

(0.01  m)(12.57 rad/s)2

4(9.81 m/s2)
= 0.04

¢  A =

4mmg

k
=

4mg

v2
n

vn =

2p
T

=

2p
0.5  s

= 12.57  rad/s
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FIGURE 3.17
(a) Tree swing of Example 3.11. (b) The tension
developed in opposite sides of a rope are
unequal due to friction. (c) FBDs of swing at an
arbitrary instant.
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A father builds a swing for his children. The swing consists of a board attached to two ropes,
as shown in Figure 3.17. The swing is mounted on a tree branch, with the board 3.5 m below
the branch. The diameter of the branch is 8.2 cm and the kinetic coefficient of friction
between the ropes and the branch is 0.1. After the swing is installed and his child is seated,
the father pulls the swing back 10 and releases. What is the decrease in angle of each swing
and how many swings will the child receive before Dad needs to give another push?

SO LU T I ON
Because of the friction between the tree branch and the ropes, the tension on opposite sides
of a rope will be different. These tensions can be related using the principles of belt fric-
tion. When the swing is swinging clockwise,

(a)T2 = T1e
mb

°

EXAMPLE 3 . 1 1
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where is the angle of contact between the tree branch and the rope. As the child swings
the angle of contact may vary. However, this complication is too much to handle with a
simplified analysis. A good approximation is to assume is constant and � rad.
When the swing is swinging counterclockwise

(b)

Let be the clockwise angular displacement of the swing from equilibrium. Summing
forces in the direction of the tensions gives ∑Fext � ∑Feff

(c)

The swing is pulled back only 10 . Thus the usual small-angle approximation is valid, with
cos 1 and the nonlinear inertia term ignored in comparison to the tensions and grav-
ity. The belt friction relations and the normal force equation are solved simultaneously to
yield

(d)

(e)

Summing moments about the center of the tree branch, using the free-body diagrams of
Figure 3.17(c) and the small-angle assumption yields

(f)

Substituting for the tensions into the preceding equation and rearranging leads to

(g)

The frequency of the swinging is

(h)

which is the same as it would be in the absence of friction.
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The governing differential equation is of the form of Equation (3.69). Thus, from
Equation (3.70), the decrease in amplitude per swing is

Motion ceases when, at the end of a cycle, the moment of the gravity force about the center
of the branch is insufficient to overcome the frictional moment. This occurs when

or

Thus, if Dad does not give the swing another push after 23 swings, the swing will come to
rest with an angle of response of 0.1 .°

u 6

d
2l

 
e mp - 1
e mp + 1

= 0.10°

mgl u 6 | T2 - T1 |d

2d
l

 
e mp - 1
e mp + 1

= 2a0.082  m
3.5  m

b e 0.1p
- 1

e 0.1p
+ 1

= 0.0073  rad = 0.42°

–σy

�

σy

σ

FIGURE 3.18
Stress strain diagram for a linearly elastic
isotropic material with the same behavior
in compression and tension. Material
behavior is linear for | | y.s6s

-

3.8 HYSTERETIC DAMPING
The stress–strain diagram for a typical linearly elastic material is shown in Figure 3.18.
Ideally, if the material is stressed below its yield point and then unloaded, the stress-strain
curve for the unloading follows the same curve for the loading. However, in a real engi-
neering material, internal planes slide relative to one another and molecular bonds are
broken, causing conversion of strain energy into thermal energy and causing the process to
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be irreversible. A more realistic stress-strain curve for the loading-unloading process is
shown in Figure 3.19 when | | y.

The curve in Figure 3.19 is a hysteresis loop. The area enclosed by the hysteresis loop from
a force–displacement curve is the total strain energy dissipated during a loading–unloading
cycle. In general, the area under a hysteresis curve is independent of the rate of the loading-
unloading cycle.

In a vibrating mechanical system an elastic member undergoes a cyclic load-displacement
relationship as shown in Figure 3.19. The loading is repeated over each cycle. The existence
of the hysteresis loop leads to energy dissipation from the system during each cycle, which
causes natural damping, called hysteretic damping. It has been shown experimentally that
the energy dissipated per cycle of motion is independent of the frequency and proportional
to the square of the amplitude. An empirical relationship is

(3.71)

where X is the amplitude of motion during the cycle and h is a constant, called the hysteretic
damping coefficient.

The hysteretic damping coefficient cannot be simply specified for a given material. It
is dependent upon other considerations such as how the material is prepared and the geom-
etry of the structure under consideration. Existing data cannot be extended to apply to
every situation. Thus it is usually necessary to empirically determine the hysteretic damp-
ing coefficient.

Mathematical modeling of hysteretic damping is developed from a work-energy analy-
sis. Consider a simple mass-spring system with hysteretic damping. Let X1 be the ampli-
tude at a time when the velocity is zero and all energy is potential energy stored in the
spring. Hysteretic damping dissipates some of that energy over the next cycle of motion.
Let X2 be the displacement of the mass at the next time when the velocity is zero, after the

¢E = pkhX 2

s6s

FIGURE 3.19
Behavior of a real engineering material as a system
executes one cycle of motion. The area enclosed
by the curve is the dissipated strain energy per unit
volume. This dissipated energy is the basis for hys-
teretic damping.

x

F
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system executes one half-cycle of motion. Let X3 be the displacement at the subsequent
time when the velocity is zero, one full cycle later. Application of the work-energy princi-
ple over the first half-cycle of motion gives

(3.72)

The energy dissipated by hysteretic damping is approximated by Equation (3.71) with X as
the amplitude at the beginning of the half-cycle.

(3.73)

This yields

(3.74)

A work-energy analysis over the second half-cycle leads to

(3.75)

Thus the rate of decrease of amplitude on successive cycles is constant, as it is for vis-
cous damping. By analogy a logarithmic decrement is defined for hysteretic damping as

(3.76)

which for small h is approximated as

(3.77)

By analogy with viscous damping an equivalent damping ratio for hysteretic damping is
defined as

(3.78)

and an equivalent viscous damping coefficient is defined as

(3.79)

The free vibrations response of a system subject to hysteric damping is the same as the
response of the system when subject to viscous damping with an equivalent viscous damp-
ing coefficient given by Equation (3.79). This is true only for small hysteretic damping, as
subsequent plastic behavior leads to a highly nonlinear system. The analogy between vis-
cous damping and hysteretic damping is also only true for linearly elastic materials and for
materials where the energy dissipated per unit cycle is proportional to the square of the
amplitude. In addition, the hysteretic damping coefficient is a function of geometry as well
as the material.

The response of a system subject to hysteretic or viscous damping continues indefi-
nitely with exponentially decaying amplitude. However, hysteretic damping is significantly
different from viscous damping in that the energy dissipated per cycle for hysteretic damp-
ing is independent of frequency, whereas the energy dissipated per cycle increases with fre-
quency for viscous damping. Thus while the mathematical treatments of viscous damping
and hysteretic damping are the same they have significant physical differences.
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EXAMPLE 3 . 1 2
The force-displacement curve for a structure of Figure 3.20(a) modeled by the system of
Figure 3.20(b) is shown in Figure 3.20(c). The structure is modeled as a one-degree-of-free-
dom system with an equivalent mass 500 kg located at the position where the measure-
ments are made. Describe the response of this structure when a shock imparts a velocity of
20 m/s to this point on the structure.

SO LU T I ON
The area under the hysteresis curve is approximated by counting the squares inside the hys-
teresis loop. Each square represents (1 104 N)(0.002 m) 20 N m of dissipated
energy. There are approximately 38.5 squares inside the hysteresis loop resulting in 770 N m
dissipated over one cycle of motion with an amplitude of 20 mm.

#

#
=*

FIGURE 3.20
(a) One-story frame structure modeled as a SDOF system. (b) Hysteretic damping leads to an equivalent
viscous-damping coefficient of 6100 N s/m. (c) Force-displacement curve over one cycle for the system
of Example 3.12.
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The equivalent stiffness is the slope of the force deflection curve and is determined as
5 106 N/m. Application of Equation (3.71) leads to

(a)

The logarithmic decrement, damping ratio, and natural frequency are calculated by
using Equations (3.77) and (3.78)

(b)

(c)

(d)

The response of this structure with hysteretic damping is approximately the same as the
response of a simple mass-spring-dashpot system with a damping ratio of 0.0615 and a nat-
ural frequency of 100 rad/s. Then from Equation (3.28) with and x0 � 0, the
response is

(e)x(t) = 0.20e -6.13t sin (99.81t) m

x# 0 = 20  m/s

vn = A
k
m

= A
5 * 106  N/m

500  kg
= 100  rad/s

z =

h
2

= 0.0613

d = ph = 0.385

h =

¢  E
p kX 2 =

770  N # m

p(5 * 106
  N/m)(0.02  m)2

= 0.123

*

3.9 OTHER FORMS OF DAMPING
A mechanical or structural system may be subject to other forms of damping such as aero-
dynamic drag, radiation damping, or anelastic damping. However, these give rise to non-
linear terms in the governing differential equations. Exact solutions do not exist for these
forms of damping. The periodic motion of systems subject to these forms of damping can
be approximated by developing an equivalent viscous damping coefficient. The equivalent
viscous damping coefficient is obtained by equating the energy dissipated over one cycle of
motion, assuming harmonic motion at a specific amplitude and frequency, for the partic-
ular form of damping with the energy dissipated over one cycle of motion because of the
force in a dashpot of the equivalent viscous damping coefficient.

For a harmonic motion of the form the energy dissipated over one
cycle of motion due to a damping force FD is

(3.80)

For viscous damping, Equation (3.80) yields

(3.81)¢E =

L

2p>v

0
c x# 2

  dt =

L

2p>v

0
c v2X 2

 cos2vt  dt = c vpX 2

¢E =

L

2p>v

0
FD x#   dt =

L

2p>v

0
FD 

X  v cos vt  dt

x (t) = X sin vt,
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Thus, by analogy, the equivalent viscous damping coefficient for another form of damping is

(3.82)

Aerodynamic drag is present in all real problems. However, its effect is often ignored.
The determination of the correct form of the drag force is a problem in fluid mechanics.
At high Reynolds numbers, the drag is very nearly proportional to the square of the veloc-
ity and can be written as

(3.83)

where CD is a coefficient that is a function of body geometry and air properties. For mod-
erate Reynolds numbers, appropriate forms of the drag force have been proposed as

(3.84)

where 0 1. In either case, the resulting differential equation is nonlinear.
Some materials (e.g., rubber) are viscoelastic and obey a constitutive equation in

which stress is related to strain and strain rate. It is shown in Chapter 4 that for an
undamped system the forced response is in phase with a harmonic excitation, whereas a
phase lag occurs for a damped system. This phase lag also occurs for many viscoelastic
materials. Indeed, many viscoelastic materials have constitutive equations that are derived
by modeling the material as a spring in parallel with a dashpot. This is called a Kelvin
model. The phase lag results in energy dissipation and the resulting damping is called
anelastic damping.

Damping occurs when energy is dissipated from a vibrating body by any means.
Another example is radiation damping that occurs for a body vibrating on the free surface
between two fluids. The vibrating body causes pressure waves to be radiated outward, caus-
ing energy transfer from the body to the surrounding fluids.

Most physical systems are subject to a combination of forms of damping. Indeed, a simple
mass-spring-dashpot system is subject to viscous damping from the dashpot, Coulomb damp-
ing from the dry sliding friction, hysteretic damping from the spring, and aerodynamic drag.
The presence of Coulomb damping leads to cessation of free vibrations after a finite time. The
aerodynamic drag is usually neglected in an analysis as its effect is negligible and it leads to a
nonlinear differential equation. The hysteretic damping acts in parallel with the viscous
damping. The equivalent damping coefficient is the sum of the viscous damping coefficient
for the dashpot and the equivalent viscous damping coefficient for the hysteretic damping. For
small amplitudes the effect of viscous damping is much greater than the effect of hysteretic
damping. For large amplitudes the hysteretic damping can be dominant.

…a6

FD = CD| x# |ax#

FD = CD x 
#

| x# |

ceq =

¢E
p vX 2

EXAMPLE 3 . 1 3
A block of mass 1 kg is attached to a spring of stiffness 3 105 N/m. The block is dis-
placed 20 mm from equilibrium and released from rest. The block is in a fluid where the
drag force is given by Equation (3.83) with CD � 0.86 N s2/m. Approximate the number
of cycles before the amplitude is reduced to 15 mm.

#

*
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SO LU T I ON
The energy lost per cycle of motion due to aerodynamic drag is calculated from
Equation (3.80)

(a)

From Equation (3.82) the equivalent viscous damping coefficient is calculated as

(b)

If the equivalent viscous damping is small, the frequency is approximately equal to the
natural frequency of free undamped vibrations

(c)

The damping ratio on a given cycle is

(d)

From Equation (3.41) the logarithmic decrement is

(e)

Since the equivalent viscous damping coefficient, and hence the damping ratio and the
logarithmic decrement, depend on the amplitude, the decrease in amplitude is not constant
on each cycle. Using an amplitude of 20 mm for the first cycle, the amplitude at the begin-
ning of the second cycle is obtained using the logarithmic decrement, which in turn is used
to predict the amplitude at the beginning of the third cycle. Table 3.2 is developed in this
fashion. The amplitude of vibration is reduced to 15 mm in seven cycles.

d = 2pz = 2.29X

z =

ceq

22km
=

0.73(547.7 rad/s)X

22(1kg)(3 * 105
  N/m)

v = A
k
m

= 547.7 rad/s

ceq = 0.730vX

 = 4
L

p>2v

0
CDX 3v3 cos3vt  dt =

8
3

CDv
2X 3

 �E =

L

2p>v

0
CDX 3v3 cos2vt | cos vt | dt

Viscous approximation
used to predict decay in
amplitude for Example 3.13

T A B L E 3 . 2

Amplitude at beginning
Cycle of cycle Xn� Xn-1 e

-2.32Xn - 1

1 20.0
2 19.09
3 18.26
4 17.50
5 16.81
6 16.16
7 15.56
8 15.00



174 CHAPTER 3

3.10 BENCHMARK EXAMPLES

3.10.1 MACHINE ON THE FLOOR OF AN INDUSTRIAL PLANT
During operation, the machine is to be subject to an impulse of magnitude 50 lb s. The
effect of the impulse on the machine is to give the machine an initial velocity using the
equivalent mass of the machine. Application of the principle of impulse and linear momen-
tum to the machine leads to

(a)

The ensuing free vibrations of the machine, accounting for the inertia of the beam, are
modeled by

(b)

with . Putting the differential equation in standard form
leads to

(c)

from which the natural frequency is calculated as

(d)

The system response due to the initial conditions is

(e)

Equation (e) predicts that the motion will continue indefinitely without amplitude
decay. This is false, but it does predict closely the frequency of vibrations and their maxi-
mum amplitude. To explore the possible effects of energy dissipation through hysteretic
damping, transverse vibrations of the floor are initiated and the history of the response is
recorded using an accelerometer placed at the location where the machine is to be attached.
The amplitude of vibration decays to half of its initial value in 10 cycles. The logarithmic
decrement is calculated as

(f)

from which a hysteretic damping coefficient is determined as

(g)

The response thus is modeled with hysteretic damping as a system with an equivalent viscous-
damping ratio

(h)z =

d

2p
= 0.0110

h =

d

2
= 0.0347

d =

1

10
  lna2

1
b = 0.0693

x (t) =

x#  (0)

vn

 sin vnt =

1.29  ft/s

141.4  rad/s
 sin (141.4t) = 9.20 * 10-3 sin (141.4t)  ft

vn = 21.99 * 105
= 141.4  rad>s

x
$

+ 1.99 * 105x = 0

x (0) = 0  and  x#  (0) = 1.29  ft/s

38.8x
$

+ 7.74 * 105x = 0

v =

I
m

=

50 lb # s
38 slugs

= 1.29  ft/s

#
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The response of the system with hysteretic damping is

(i)

Equation (i) is illustrated in Figure 3.21.

3.10.2 SIMPLIFIED SUSPENSION SYSTEM
The model for free vibrations of the vehicle suspension system with an empty vehicle is

(a)

Putting the differential equation in standard form, it becomes

(b)

The vehicle has a natural frequency of

(c)vn = A
k
m

= A
12000  N/m

300  kg
= A40

1
s2 = 6.32  rad/s

x
$

+ 4x# + 40x = 0

300x$ + 1200x# + 12000x = 0

= 9.22 * 10-3e -1.55t sin (141.4t) ft

=

1.29  ft/s

(141.4 rad/s)21 - (0.0110)2
e -(0.0110)(141.4)t sin A141.421 - (0.0110)2t B

x (t) =

x# (0)

vn21 - z2
 e -zvnt  sin Avn21 - z2t B

FIGURE 3.21
Plot of the free response of a
machine attached to a fixed-
free beam when hysteretic
damping is included.
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and a damping ratio of

(d)

The vehicle encounters a sudden change in road contour of a drop of distance h. The
system is modeled with the equilibrium position taken after the drop, which implies that
the initial conditions are x(0) � �h and . The solution of an underdamped
system subject to these initial conditions is

(e)

where

(f)

Note that the numerator and the denominator in the argument of the inverse tangent are
both negative. The negative sign does not cancel; instead, a four-quadrant evaluation of the
inverse tangent is used. Substituting numbers in x(t) leads to

(g)

One concept associated with the free response of a vehicle when it encounters a sudden
contour change is overshoot, where the absolute value of maximum displacement at the
end of the first half-cycle is

(h)

Expressed as a percentage, the overshoot is

(i)

The mass of the vehicle varies with passengers and cargo from an empty value of 300 kg to
a fully loaded value of 600 kg. The damping ratio is inversely proportional to the square
root of the mass, and hence, the overshoot increases with increasing mass. The variation of
overshoot with mass is shown in Figure 3.22.

Another important concept is the 2 percent settling time t2%, which is how long it takes
for the system response to be permanently reduced to be within 2 percent of the initial dis-
placement of equilibrium. It is calculated from the last time that x(t) � |0.02h|, which is
calculated in term of the mass of the vehicle using Equation (e). The value of

ranges between –1 and 1 and does not have much effect on the
solution for the 2 percent settling time. Ignoring this term and eliminating the absolute
value (since the remainder of the terms are positive) leads to

(j)0.02h = hC1 +

z

31 - z2
  e -zvnt2%

sin (vn21 - z2t + fd)

h = 100 

g

h
= 100e -zp>21 -z2

g = 2 x aTd

2
b 2 = he -zp>21 -z2

x(t) = 1.054he -2.00t sin (6.00t + 4.39)

fd =  tan -1 ¢-h21 - z2

-hz
≤ =  tan -1 ¢- 21 - (0.316)2

-0.316
≤ = 4.39

x (t ) = h C1 + a z

31 - z2
b2

e -zvnt sin 1vn21 - z2t + fd2

x# (0) = 0

z =

c

22mk
=

1200  N # s/m

22(300  kg)(12000  N/m)
= 0.316
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FIGURE 3.23
Two percent settling time as
a function of the mass of the
vehicle for the simplified
model of the vehicle suspen-
sion system.

11000

10000

9000

8000

7000

6000

5000

4000

3000
300 350 400 450

m (kg)

t 2
%

 (
s)

500 550 600

FIGURE 3.22
Percent overshoot as a func-
tion of mass of the vehicle for
the simplified model of the
vehicle suspension system.
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which is solved, leading to

(k)

Equation (j) is plotted in Figure 3.23 from an empty vehicle to a fully loaded vehicle.

t2%
=

1

zvn

 c3.912 +

1

2
 lna1 +

z

21 - z2
b d
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3.11 FURTHER EXAMPLES

EXAMPLE 3 . 1 4
A particle of mass of 50 g is to be attached along the length of a thin bar with a length
of 25 cm, mass of 200 g, and centroidal moment of inertia of 9.0 � 10�3 kg m2. The
assembly is suspended from a pin support attached at one end of the bar. The center of grav-
ity of the bar is 15 cm from the pin support. The assembly is to be tuned such that it has a
period of 1.25 s. Determine the length along the bar where the particle is to be placed.

SO LU T I ON
The assembly shown in Figure 3.24(a) is modeled as a compound pendulum with an
attached particle. The generalized coordinate used in the modeling is , which is the coun-
terclockwise angular displacement of the pendulum from equilibrium. It is assumed that 
is small, so that the small angle assumption applies. Free-body diagrams drawn for an arbi-
trary value of are shown in Figure 3.24(b). Using these free-body diagrams to sum
moments about an axis through the pin support, (∑MO)ext � (∑ MO)eff, yields

(a)

where a is the distance from the pin support to the mass center of the ban.

-m1ga u - m2gb u = I u
$

+ (m1a u
$

)a + (m2b u
$

)b

u

u

u

#

FIGURE 3.24
Pendulum composed of a mass which can
slide along the rod. (b) FBDs at an arbitrary
instant where is the chosen generalized
coordinate.

u

b

(a)

m2g

External forces Effective forces

m1g
m2bθ̇ 2

m1aθ̇ 2

m2bθ̈

m1aθ̈

I
–θ̈

Rx

Ry

(b)

=
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Equation (a) is rearranged to

(b)

Equation (b) is put into standard form, and the natural frequency identified as

(c)

The period of free oscillation is

(d)

Requiring the period to be 1.25 s and substituting in the given values leads to

(e)

Dividing by 2 , squaring, multiplying by the denominator, and rearranging leads to

(f)

The solution of the quadratic equation is b � 0.169, 0.219 m. The mass can be placed at
either location.

b2
- 0.3882b + 0.03709 = 0

p

1.25  s = 2pA
9 * 10-3 kg # m2

+ (0.2  kg)(0.15  m)2
+ (0.05  kg)b2

3(0.2  kg)(0.15  m) + (0.05  kg)b4(9.81 m/s2)

T =

2p
vn

= 2pA
I + m1a

2
+ m2b

2

(m1a + m2b)g

vn = A
(m1a + m2b)g

I + m1a
2

+ m2b
2

(I + m1a
2

+ m2b
2) u

$

+ (m1a + m2b)g u = 0

FIGURE 3.25
System of Example 3.15.

x

2r
r

ck

k
ID

m = 1.2 kg
ID = 0.002 kg · m2

r = 10 cm
k = 3 × 104 N/m

m

The parameters in the system of Figure 3.25 have the following values: ID � 0.002 kg m2,
r � 100 mm, m � 1.2 kg, and k � 3 � 104 N/m. 

(a) Let x be the displacement of the mass center of the cart as the generalized coordinate.
Derive the differential equation for the system using the equivalent systems method.
Assume there is no friction between the cart and the surface.

(b) For what value of c is the system critically damped? Call this value cc.
(c) Suppose the cart is displaced 3 cm from equilibrium and released. Determine x(t) if 

(i) c � 0.25cc, (ii) c � cc, and (iii) c � 1.25cc.
(d) How long will it take for the response to be permanently within 1 mm of the equilib-

rium position if (i) c � 0.25cc, (ii) c � cc, and (iii) c � 1.25cc?

#

EXAMPLE 3 . 1 5
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SO LU T I ON
(a) The kinetic energy of the system at an arbitrary instant is where is
the angular velocity of the disk. Assuming the cables are inextensible, the velocity of the point
on the disk where the cable is being taken up or let out is the same as the velocity of the cable,
which also is the same as the velocity of the cart. Thus, . The kinetic energy becomes

(a)

Thus, the equivalent mass is meq � 6.2 kg. The potential energy at an arbitrary instant is

(b)

which leads to keq � 3.75 � 104 N/m. The work done by the viscous damper between
t � 0 and an arbitrary instant is

(c)

Hence, the equivalent viscous-damping coefficient is ceq � c 4. The differential equation
governing the system is

(d)

(b) The natural frequency of the system is

(e)

The form of the damping ratio is

(f)

For critical damping, the damping ratio is 1, which leads to cc � 3860 N s/m.
(c) The initial conditions are x(0) � 0.03 m and . (i) If cc � 0.25, the system x# (0) = 0  m/s

#

z =

c
8(6.2  kg)(77.8  rad/s)

=

c
3860  N # s/m

vn = A
3.75 * 104   N/m

6.2  kg
= 77.8  rad/s

6.2x
$

+

1

4
cx# + 3.75 * 104x = 0

>
U1:2 = -

L
c  

x#

2
 d a x

2
b = -

L
c
4

 x#  dx

=

1

2
(3.75 * 104  N/m)x 2

V =

1
2

k x 2
+

1
2

k (r u)2
=

1
2

kx 2
+

1
2

k a x
2
b2

=

1
2
a5k

4
bx 2

=

1
2
c5
4
a3 * 104  N/mb dx 2

=

1
2

(6.2  kg)x# 2

T =

1
2

mx# 2 +

1
2

IDa x#

2r
b2

=

1
2
am +

ID

4r 2 bx# 2
=

1
2

 a1.2  kg +

0.002  kg # m2

4(0.01  m)2 bx# 2

x# = 2ru
#

vT =
1
2mx# 2

+
1
2IDv

2

is underdamped with � � 0.25. The solution for an underdamped system is given by
Equation 3.28 and is applied to this problem as

 sin b (77.8  rad/s)21 - (0.25)2t

x (t) = C(0.03  m)2
+ c0  m/s + (0.25)(77.8  rad/s)(0.03  m)

(77.8  rad/s)31 - (0.25)2
d2
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(g)

(ii) For c � cc, the system is critically damped, and � 1. The free response of a critically
damped system is given by Equation 3.48, which is applied to yield

(h)

(iii) For c � 1.25 cc, the system is overdamped with � 1.25. The free response of an over-
damped system is given by Equation 3.53, which is applied to yield

(i)

(d)
(i) For an underdamped system, the logarithmic decrement can be used to determine how

long it will take for the system to be permanently within 1 mm of equilibrium. To this end,

(j)

From the requirements, the number of cycles is determined by

(k)

The system will return to within 1 mm of equilibrium within 3 cycles. Thus,

(l)

(ii) For � 1, an iteration is performed on

(m)

leading to t � 0.067 s.

(iii) For � 1.25, the solution is composed of two exponential terms with negative
exponents. The solution simply decays without crossing the axis. When the response is
within 0.001 m from equilibrium, the term with the larger exponent (smaller absolute
value) should be much greater than the term with the smaller exponent. Thus, a good

z

0.001  m = e -(77.8  rad/s)t(0.03 + 2.33t)  m

z

t = 3Td = 3
2p

vn21 - z2
= 3

2p

(77.8  rad/s)2(1.25)2
- 1

= 0.250  s

1.622 =

1
n

 ln a 0.03  m
0.001  m

b =

3.410
n

Q n =

3.410

1.622
Q 2.10

d =

2pz

21 - z2
=

2p(0.25)

21 - (0.25)2
= 1.622

= (0.04e -38.9t
- 0.01e -155.6t )m

+ c 0 m/s
77.8 rad/s

+ (0.03 m)(-1.25 + 2(1.25)2
- 1) de -(77.8  rad/s)2(1.25)2

- 1t f

+ 2(1.25)2
- 1) de (77.8 rad/s)2(1.25)2

- 1t

x (t) =

e -(1.25)(77.8 rad/s)t

22(1.25)2
- 1
b c 0 m/s

77.8 rad/s
+ (0.03 m)(1.25

z

= e -(77.8  rad/s)t(0.03 + 2.33t)  m

x (t) = e -(77.8  rad/s)tE0.03  m + C0  m/s + (77.8  rad/s)(0.03  m)t D F
z

 = 0.0310 sin (75.3t + 1.32)  m

+ tan -1 c (0.03  m)(77.8  rad/s)21 - (0.25)2

0  m/s + (0.25)(77.8  rad/s)(0.03  m)
d r
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EXAMPLE 3 . 1 6
A torsional pendulum shown in Figure 3.26(a) is composed of a thin disk with a moment
of inertia I which is pinned at its mass center and allowed to rotate about the pin support.
The pendulum is attached to a torsional spring of stiffness kt � 1.8 N m/rad. As the disk
rotates, it moves through an electromagnet. A body moving through a magnetic field gen-
erates a force whose magnitude is qvB if the magnetic field is perpendicular to the velocity
where q is the charge on the body, B is the magnitude of the magnetic field, and v is the
velocity of the body. Since the force is proportional to the velocity, the pendulum behaves
as if has viscous damping. The net result of the pendulum passing through the magnetic
field is to generate a moment resisting the motion about the center of the disk. The mag-
netic field acts as a torsional viscous damper.

(a) When the magnetic field is off, the torsional pendulum is rotated 40 from its equilib-
rium position and released. It takes 2 s to complete one cycle of motion. Determine the
moment of inertia of the pendulum.

(b) When the magnetic field is turned on, the amplitude of successive cycles of motion is
observed as 30 , 25 , 20.8 , etc. What is the damping ratio of the system?°°°

°

#

approximation for the time to be permanently within 1 mm of equilibrium is approxi-
mated by

(n)

which leads to t � 0.0948 s. The neglected term is .01e–155.6(0.0948) � 3.92 10–9, which
is much less than 0.001, and hence, t � 0.0948 is a good approximation.

*

0.001  m = 0.04e -38. 9t
 m

FIGURE 3.26
A torsional pendulum consists of
a thin disk pinned at its center.
The disk is attached to a tor-
sional spring and rotates through
a magnetic field which serves as
a torsional damper. (b) FBDs of
pendulum at an arbitrary instant,
assuming viscous damping and
ignoring Coulomb damping.

Electromagnet

Iθ̈

ktθ

ctθ̇

θ

kt = 1.8 N · m/rad

(b)

(a)

External forces Effective forces
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(c) When the magnetic field is turned on and the pendulum is given an initial amplitude
of 30 , describe the resulting motion of the system.

(d) If the electromagnet is turned off and the amplitude of free, oscillations observed on
successive cycles is 30 , 28 , and 26 . What frictional moment is generated at the pin
support?

SO LU T I ON
(a) Summing moments on a FBD of the pendulum drawn at an arbitrary instant, Figure 3.26(b)
yields

(a)

The differential equation is divided by I arriving at the standard form of

(b)

from which the natural frequency is obtained as

(c)

The period of free oscillations T is observed as 2 s. The pendulum’s natural frequency is

(d)

Equating Equations (c) and (d) leads to

(e)

(b) The amplitudes on successive cycles are in a constant ratio. The logarithmic decrement is

(f)

from which the damping ratio is calculated from

(g)

(c) The damped natural frequency is

The motion of an underdamped system with (0) � 30° and is

(h)= 30.16°e -0.0345t sin (3.14t + 89.4°)

a21 - (0.11)2

0.11 

b dsin  c3.14t + tan - 1

e -(0.011)(3.14)tu(t) = (30°)C1 + a 0.011

31 - (0.011)2
b2

#

u(0) = 0 rad/su

vd = (3.14  rad/s)21 - (0.011)2
= 2.85  rad/s

z =

d

24p4
+ d2

=

0.690

24p4
+ (0.690)2

= 0.011

d =  ln 
30°

28°
= 0.690

A
kt

I
= 3.14 Q I =

1.8  N # m/rad
(3.14  rad/s)2 = 0.183  kg # m2

vn =

2p
T

=

2p
2  s

= 3.14  rad/s

vn = A
kt

I

u
$

+

ct

I
 u
#

+

kt

I
 u = 0

I u
$

+ ctu
#

+ kt u = 0

°°°

°



184 CHAPTER 3

(d) The system is undergoing Coulomb damping. The differential equation governing the
motion when system is under the effect of Coulomb damping is

(i)

where Mf is the resisting moment due to the friction at the pin support. The system loses
2 of amplitude every cycle of motion, which is given by

(j)

Thus,

(k)

Equation (k) is solved to yield

(l)Mf =

0.0349(0.183  kg # m2)(3.14  rad/s)2

4
= 0.0157  N # m

4Mf

Iv2
n

= (2°)a2p  rad
360°

b = 0.0349  rad

¢A =

4Mf

Iv2
n

°

I u
$

+ ktu = b -Mf

#

u 7 0
Mf

#

u 6 0

EXAMPLE 3 . 1 7
A MEMS system consists of a mass of 50 g hanging from a silicon (E � 73 � 109 N/m2)
cable with a diameter 0.2 m and a length of 120 m. The cable is suspended from a
simply supported, circular silicon beam with a diameter of 1.6 m and a length of 50 m,
as shown in Figure 3.27. The mass vibrates in a silicone oil such that its damping coeffi-
cient is 1.2 � 10–6 N s/m. The mass is given as an initial displacement of 2 m and
released. Determine the response of the system.

SO LU T I ON
The stiffness of the beam is

(a)kb =

48EI
L3 =

48 (73 * 109  N/m2)(0.8 mm)4
 p/4

(50  mm)3 = 9.018  N/m

m#

mm

mm

m

FIGURE 3.27
System of Example 3.17 is a MEMS system. The damping is provided
by a surrounding fluid.

50 µm

120 µm
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The stiffness of the cable is

(b)

The springs are in series with an equivalent stiffness as

(c)

The undamped natural frequency is

(d)

The damping ratio is

(e)

The damped natural frequency is

(f)

The response of an underdamped system with an initial displacement is

(g)= 2e -12t sin (1.10 * 104t + 1.57)mm

sin (1.10 * 104t + 1.57)

x (t ) = (2 mm)C1 + c 0.0011

31 - (0.0011)2
d2e -(0.0011)(1.10 * 104

  rad/s)t

vd = (1.10 * 104  rad/s)21 - (0.0011)2
= 1.10 * 104  rad/s

z =

c
2mvn

=

1.2 * 10-6  N # s/m

2(50  mg)(1.10 * 104  rad/s)
= 0.0011

vn = A
keq

m
= A

6.14  N/m
50  mg

= 1.10 * 104  rad/s

keq =

1

1
9.08  N/m

+

1
19.11  N/m

= 6.13  N/m

kc =

AE
L

=

p(0.1mm)2(73 * 109   N/m2)

120  mm
= 19.11  N/m

3.12 CHAPTER SUMMARY

3.12.1 IMPORTANT CONCEPTS
The following refer to free vibrations of a linear SDOF system.

• The natural frequency of a one degree-of-freedom system is the frequency at which
undamped free vibrations occur.

• The expression for the natural frequency is determined from the differential equation of
motion. It is a function of the stiffness and inertia properties of the system.

• The damping ratio is a measure of the magnitude of the damping force on the system.
If the damping ratio is between zero and one, the system is underdamped. If the damp-
ing ratio is exactly equal to one, the system is critically damped. If the damping ratio is
greater than one, the system is overdamped.

• The free undamped vibrations of a one degree-of-freedom system are cyclic and periodic.
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• A system with undamped free vibrations undergoes simple harmonic motion. For a
linear system, the period of motion is independent of the initial conditions. The fre-
quency of the motion is the natural frequency of the system.

• An underdamped system undergoes cyclic motion that is not periodic.
• The amplitude of an underdamped system is exponentially decaying.
• The mechanical energy present in an underdamped system at the end of a cycle is a con-

stant fraction of the mechanical energy at the beginning of the cycle. The fraction is
dependent upon the damping ratio.

• The logarithmic decrement, which is a measure of the natural logarithm of the ratio of
amplitudes on successive cycles, can be used to determine the damping ratio.

• When a system is critically damped, the damping force is just sufficient to dissipate all
of the initial energy within one cycle of motion.

• The response of a critically damped system is exponentially decaying. The response
overshoots the equilibrium position if the initial conditions are of opposite signs and the
initial kinetic energy is larger than the initial potential energy.

• The response of an overdamped system decays exponentially.
• Given the same initial conditions, a critically damped system returns to within a frac-

tion of equilibrium quicker than an overdamped system.
• Coulomb damping results from two surfaces moving relative to one another.
• A system subject to Coulomb damping has the same natural frequency as an undamped

system.
• Coulomb damped systems have a constant decrease in amplitude per cycle of motion.
• Motion eventually ceases for a system with Coulomb damping with a permanent dis-

placement from equilibrium.
• Hysteretic damping is the loss of energy experienced by engineering materials due to

bonds breaking between atoms and imperfections in the material.
• The energy loss per cycle of motion for a system with hysteretic damping is proportional

to the square of the amplitude at the beginning of the cycle and is independent of the
frequency of motion.

• The ratio of amplitudes on successive cycles is constant for hysteretic damping, leading
to an equivalent viscous-damping model.

• An equivalent viscous-damping coefficient can be calculated for any form of damping
by equating the energy dissipated by viscous damping over one cycle of motion to the
energy dissipated by the actual damping over one cycle of motion, assuming the motion
is harmonic.

3.12.2 IMPORTANT EQUATIONS

Natural frequency of SDOF system

(3.5)vn = A
keq

meq
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Damping ratio of SDOF system

(3.6)

Standard form of differential equation for free vibrations of a linear SDOF system with
generalized coordinate x

(3.7)

Roots of characteristic equation

(3.13)

Free response of undamped system

(3.19)

(3.22)

(3.23)

Free response of underdamped system

(3.29)

(3.30)

(3.31)

Damped natural frequency

(3.32)

Damped period

(3.33)

Logarithmic decrement

(3.40)

Logarithmic decrement over n cycles

(3.43)

Response of critically damped system

(3.48)x (t ) = e -vnt  3x0 + (x# 0 + vnx0)t4

d =

1
n

  ln  a x(t)

x(t + nTd)
b

d = lna x(t)

x(t + Td)
b =

2pz

21 - z2

Td =

2p
vd

vd = vn21 - z2

fd = tan-1a vd  
x0

x# 0 + zvnx0

b

A = Ax 2
0 + a x# 0 + zvnx0

vd
b2

x (t ) = Ae -zvnt sin (vd 
t + fd 

)

f = tan-1avnx0

x# 0
b

A = Ax 2
0 + a x# 0

vn
b2

x (t ) = A  sin (vnt + f)

a = vn(-z � 2z2
- 1)

x
$

+ 2zvnx
#

+ v2
nx = 0

z =

ceq

22keqmeq
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Response of overdamped system

(3.53)

Differential equation for mass sliding on a surface with friction

(3.55)

Motion ceases due to Coulomb damping on the nth cycle

(3.68)

Change in amplitude per cycle of motion for system with Coulomb damping

(3.70)

Energy loss per cycle due to hysteretic damping

(3.71)

Equivalent viscous damping ratio for hysteretic damping

(3.78)

Equivalent viscous damping coefficient for any form of damping

(3.82)

PROBLEMS

SHORT ANSWER PROBLEMS
For Problems 3.1 through 3.15, indicate whether the statement presented is true or false.
If true, state why. If false, rewrite the statement to make it true.

3.1 The period of free vibration of a linear system is independent of initial conditions.
3.2 The natural frequency determined directly from the differential equation of

motion has units of Hertz.
3.3 A system with a natural frequency of 10 rad/s has a shorter period than a system

of natural frequency 100 rad/s.
3.4 The free vibrations of an overdamped SDOF system are cyclic.
3.5 An undamped SDOF system has free vibrations which are periodic.
3.6 A system with a damping ratio of 1.2 is overdamped.
3.7 The energy lost per cycle of motion for hysteretic damping is independent of

the amplitude of motion but depends upon the square of the frequency.

ceq =

¢E
pvX 2

z =

h
2

¢E = pkhX 2

¢A =

4Ft

meqv
2
n

n 7

k d

4mmg
-

1
4

mx
$

+ kx = e -mmg   x# 7 0
   mmg   x# 7 0

+ c -

x# 0
vn

+ x0(-z + 2z2
- 1) de -vn  2z2

- 1 t f

x (t ) =

e -zvnt

22z2
- 1
e c x

#

0

vn

+ x01z + 2z2
- 12 de vn  2z2

- 1 t
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3.8 The energy lost per cycle of motion for underdamped free vibrations is a
constant fraction of the energy present at the beginning of the cycle.

3.9 Motion eventually ceases due to viscous damping for a system with
underdamped free vibrations.

3.10 A system that has viscous damping with a damping coefficient such that it is
overdamped is governed by two differential equations: one for positive velocity
and another for negative velocity.

3.11 There is a permanent displacement from equilibrium when motion ceases for a
system with Coulomb damping.

3.12 The period, measured in s, is the reciprocal of the natural frequency, measured
in rad/s.

3.13 The differential equation governing the free vibrations of a SDOF system with
viscous damping as the only form of friction is a second-order homogeneous
differential equation.

3.14 The damping ratio for a SDOF system with viscous damping is always positive.
3.15 The amplitude of an undamped SDOF system is time dependent.

Problems 3.16 through 3.35 require a short answer.

3.16 Consider the differential equation

Define in words and in terms of system parameters m, c, and k for (a) n and (b) .

3.17 A critically damped system has a natural frequency of 10 rad/s. Which of the
following sets of initial conditions leads to the system overshooting the
equilibrium position?

(a) (b)
(c) (d)
(e)

3.18 Systems with a mass of 1 kg and stiffness of 100 N/m are given an initial
displacement of 1 mm and released form rest. Match the plot of system
displacement, shown in Figure SP3.18 on the next page, with the system that is
(a) undamped, (b) underdamped, (c) critically damped, and (d) overdamped.

3.19 List four differences between the free vibrations of an underdamped system and
a system with Coulomb damping.

3.20 An underdamped system is given an initial displacement and released from rest.
The amplitudes of motion on successive cyclers form a (an) ____________ series.

3.21 A system with Coulomb damping is given an initial displacement and released
from rest. The amplitudes of motion on successive cycles form a (an)
____________ series.

3.22 Identify the following equation and every parameter

3.23 Explain the concept of hysteresis? What is the area under a hysteresis cycle?
3.24 Why can’t the concept of logarithmic decrement be used to measure viscous

damping ratios greater than or equal to one.

x (t ) = A  sin(vn t + f)

x0 = mm, x# 0 = -0.2  m/s
x0 = 1  mm, x# 0 = -1  m/sx0 = 1  mm, x# 0 = 1  m/s
x0 = 0  mm, x# 0 = 1  m/sx0 = 1  mm, x# 0 = 0  m/s

zv

x
$

+ 2zvnx
#

+ v2
nx = 0
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FIGURE SP3.18

3.25 When given the same initial conditions a system that is critically damped
returns to equilibrium faster than the same system that is overdamped. Why?

3.26 Two systems have the same stiffness and viscous damping coefficient, but one
has an equivalent mass of 2 kg, the other has an equivalent mass of 3 kg. Which
system has a higher damping ratio. Why?
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FIGURE SP3.18
(Continued)

3.27 A system with viscous damping has a (longer or shorter) period of free vibration
than the corresponding undamped system. Why?

3.28 What are the two initial conditions which must be formulated for a SDOF
system?

3.29 What are the initial conditions for a mass-spring-viscous damper system that is
released from rest with an initial displacement .d
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3.30 What are the initial conditions for a mass-spring-viscous damper system subject
to an impulse of magnitude I when in equilibrium?

3.31 What is meant by the term total energy?
3.32 Describe the process by which aerodynamic drag is modeled by viscous

damping with an equivalent damping coefficient.
3.33 A pendulum consists of a particle of mass m along a massless rod that is pinned

at the upper end of the rod. To lengthen the period of the pendulum should the
mass be moved closer to the pin support of farther away?

3.34 A mass m is attached to a spring of stiffness k1 given an initial displacement and
released to slide on a surface. The number of cycles executed is recorded. The same
mass m is attached to a spring of stiffness k2 k1. Do you predict that the number
of cycles executed by the mass will increase, remain the same, or decrease? Why?

3.35 A mass m is attached to a spring of stiffness k1 and viscous damper of damping
coefficient c1 in parallel. The mass is given an initial displacement and released.
The natural frequency of vibration is observed. The same mass is attached to
another spring of stiffness k2 k1 and viscous damper of damping coefficient
c2 c1 in parallel. When given the same initial displacement, the motion is still
cyclic but with a smaller frequency. Explain.

Short calculations are required for Problems 3.36 through 3.48.

3.36 The free vibrations of a system are governed by the differential equation

with initial conditions and . Calculate or specify the following.

(a) The natural frequency, n
(b) The damping ratio, 
(c) Whether the system is undamped, underdamped, critically damped, or

overdamped 
(d) The undamped period, T
(e) The frequency in Hz, f
(f ) The damped natural frequency (if appropriate), d
(g) The logarithmic decrement (if appropriate), 
(h) The amplitude, A
(i) The phase between the response and a pure sinusoid (if appropriate), 
(j) The free response of the system

3.37 Repeat Short Problem 3.36 for the differential equation

subject to x(0) � 0.001 m and .

3.38 The free vibrations of a system are governed by

with x(0) � 0.02 m and . Calculate or specify the following.x#  (0) = 0

2x
$

+ 1800x = e3       x# 6 0
-  3    x# 7 0

x#(0) = 3  m/s

2x
$

+ 600x# + 9800x = 0

f

d

v

z

v

x#  (0) = 3  m/sx(0) = 0.001  m

2x
$

+ 40x# + 1800x = 0

7

7

7
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(a) The period of motion
(b) The change in amplitude per cycle of motion
(c) The permanent displacement when motion ceases
(d) The number of cycles before motion ceases

3.39–43 What is the natural frequency of the system shown when a SDOF model is
used?

k k
m

x

FIGURE SP3.39
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L x
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m
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x
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E, I

m

L
2

L
2

x

FIGURE SP3.43

3.44 A mass of 12 kg is attached to two springs each of stiffness 4000 N/m and
mounted in parallel. What is the natural frequency of the system?

3.45 A mass of 30 g is attached to a spring of stiffness 150 N/m in parallel with a
viscous damper. What is the damping coefficient such that the system is
critically damped?

3.46 When an engine with a mass of 400 kg is mounted on an elastic foundation,
the foundation deflects 5 mm. What is the natural frequency of the system?

3.47 A 2 kg mass is connected to a spring with a stiffness of 1000 N/m. When given
an initial displacement of 25 mm, the area under the hysteresis curve of the
spring is measured as 0.06 N m. What is the equivalent viscous damping ratio
of the motion?

3.48 What is the response of a system with a equivalent mass of 0.5 kg and a natural
frequency of 100 rad/s that has a hysteretic damping coefficient of 0.06 to an
initial velocity of 2 m/s?

3.49 Match the quantity with the appropriate units (units may used more than once,
some units may not be used).

#
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(a) The natural frequency, n (i) N m
(b) The damping ratio, (ii) rad
(c) Damped natural frequency, d (iii) None
(d) Logarithmic decrement, (iv) rad/s
(e) Phase angle, (v) Hz
(f ) Change in amplitude per cycle, A (vi) m
(g) Energy loss under a hysteresis loop, E (vii) N s
(h) Hysteretic damping coefficient, h (viii) m/s
(i) Initial angular velocity of torsional system, (0) (ix) N/s

CHAPTER PROBLEMS
3.1 The mass of a pendulum bob of a cuckoo clock is 30 g. How far from the pin

support should the bob be placed such that its period is 1.0 s?
3.2 A ceiling fan assembly of five blades is driven by a motor. The assembly is

attached to the ceiling by a thin shaft fixed at the ceiling. What is the natural
frequency of torsional oscillations of the fan of Figure P3.2.

u
#

#
¢

¢

f

d

v

z

#v

3.3 The cylindrical container of Figure P3.3 has a mass of 25 kg and floats stably
on the surface of an unknown fluid. When disturbed, the period of free
oscillations is measured as 0.2 s. What is the specific gravity of the liquid?

3.4 When the 5.1 kg connecting rod of Figure P3.4 is placed in the position
shown, the spring deflects 0.5 mm. When the end of the rod is displaced and

G = 80 × 109 N/m2

L = 0.25 m
r = 6 mm

Motor: I = 10 kg · m2

Each blade:
I = 11 kg · m2

m = 0.4 kg
r = 0.4 m

Shaft:

FIGURE P3.2

50 cm

150 cm25 kg

FIGURE P3.3

20 cm

k = 3 × 104 N/m

FIGURE P3.4
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released, the resulting period of oscillation is observed as 0.15 s. Determine the
location of the center of mass of the connecting rod and the centroidal mass
moment of inertia of the rod.

3.5 When a 2000 lb vehicle is empty, the static deflection of its suspension system
is measured as 0.8 in. What is the natural frequency of the vehicle when it is
carrying 700 lb of passengers and cargo?

3.6 A 400 kg machine is placed at the midspan of a 3.2-m simply supported steel
(E � 200 � 109 N/m2) beam. The machine is observed to vibrate with a
natural frequency of 9.3 Hz. What is the moment of inertia of the beam’s cross
section about its neutral axis?

3.7 A one degree-of-freedom model of a 9-m steel flagpole ( � 7400 kg/m3,r

E = 100 × 109 N/m2
2 ft

1 in.

6 ft
4 ft

FIGURE P3.10

3.11 A diver is able to slightly adjust the location of the intermediate support on the
diving board in Figure P3.10. What is the range of natural frequencies a 140 lb
diver can attain if the distance between the supports can be adjusted between 4
and 6.5 ft?

3.12 A 60 kg drum of waste material is being hoisted by an overhead crane and
winch system as illustrated in Figure P3.12. The system is modeled as a simply
supported beam to which the cable is attached. The drum of waste material is
attached to the end of the cable. When the length of the cable is 6 m, the

E � 200 � 109 N/m2, G � 80 � 109 N/m2) is that of a beam fixed at one end
and free at one end. The flagpole has an inner diameter of 4 cm and an outer
diameter of 5 cm.

(a) Approximate the natural frequency of transverse vibration.
(b) Approximate the natural frequency of torsional oscillation.

3.8 A 250 kg compressor is to be placed at the end of a 2.5-m fixed-free steel
(E � 200 � 109 N/m2) beam. Specify the allowable moment of inertia of the
beam’s cross section about its neutral axis such that the natural frequency of the
machine is outside the range of 100 to 130 Hz.

3.9 A 50 kg pump is to be placed at the midspan of a 2.8-m simply supported steel
(E � 200 � 109 N/m2) beam. The beam is of rectangular cross section of width
25 cm. What are the allowable values of the cross-sectional height such that the
natural frequency is outside the range of 50 to 75 Hz?

3.10 A diving board is modeled as a simply supported beam with an overhang. What
is the natural frequency of a 140-lb diver at the end of the diving board of
Figure P3.10
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natural period of the system is measured as 0.3 s. What is the mass of the waste
material?

3.13 A 200-kg package is being hoisted by a 120-mm-diameter steel cable
(E � 200 � 109 N/m2) at a constant velocity v. What is the largest value of v
such that the cable’s elastic strength of 560 � 106 N/m2 is not exceeded if the
hoisting mechanism suddenly fails when the cable has a length of 10 m.

3.14 Determine the natural frequency of the system of Figure P2.43.
3.15 Determine the natural frequency and damping ratio of the system of Figure P2.45.
3.16 Determine the natural frequency and damping ratio for the system of

Figure P2.47.
3.17 Determine the natural frequency and damping ratio for the system of

Figure P2.49.
3.18 Determine the natural frequency and damping ratio for the system of Figure P2.53.
3.19–23 The inertia of the elastic elements is negligible. What is the natural frequency of

the system assuming a SDOF model is used? See Figures P3.19 through P3.23.

kb

kc

Waste

L = 3 m

Beam: E = 200 × 109 N/m2

 I = 2.6 × 10–4 m4

Cable: E = 200 × 109 N/m2

 r = 8 cm

FIGURE P3.12

0.8 m

150 kg

E = 210 × 109 N/m2

I = 1.6 × 10–5 m4

x

FIGURE P3.19

E = 210 × 109 N/m2

A = 2.1 × 10–4 m2

L = 0.65 m

E = 180 × 109 N/m2

A = 2.1 × 10–4 m2

L = 0.35 m

165 kg

x

FIGURE P3.20

E = 180 × 109 N/m2

I = 4.6 × 10–4 m4

0.6 m

x

65 kg

0.4 m

FIGURE P3.21



Free Vibrations of SDOF Systems 197

E = 200 × 109 N/m2

I = 4.23 × 10–6 m4
8 × 104 N/m

5 × 104 N/m1.8 m

x

200 kg

FIGURE P3.22

G = 60 × 109 N/m2

r = 8 mm

G = 80 × 109 N/m2

r = 6 mm

θ

8.3 kg · m2

60 cm 40 cm

FIGURE P3.23

3.24 The center of the disk of Figure P3.24 is displaced a distance from its
equilibrium position and released. Determine x(t) if the disk rolls without slip.

d

k Thin disk
of mass m,

no slip

r

x

FIGURE P3.24

3.25 The coefficient of friction between the disk and the surface in Figure P3.24 is .
What is the largest initial velocity of the mass center that can be imparted such
that the disk rolls without slip for its entire motion?

3.26–3.31 For the systems shown in Figures P3.26 through P3.31.

m

x(t)

x(0) = 3 cm
x(0) = 0

3 × 104 N/m
12.5 kg

4 × 104 N/m

750 N · s/m

FIGURE P3.26

3.2 × 104 N/m

θ 30 cm

θ (0) = 0
θ̇ (0) = 2.5 rad/s

0.3 kg · m2

150 N · s/m

5 kg 40 kg

10 cm

FIGURE P3.27
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θ

G = 60 × 109 N/m2

J = 2.5 × 10–7 m4

MO = 280 N · m applied and removed

MO

Thin disk
m = 22.5 kg

1 × 105 N/m

60

40 cm

10 kg

1.3 m N · m · s
rad

FIGURE P3.28

100 N · s/m

m = 1.5 kg
L = 0.4 m

50 N/m

L
4

3L
4

θ (0) = 0
θ̇ (0) = 1.2 rad/s

θ
FIGURE P3.29

3000 N/m

200 N · s/m x

2 kg

9 kg

50 N

50 N force
applied and

released
9000 N/m

0.2 m

0.3 m

FIGURE P3.30

150 kg

1000 N . s/m

Vehicle encounters
bump of height 1 cm.

v = 60 m/s

15,000 N/m

x

FIGURE P3.31
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(a) Determine the damping ratio
(b) State whether the system is underdamped, critically damped, or

overdamped
(c) Determine x(t) or (t) for the given initial conditions

3.32 The amplitude of vibration of the system of Figure P3.32 decays to half of its
initial value in 11 cycles with a period of 0.3 s. Determine the spring stiffness
and the viscous damping coefficient.

u

3.33 The damping ratio of the system of Figure P3.33 is 0.3. How long will it take for
the amplitude of free oscillation to be reduced to 2 percent of its initial value?

I = 2.4 kg · m2

m = 5 kg

R1 = 20 cm

R2 = 40 cm

I

k

m

c

R2

R1

FIGURE P3.32

k

c

k = 2 × 103 N/m

m = 4.2 kg

60 cm40 cm
10 cm

FIGURE P3.33

3.34 When a 40-kg machine is placed on an elastic foundation, its free vibrations
appear to decay exponentially with a frequency of 91.7 rad/s. When a 60-kg
machine is placed on the same foundation, the frequency of the exponentially
decaying oscillations is 75.5 rad/s. Determine the equivalent stiffness and
equivalent viscous damping coefficient for the foundation.
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3.35 A suspension system is being designed for a 1300-kg vehicle. When the vehicle
is empty, its static deflection is measured as 2.5 mm. It is estimated that the
largest cargo carried by the vehicle will be 1000 kg. What is the minimum value
of the damping coefficient such that the vehicle will be subject to no more than
5 percent overshoot, whether it is empty or fully loaded.

3.36 During operation a 500-kg press machine is subject to an impulse of magnitude
5000 N s. The machine is mounted on an elastic foundation that can be modeled
as a spring of stiffness 8 � 105 N/m in parallel with a viscous damper of damping
coefficient 6000 N s/m. What is the maximum displacement of the press after the
impulse is applied. Assume the press is at rest when the impulse is applied.

3.37 For the press of Chapter Problem 3.36, determine (a) the force transmitted to
the floor as a function of time, (b) the time at which the maximum transmitted
force occurs, and (c) the value of the maximum transmitted force.

3.38 Repeat Chapter Problem 3.37 if the system has the same mass and stiffness but
it is designed to be overdamped with a damping ratio of 1.3.

3.39 One end of the mercury filled U-tube manometer of Figure P3.39 is open to
the atmosphere while the other end is capped an under a pressure of 20 psig.
The cap is suddenly removed.

(a) Determine x(t) as the displacement of the mercury-air interface from the
column’s equilibrium position if the column is undamped.

(b) Determine x(t) if it is determined that the column of mercury has viscous
damping with a damping ratio of 0.1.

(c) Determine x(t) if it is observed that after 5 cycles of motion the amplitude
has decreased to one-third of its initial value.

#

#

Hg

Total length of mercury
column = 12 ftx

FIGURE P3.39

3.40 The disk of Figure P3.40 rolls without slip.
(a) What is the critical damping coefficient, cc, for the system?
(b) If c � cc 2, plot the response of the system when the center of the disk is

displaced 5 mm from equilibrium and released from rest.
(c) Repeat part (b) if c � 3cc 2.>

>

k = 4 × 103 N/m

Thin disk m = 1 kg

No slipc

40 cm

FIGURE P3.40

(d) Repeat part (b) if c � cc. 
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(e) If the coefficient of friction between the disk and surface is 0.15, is the no-
slip assumption still valid for the systems of parts (b), (c), and (d).

3.41 A recoil mechanism of a gun is designed as a spring and viscous damper in
parallel such that the system has critical damping. A 52-kg cannon has a
maximum recoil of 50 cm after firing. Specify the stiffness and damping
coefficient of the recoil mechanism such that the mechanism returns to within
5 mm of firing position within 0.5 s after firing.

3.42 The initial recoil velocity of a 1.4-kg gun is 2.5 m/s. Design a recoil mechanism
that is critically damped such that the mechanism returns to within 0.5 mm of
firing within 0.5 s after firing.

3.43 A railroad bumper is modeled as a linear spring in parallel with a viscous
damper. What is the damping coefficient of a bumper of stiffness 2 � 105 N/m
such that the system has a damping ratio of 1.15 when it is engaged by a
22,000-kg railroad car.

3.44 Plot the responses of the bumper of Chapter Problem 3.43 when it is engaged by
railroad cars traveling at 20 m/s when the mass of the railroad car is (a) 1500 kg,
(b) 22,000 kg, and (c) 30000 kg.

3.45 Reconsider the restroom door of Example 3.9. The man, instead of kicking the
door, pushes it so that it opens to 80 and then lets go. How long will it take
the door after he lets go to close to within 5 of being shut if it is designed 
(a) with critical damping and (b) with a damping ratio of 1.5?

3.46 A block of mass m is attached to a spring of stiffness k and slides on a
horizontal surface with a coefficient of friction . At some time t, the velocity is
zero and the block is displaced a distance from equilibrium. Use the principle
of work-energy to calculate the spring deflection at the next instant when the
velocity is zero. Can this result be generalized to determine the decrease in
amplitude between successive cycles?

3.47 Reconsider Example 3.11 using a work-energy analysis. That is, assume the
amplitude of the swing is at the end of an arbitrary cycle. Use the principle of
work-energy to determine the amplitude at the end of the next half-cycle.

3.48 The center of the thin disk of Figure P3.48 is displaced a distance and the
disk released. The coefficient of friction between the disk and the surface is .
The initial displacement is sufficient to cause the disk to roll and slip.

(a) Derive the differential equation governing the motion when the disk rolls and
slips.

(b) When the displacement of the mass center from equilibrium becomes small
enough, the disk rolls without slip. At what displacement does this occur?

m

d

u

d

m

°

°

rk

µ

Thin disk
of mass m

x

FIGURE P3.48
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(c) Derive the differential equation governing the motion when the disk rolls
without slip.

(d) What is the change in amplitude per cycle of motion?

3.49 A 10-kg block is attached to a spring of stiffness 3 � 104 N/m. The block slides
on a horizontal surface with a coefficient of friction of 0.2. The block is displaced
30 mm and released. How long will it take before the block returns to rest?

3.50 The block of Chapter Problem 3.49 is displaced 30 mm and released. What is
the range of values of the coefficient of friction such that the block comes to
rest during the 14th cycle?

3.51 A 2.2-kg block is attached to a spring of stiffness 1000 N/m and slides on a
surface that makes an angle of 7 with the horizontal. When displaced from
equilibrium and released, the decrease in amplitude per cycle of motion is
observed to be 2 mm. Determine the coefficient of friction.

3.52 A block of mass m is attached to a spring of stiffness k and viscous damper of
damping coefficient c and slides on a horizontal surface with a coefficient of
friction . Let x(t) represent the displacement of the block from equilibrium.

(a) Derive the differential equation governing x(t).
(b) Solve the equation and sketch the response over two periods of motion.

3.53 A connecting rod is fitted around a cylinder with a connecting rod between the
cylinder and bearing. The coefficient of friction between the cylinder and
bearing is 0.08. If the rod is rotated 12° counterclockwise and then released,
how many cycles of motion will it execute before it comes to rest? The ratio of
the diameter of the cylinder to the distance to the center of mass of the
connecting rod from the center of the cylinder is 0.01.

3.54 A one-degree-of-freedom structure has a mass of 65 kg and a stiffness of
238 N/m. After 10 cycles of motion the amplitude of free vibrations is
decreased by 75 percent. Calculate the hysteretic damping coefficient and the
total energy lost during the first 10 cycles if the initial amplitude is 20 mm.

3.55 The end of a steel cantilever beam (E � 210 � 109 N/m2) of I � 1.5 � 10–4 m4

is given an initial amplitude of 4.5 mm. After 20 cycles of motion the amplitude
is observed as 3.7 mm. Determine the hysteretic damping coefficient and the
equivalent viscous damping ratio for the beam.

3.56 A 500-kg press is placed at the midspan of a simply supported beam of length
3 m, elastic modulus 200 � 109 N/m2, and cross-sectional moment of inertia
1.83 � 10–5 m4. It is observed that free vibrations of the beam decay to half of
the initial amplitude in 35 cycles. Determine the response of the press, x(t), if it
is subject to an impulse of magnitude 10,000 N s.

3.58 Use the theory of Section 3.9 to derive the equivalent viscous damping
coefficient for Coulomb damping. Compare the response of a one-degree-of-
freedom system of natural frequency 35 rad/s and friction coefficient 0.12 using
the exact theory to that obtained using the approximate theory with an
equivalent viscous damping coefficient.

3.59 A 0.5-kg sphere is attached to a spring of stiffness 6000 N. The sphere is given
an initial displacement of 8 mm from its equilibrium position and released. If
aerodynamic drag is the only source of friction, how many cycles will the
system execute before the amplitude is reduced to 1 mm?

#

m

°
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3.60 A one-degree-of-freedom model of a suspension system is shown in Figure P3.60(a).
For this model the mass of the vehicle is much greater than the axle mass, but
the tire has characteristics which should be included in the analysis. In the
model of Figure P3.60(b), the tire is assumed to be elastic with a stiffness kt.
The tire stiffness acts in series with the spring and viscous damper of the
suspension system.
(a) Derive a third-order differential equation governing the displacement of the

vehicle from the system’s equilibrium position.
(b) Solve the differential equation to determine the response of the system

when the wheel encounters a pothole of depth h.

m

cks

kt

m

cks

kt

(a) (b)

FIGURE P3.60

m

csks

ct

(a)

0.6
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ζ = = 0.1

FIGURE P3.61

3.61 A one-degree-of-freedom model of a suspension system is shown in 
Figure P3.61(a). Consider a model in which the tire is modeled by a viscous 
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damper of damping coefficient ct and is placed in series with the spring 
and viscous damper modeling the suspension system, as illustrated in
Figure P3.61(a).

(a) Derive a third-order differential equation governing the displacement of the
vehicle from the system’s equilibrium position.

(b) A plot of the suspension system when the wheel encounters a pothole is
given in Figure P3.61(b). The plot is made for a suspension system that is
designed to have a damping ratio of 0.1. Use this information to find ct.



C h a p t e r 4

HARMONIC EXCITATION
OF SDOF SYSTEMS

4.1 INTRODUCTION
Forced vibrations of a single degree-of-freedom (SDOF) system occur when work is being
done on the system while the vibrations occur. Examples of forced vibration include the
ground motion during an earthquake, the motion caused by unbalanced reciprocating
machinery, or the ground motion imparted to a vehicle as its wheel traverses the road con-
tour. Figure 4.1 illustrates an equivalent systems model for the forced vibrations of a SDOF
system when a linear displacement is chosen as the generalized coordinate. The governing
differential equation is

(4.1)

Although, the derivations that follow use a linear displacement as a generalized coordinate
they are also valid if an angular displacement is used as a generalized coordinate. The form
of the differential equation, Equation (4.1) is used as a model equation.

Dividing Equation (4.1) by meq leads to

(4.2)

Equation (4.2) is the standard form of the differential equation governing linear forced
vibrations of a SDOF system with viscous damping.

x$ + 2zvnx
#

+ v2
nx =

1
meq

Feq(t )

meqx
$

+ ceqx
#

+ keqx = Feq (t )
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The general solution of Equation (4.2) is

(4.3)

where xh(t) is the homogeneous solution, the solution obtained if Feq(t) � 0, and xp(t) the
particular solution, a solution that is specific to Feq(t). The homogeneous solution is in
terms of two constants of integration. However the initial conditions are not imposed until
the general solution of Equation (4.3) is developed. For an underdamped system

(4.4)

Many ways exist to solve the particular solution. These include the method of undeter-
mined coefficients, variation of parameters, annihilator methods, Laplace transform meth-
ods, and numerical methods. 

This chapter is concerned with the solution of Equation (4.2) subject to periodic exci-
tations. An excitation is periodic of period T if

(4.5)

for all t. Figure 4.2 periodic shows examples of periodic excitations. A single-frequency
periodic excitation is defined as

(4.6)

where F0 is the amplitude of the excitation, � is its frequency such that and �
is its phase. Note that � is independent of �n, the natural frequency which is a function of 
the stiffness and mass properties of the system. They are independent, but the frequencies
may coincide.

The steady-state response for a periodic excitation is defined as

(4.7)

which for systems with viscous damping becomes

(4.8)x ss � lim
t  : � xp(t )

x ss � lim
t : �

x (t )  = lim
t : �
3xh(t) + xp(t)4

v =
2p
T

Feq(t ) = F0 sin (v t + c)

Feq(t + T  ) = Feq(t )

xh(t ) = e -zvnt  3C1 cos (vd 
t ) + C1 

sin (vd 
t )4

x (t ) = xh(t ) + xp(t )

meq Feq(t)

keq

ceq

x FIGURE 4.1
SDOF model for a linear system with forcing.

T

(a)

T

(b) (c)

T

FIGURE 4.2
Examples of periodic excitations (a) a pure sinusoid; (b) a periodic triangular wave; and (c) a periodic
square wave.
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Beginning with Section 4.3, the “steady-state” will be dropped from steady-state response, and
it will be understood that a response refers to a steady-state response.

For an undamped system, the limit of the homogenous solution as t approaches infin-
ity is not zero. The homogeneous response is important if the frequency of excitation coin-
cides or is close to the natural frequency. Otherwise it is assumed that some form of
damping really occurs and the free response does decay leaving only the forced response as
the long-term response.

When the system is undamped and the frequency of the excitation coincides with the
natural frequency a condition of resonance exists. When the system is undamped and the
excitation frequency is close, but not equal to, the natural frequency a phenomena called
beating occurs.

When the system is undamped with the excitation frequency far enough away from the
natural frequency or the system has viscous damping the particular solution of Equation (4.2) 
subject to the excitation of Equation (4.6) is determined in terms of terms of system
parameters. The solution is characterized in term of a steady-state amplitude and a steady-
state phase. The relations for these terms are non-dimensionalized resulting in a non-
dimensional magnification factor as a function of the damping ratio and the
non-dimensional frequency ratio. The phase is written as a function of the frequency ratio
and the damping ratio. The concept of frequency response involves studying the behavior
of these functions with the frequency ratio for different values of the damping ratio. The
frequency response is studied from the equations defining the functions and their graphs.

A special case of a frequency squared excitation, when the amplitude of excitation is pro-
portional to the square of its frequency, is considered. A new non-dimensional function repre-
senting the frequency response of such systems is introduced. The general theory is applied to
a variety of physical problems including vibrations of reciprocating machines with an unbal-
anced rotating component and vibrations induced by vortex shedding from a circular cylinder.

Two important quantities in studying the response of a system due to harmonic
motion of its base are the absolute acceleration of the system and the displacement of the
system relative to its base. The latter is shown to be an application of the theory of fre-
quency squared excitations while the former is an application of vibration isolation theory.

Vibration isolation is the insertion of an elastic member between an object, say a
machine, and its foundation to protect either the foundation from large forces generated
during operation of the machine or to protect the machine from large accelerations gener-
ated through motion of the foundation. A suspension system provides vibration isolation
to a vehicle as it protects the vehicle from the accelerations generated by the wheels.
Vibration isolation theory is developed for a SDOF system subject to harmonic input.

A Fourier series is a representation of a periodic function by an infinite series of sine
and cosine terms. The series converges to the periodic function pointwise at every point
where function is continuous. The Fourier series representation and the method of linear
superposition are used to solve for the steady-state response of a system due to a general
periodic excitation.

Seismic vibration measurement instruments use the vibrations of a seismic mass to meas-
ure the vibrations of a body. Because the seismic mass is attached to the instrument which is
rigidly attached to the body whose vibrations are being measured the vibrations of the seis-
mic mass relative to the body is actually measured. A seismometer measures this relative
motion and requires a large frequency ratio for accuracy. An accelerometer converts the
output so that it measures the acceleration and requires a small frequency ratio for accuracy.
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The response of a system with Coulomb damping due to harmonic forcing is compli-
cated by the possibility of stick-slip in which the motion ceases during a period when the
spring force and the input force are insufficient to overcome the friction force. This makes
the response of the system highly nonlinear. It is possible under certain assumptions to
assume a steady-state response at the same frequency as the input and use the methods of
Chapter 3 to determine an equivalent viscous damping coefficient. The frequency response
is then studied. The same method is used to approximate the frequency response for a
system with hysteretic damping.

4.2 FORCED RESPONSE OF AN UNDAMPED SYSTEM
DUE TO A SINGLE-FREQUENCY EXCITATION
The differential equation for undamped forced vibrations of a SDOF system subject to a
single-frequency harmonic excitation of the form of Equation (4.2) is

(4.9)

The method of undermined coefficients is used to find the particular solution of
Equation (4.9). Assume a solution of

(4.10)

Substitution of Equation (4.10) into Equation (4.9) leads to

(4.11)

The functions cos (�t � �) and sin (�t � �) are linearly independent. Thus, Equation (4.11)
implies that

(4.12)

and

(4.13)

if � � �n, Equation (4.12) implies U � 0 and then from Equation (4.13)

(4.14)

The particular solution for � � �n becomes

(4.15)

or alternately,

(4.16)xp(t ) = 2 F0

meq(v
2
n - v2)

2  sin (vt + c - f)

xp(t ) =

F0

meq(v
2
n - v2)

 sin (vt + c)

V =

F0

meq(v
2
n - v2)

(v2
n - v2)V =

F0

meq

(v2
n - v2)U = 0

(v2
n - v2) U cos (vt + c) + (v2

n - v2) V sin (vt + c) =

F0

meq
 sin (vt + c)

xp(t ) = U cos (vt + c) + V sin (vt + c)

x
$

+ v2
nx =

F0

meq
 sin (vt + c)
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where the amplitude of the particular solution is positive and

(4.17)

The response is in phase with the excitation if �n � � and 180 degrees out of phase if �n � �.
The general solution is formed by adding the homogeneous solution to the particular

solution. Then the initial conditions are applied yielding

(4.18)

The response, plotted in Figure 4.3, is the sum of two trigonometric terms of different
frequencies.

The case when � � �n is special. The nonhomogeneous term in Equation (4.9) and
the homogeneous solution are not linearly independent. Thus, when the method of undeter-
mined coefficients is used to determine the particular solution, Equation (4.12) is identi-
cally satisfied and Equation (4.13) cannot be satisfied unless V � �. A particular solution
is assumed in this case as

(4.19)

Substitution of Equation (4.19) in Equation (4.9) leads to

(4.20)xp(t ) = -

F0

2meqvn

t cos  (vnt + c)

xp(t ) = Ut sin (vnt + c) + Vt cos (vnt + c)

+ 2 F0

meq(v
2
n - v2)

2  sin (vt + c - f)

x (t ) = cx0 -

F0 sin c

meq(v
2
n - v2)

d  cos (vnt ) +

1
vn

cx# 0 -

F0v cos c

meq(v
2
n - v2)

d  sin (vnt )

f = e 0 vn 7 v

p vn 6 v

0x(
t)

t

2π
ωn

2π

Homogeneous solution
Particular solution
Total solution

ω

FIGURE 4.3
Response of an undamped
SDOF system when � � �n.
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Application of initial conditions to the sum of the homogeneous and particular solution
yields

(4.21)

The response of a system in for which the excitation frequency equals the natural fre-
quency is illustrated in Figure 4.4. Since the amplitude of the response is proportional to t
it grows without bound producing a condition called resonance. The resonance leads to an
amplitude increase to a value where the assumptions used in modeling the physical system
are no longer valid. For example in a system with a helical coil spring the proportional limit
of the spring’s material is exceeded as the amplitude increases. After this time the motion
is governed by a nonlinear differential equation.

Resonance is a dangerous condition in a mechanical or structural system and will pro-
duce unwanted large displacements or lead to failure. Resonant torsional oscillations were
partially the cause of the famous Tacoma Narrows Bridge disaster. It is suspected that the
frequency at which vortices were shed from the bridge co-incided with a torsional natural
frequency, leading to oscillations that grew without bound.

When vibrations of a conservative system are initiated, the motion is sustained at the
system’s natural frequency without additional energy input. Thus, when the frequency of exci-
tation is the same as the natural frequency, the work done by the external force is not needed to
sustain motion. The total energy increases because of the work input and leads to a continual
increase in amplitude. When the frequency of excitation is different from the natural frequency,
the work done by the external force is necessary to sustain motion at the excitation frequency.

When the excitation frequency is close, but not exactly equal, to the natural frequency,
an interesting phenomenon called beating occurs. Beating is a continuous buildup and
decrease of amplitude as shown in Figure 4.5. When � is very close to �n and 
and � � 0, Equation (4.18) can be written as

(4.22)x (t ) =

2F0

meq1v2
n - v22  sin c av - vn

2
b t d  cos c av + vn

2
b t d

x0=x# 0=  0

x (t ) = x0 cos (vnt ) + a x# 0
vn

+

F0 cos c

2meqv
2
n

b  sin (vnt ) -

F0

2meqvn

t cos (vnt + c)

0x(
t)

t

FIGURE 4.4
Undamped response when
the excitation frequency
equals the natural frequency.
The response grows without
bound producing resonance.
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Since |� � �n| is small the solution, Equation (4.22) is viewed as a cosine wave with
a slowly varying amplitude

(4.23)

where

(4.24)

is the frequency of the vibration and

(4.25)

is the frequency of the beating and

(4.26)

The amplitude reaches a maximum value of when for any
integer n � 1, 2, . . . 

et =
1
2(2n - 1)p

2F
0

meqeb

A(et) =

2F0

meqeb
 sin et

e =

1

2
 |v - vn |

b =

1
2

 (v + vn)

x (t ) = A(et ) cos bt

EXAMPLE 4 . 1
The equivalent mass of a SDOF of 10 kg. The system has a natural frequency of 80 rad/s.
The system is at rest in equilibrium when it is subject to a time dependent force. Determine
and plot the response of the system if it is subject to a force of (a) 10 sin(40t)N, 
(b) 10 sin(80t) N, and (c) 10 sin(82 t) N.

SOLUT ION
(a) The input is a single frequency excitation of frequency 40 r/s with . Since
the excitation frequency is not equal to or close to the natural frequency the response
of the system is given by Equation (4.18) which leads to

(a)

= 2.08 * 10-43 sin (40t) - 0.5 sin (80t)4  m
x (t ) =

(10 N)

(10  kg)3(80  rad/s)2
- (40  rad/s)24 c sin (40t) -

40  rad/s
80  rad/s

 sin (80t) d

c = 0

2π
|ω – ωn|

4π
ω + ωn

0x(
t)

t

FIGURE 4.5
Beating, which occurs in
an undamped system when
� � �n, is characterized by
a continual build-up and
decay of amplitude.
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Equation (a) is plotted in Figure 4.6(a). Two distinct frequencies are shown.
(b) The natural frequency is equal to the excitation frequency, hence resonance occurs.

The solution is for this case is given by Equation (4.21)

(b)

Equation (b) is shown in Figure 4.6(b). The unbounded growth in amplitude is evident.
(c) The excitation frequency is close to but not equal to the natural frequency. Thus,

Equation (4.22) is the applicable solution

(c)

Equation (c) is plotted in Figure 4.6(c) where the build up and decay of amplitude is obvious.
The period of vibration is

(d)

and the period of beating is

(e)Tb = 2p = 6.28  s

T =

2p

81
= 00776  s

= -6.17 * 10-3 sin t cos (81t )  m

* c sina82 rad/s - 80 rad/s
2

tb  cos a82 rad/s + 80 rad/s
2

tb d

x (t ) =  

2(10 N )

(10  kg)3(80 rad/s)2  
- (82 rad/s)24

= 6.25 * 10-330.125 sin (80t) - t cos (80t)4  m
x (t ) =

10  N
2(10  kg)(80  rad/s)

 c3 1
80  rad/s

 sin (80t ) - t cos (80t ) d

0

1

2

3

4

–1

–2

–3
0 0.5 1 1.5

t(s)

(a)

2 2.5 3

x(
m

)

×10–4

FIGURE 4.6
Response of system of Example 4.1 for (a) � � 40 rad/s, (b) � � 80 rad/s for which resonance occurs;
and (c) � � 82 rad/s for which beating occurs with a period of T � 6.28 s.
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4.3 FORCED RESPONSE OF A VISCOUSLY DAMPED
SYSTEM SUBJECT TO A SINGLE-FREQUENCY
HARMONIC EXCITATION
The standard form of the differential equation governing the motion of a viscously damped
SDOF system with the single-frequency harmonic excitation of Equation (4.9) is

(4.27)

A particular solution is assumed as

(4.28)

Substitution of Equation (4.28) into Equation (4.27) leads to the following simultaneous
equations for U and V

(4.29)

(4.30)

Solving these equations and substituting the results into Equation (4.28) leads to

(4.31)

Use of the trigonometric identity for the sine of the difference of angles and algebraic
manipulation leads to the following alternate form of Equation (4.31)

(4.32)

where (4.33)

and

(4.34)

X is the amplitude of the forced response and � is the phase angle between the response
and the excitation.

The amplitude and phase angle provide important information about the forced
response. Formulation of Equations (4.33) and (4.34) in nondimensional form allows
better qualitative interpretation of the response. It is noted from these equation that

(4.35)

and

(4.36)f = g (v, vn, z)

X = f  (F0, meq, v, vn, z)

f = tan-1 a 2zvvn

v2
n - v2 b

X =

F0

meq3(v2
n - v2)2

+ (2zvvn)
241>2

xp(t) = X sin (vt + c - f)

+  (v2
n - v2) sin (vt + c)4

xp(t ) =

F0

meq3(v2
n - v2)2

+ (2zvvn)
243-2zvvn cos (vt + c)

-2zvvnU + (v2
n - v2)V =

F0

meq

(v2
n - v2)U + 2zvvnV = 0

xp(t ) = U cos (vt + c) + V sin (vt + c)

x
$

+ 2zvn x# + v2
n 
x =

F0

meq
 sin (vt + c)
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The parameters use three basic dimensions: mass, length, and time. The Buckingham Pi
theorem (Section 1.5) implies that the formulation of the amplitude relationship is a func-
tion of 6 � 3 � 3 non-dimensional parameters. One is a dependent parameter involving
the amplitude and the other two independent parameters.

Multiplying Equation (4.33) by gives

(4.37)

where (4.38)

is the frequency ratio. The ratio

(4.39)

is dimensionless and is often called the amplitude ratio or magnification factor. The magni-
fication factor has the interpretation that it is the ratio of the amplitude of response to the
static deflection of a spring of stiffness k due to a constant force F0,

(4.40)

An alternate interpretation is that it is the maximum force developed in the spring of
a mass-spring and viscous-damper system, to the maximum of the
excitation. It represents how much the force is magnified by the system. The magnification
factor is really a force ratio, necessary for dynamic similitude

(4.41)

Thus the nondimensional form of Equation (4.33) is

(4.42)

The magnification factor as a function of frequency ratio for different values of the
damping ratio is shown in Figure 4.7. These curves are called frequency response curves.
The following are noted about Equation 4.42 and Figure 4.7.

1. M � 1 when r � 0. In this case the excitation force is a constant and the maximum
force developed in the spring of a mass-spring-dashpot system is equal to the value of
the exciting force.

2. . The amplitude of the forced response is very small for high-
frequency excitations.

3. For a given value of r, M decreases with increasing .

4. The magnification factor grows without bound only for � 0. For 
the magnification factor has a maximum for some value of .z

0 6  z … 1/22,z

z

limr :� M (r, z) =
1

r 2

M (r, z) =

1

2(1 - r 2)2
- (2zr )2

M =

Fmax

F0

Fmax = kX = m v2
nX

M =

X
�st

M =

meqv
2
nX

F0

r =

v

vn

meqv
2
nX

F0

=

1

3(1 - r 2)2
+ (2zr)241>2

meqv
2
n 
>F0
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5. For , the maximum value of the magnification factor occurs for a fre-
quency ratio of

(4.43)

Equation (4.43) is obtained from Equation (4.42) by determining the value of r such
that dM/dr � 0.

6. The corresponding maximum value of M is

(4.44)

7. For for r � 0. For there is no real value of r satis-
fying Equation (4.43). M(r, � ) does not achieve a maximum. It monotonically
decreases with increasing r and approaches zero as 1/r 2 for large r.

The nondimensinoal form of Equation (4.34) is

(4.45)

The phase angle from Equation (4.45) is plotted as a function of frequency ratio for differ-
ent values of the damping ratio in Figure 4.8. The following are noted from Equation 4.45
and Figure 4.8:

1. The forced response and the excitation force are in phase for � � 0. For � � 0, the
response and excitation are in phase only for r � 0.

2. If � � 0 and 0 � r � 1, then 0 � � � 	/2. The response lags the excitation.

f = tan-1a 2zr

1 - r 2 b

z Ú 1/22,z = 1/22,  dM /dr = 0

Mmax =

1

2z(1 - z2)1>2

rm = 21 - 2z2

0 6  z … 1/22

3

4

5

2

1

0
0

r

1 2 3

M

FIGURE 4.7
Magnification factor versus
frequency ratio for different
values of the damping ratio.
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3. If � � 0 and r � 1, then � � 	/2. If � � 0, then the excitation is a pure sine wave
while the steady-state response is a pure cosine wave. The excitation is in phase with
the velocity. The direction of the excitation is always the same as the direction of
motion.

4. If � � 0 and r � 1, then 	/2 � � � 	. The response leads the excitation as shown
in Figure 4.9.

5. If � � 0 and r W 1, then � � 	. The sign of the steady-state response is opposite that
of the excitation.

6. For � � 0, the response is in phase with the excitation for r � 1 and 	 radians (180�)
out of phase for r � 1.

Equation (4.42) and (4.45) constitute the frequency response of a SDOF system. The
frequency response is the variation of the steady-state amplitude and the steady-state phase.
The graphical representation of the frequency response is illustrated in Figures 4.7 and 4.8.
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0

r

1 1.5 30.5 2
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ζ = 0.70
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FIGURE 4.8
Phase angle versus frequency
ratio for different values of
the damping ratio.
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sin ω t
sin (ω t – φ),
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2

0

FIGURE 4.9
Response leads excitation
when r � 1.
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If the stiffness or damping ratio of a system is not known the frequency response may be
determined experimentally and used to identify the system parameters.

The steady-state response of an SDOF system due to a single-frequency harmonic
excitation is

(4.46)

where M(r, �) is given by Equation (4.42) and � is given by Equation (4.45). The theory
can handle the undamped response covered in Section 4.2 by taking � � 0 these equations
yielding

(4.47)

and

(4.48)

The value of the magnification factor M(1, 0) does not exist, as there is no steady-state in
the case of an undamped SDOF system under resonant conditions.

f = tan-1a 0
1 - r 2 b = b 0  r 6 1

p  r 7 1

M(r, 0) =

1

2(1 - r 2)2
=

1
| 1 - r 2 |

x (t ) =

F0

meqv
2
n

 M(r, z) sin (vt + c - f)

EXAMPLE 4 . 2
A moment, M0 sin �t, is applied to the end of the bar of Figure 4.10. Determine the max-
imum value of M0 such that the steady-state amplitude of angular oscillation does not
exceed 10� if � � 500 rpm, k � 7000 N/m, c � 650 N· s/m, L � 1.2 m, and the mass of
the bar is 15 kg.

c

Ox

Oy

L
2

c q̇L
4

m q̈L
4

1
12

m q̇ 2L
4

L
4

L
4

2k

(a)

(b)

External forces Effective forces

O

q

M0 sin w t

M0 sin w t

k

k

qL
4

2k q3L
4

mL2q̈ 

FIGURE 4.10
(a) System of Example 4.2. (b) FBDs at an arbitrary instant.
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SO LU T I ON
The differential equation obtained by summing moments about 0 using the free-body
diagrams of Figure 4.10(b) is

(a)

Using the notation of Equation (4.1)

(b)

The differential equation is rewritten in the form of Equation (4.2) by dividing by Ieq:

(c)

The preceding equation has a steady-state solution of the form

(d)

The natural frequency and damping ratio are obtained by comparison to Equation (4.2)

(e)

(f)

The frequency ratio is

(g)

The magnification factor is calculated from Equation (4.42)

(h)

The maximum allowable magnitude of the applied moment is calculated using
Equation (4.37),

(i)

Requiring leads to

(j)M0 6

(3.15 kg #  m2) (61.6 rad/s)2 (10°)(2p rad/360°)

2.64
= 790.2 N #

 m

™ 6 10°

Ieqv
2
n™

M0

= M(0.85, 0.15) = 2.64

M (0.85, 0.15) =

1

231 - (0.85)242 + 32(0.15)(0.85)42 = 2.64

r =

v

vn

=

(500 rev/min)(2p rad>rev)(1 min/60 s)

61.6 rad/s
= 0.85

z =

3

14
 

c
mvn

=

(3)(650 N # s/m)

(14)(15 kg) (61.6 rad/s)
= 0.15

vn = A
57
7

 

k
m

= A
(57)(7000 N/m)

(7)(15 kg)
= 61.6 rad

s

u(t) = ™ sin (vt - f)

u
$

+

3

7
 

c
m

 u
#

+

57
7

 

k
m

 u =

M0

Ieq

 sin vt

Ieq =

7
48

 mL2
=

7
48

 (15 kg) (1.2 m)2
= 3.15 kg # m2

7
48

 mL2
 u
$

+

1
16

 cL2
 u
#

+

19

16
 kL2 u = M0sin vt



220 CHAPTER 4

4.4 FREQUENCY-SQUARED EXCITATIONS

4.4.1 GENERAL THEORY
Many SDOF system are subject to single-frequency harmonic excitation whose amplitude
is proportional to the square of its frequency

EXAMPLE 4 . 3
A machine of mass 25.0 kg is placed on an elastic foundation. A sinusoidal force of mag-
nitude 25 N is applied to the machine. A frequency sweep reveals that the maximum
steady-state amplitude of 1.3 mm occurs when the period of response is 0.22 s. Determine
the equivalent stiffness and damping ratio of the foundation.

SO LU T I ON
The system is modeled as a mass attached to a spring in parallel with a viscous damper with
a applied sinusoidal force of amplitude 25 N. For a linear system the frequency of response
is the same as the frequency of excitation. Thus the maximum response occurs for a period
of 0.22 s which corresponds to a frequency of

(a)

The frequency ratio at which the maximum response occurs is given by Equation (4.43)

(b)

Solving Equation (b) for the natural frequency

(c)

The maximum value of the response is given by Equation (4.44) which upon substitution
and use of Equation (4.39) becomes

(d)

Squaring Equation (d) and rearranging leads to

(e)

which is a quadratic equation for � 2. Using the quadratic formula leads to � � 0.369,
0.929. The larger value is discarded because a frequency sweep would only yield a maxi-
mum for a value of . Thus � � 0.369. The natural frequency is calculated from 
Equation (c) as

(f)

The stiffness of the foundation is

(g)k = mv2
n = (25.0 kg) (33.5 rad/s)2

= 2.80 * 104 N/m

vn =

28.6 rad/s

21-2(0.369)2
= 33.5 rad/s

z 6
1
12

z4
- z2

+ 0.118 = 0

(25.0 kg) (0.0013 m)(28.6 rad>s)2

(25 N) (1-2z2)
 =

1

2z21-z2

vn =

v

21-2z2
=

28.6 rad/s

21-2z2

r =

v

vn

= 21 - 2z2

v =

2p
T

=

2p
0.22 s

= 28.6 rad/s
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(4.49)

where A is a constant of proportionality with dimensions of F T 2 or M L. When Feq(t) rep-
resents a moment A it has dimensions of F L T 2 or M L2. The steady-state response due
to this type of excitation is developed by applying equations developed in Section 4.3 with

(4.50)

Substitution of Equation (4.50) into Equation (4.37) yields

or (4.51)

where (4.52)

	 is, like M, a nondimensional function of the frequency ratio and the damping ratio.
	 is related to M by

(4.53)

The steady-state response is given by Equation (4.32) where X is determined from
Equations (4.51) and (4.52), and � is determined using Equation (4.45).

	 is plotted as a function of r for various values of � in Figure 4.11. The following are
noted from Equation (4.52) and Figure 4.11.

¶(r, z) = r 2M(r, z)

¶(r, z) =

r 2

2(1 - r 2) + (2zr)2

meq  

X
A = ¶(r, z)

ameqX

A b avn

v
b2

=

1

A c1 - a v
vn
b2 d2 + a2z

v

vn
b2

F0 = Av2

###

##

Feq(t ) = Av2  sin (vt + c)

0
0 1 2 3

Λ

1

2

3

4

5

r

FIGURE 4.11
	 (r, �) versus r for different
values of �.
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4.4.2 ROTATING UNBALANCE
The machine of Figure 4.12(a) has a component which rotates at a constant speed, �. Its
center of mass is located a distance e, called the eccentricity, from the axis of rotation. The
mass of the rotating component is m0, while the total mass of the machine, including the
rotating component, is m. The machine is constrained to move vertically. 

1. 	 � 0 if and only if r � 0 for all values of �.

2. for all values of �.

3. 	 grows without bound near r � 1 for � � 0.

4. For 	 has a maximum for a frequency ratio of

(4.54)

Equation (4.54) is derived by finding the value of r such that d	/dr � 0.
5. For a given the maximum value of 	 corresponds to the frequency

ratio of Equation (4.54) and is given by

(4.55)

6. For 	 does not reach a maximum. 	 grows slowly from zero near r � 0,
monotonically increases, and asymptotically approches one from below.
z 7 1>22,

¶
 max 

=

1

2z21 - z2

0 6 z 6 1>22,

rm =

1

21 - 2z2

0 6 z 6 1>22,

limr :0
¶(r, z) = 1

EXAMPLE 4 . 4
A one-degree-of-freedom system is subject to a harmonic excitation whose magnitude is
proportional to the square of its frequency. The frequency of excitation is varied and the
steady-state amplitude noted. A maximum amplitude of 8.5 mm occurs at a frequency of
200 Hz. When the frequency is much higher than 200 Hz, the steady-state amplitude is
1.5 mm. Determine the damping ratio for the system.

SO LU T I ON
From Figure 4.11, 	 : 1 as r : �. Thus, from Equation (4.51) and the given information,

(a)

Substituting Equation (a) into Equation (4.55) yields

(b)

Inverting, squaring, and rearranging leads to

(c)

The roots of Equation (c) are � � 
0.089, 
0.996. Since a maximum was attained,
the appropriate value of � is 0.089.0 6 z 6

1
12,

z4
- z2

+ 0.00778 = 0

¶max =

m
A X

 max 
=

8.5 mm

1.5 mm
=

1

2z21 - z2

meq

A =

1

1.5 mm
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Let x represent the downward motion of the machine. The acceleration of the rotating
component is obtained using the relative acceleration equation

(4.56)

where and is directed downward and directed toward the center of 
rotation. The center of mass of the rotating component moves in a circular path about the
center of rotation at a constant speed. Let 
 represent the angle made by the line segment
between the center of rotation and the center of mass at an arbitrary instant. Resolving the
relative acceleration into horizontal and vertical components the vertical component of the
absolute acceleration of the center of mass of the rotating component is

(4.57)

Summation of forces, applied in the vertical direction, positive down-
ward to the FBDs of Figure 4.12(b) yields

(4.58)

For constant �,

(4.59)

where 
0 is an angle between the initial position of the center of mass of the rotating compo-
nent and the horizontal. Using Equation (4.59) in Equation (4.58), and rearranging yields

(4.60)

The negative sign is incorporated into the sine function by defining . Then
Equation (4.60) becomes

(4.61)

It is apparent from Equation (4.61) that the unbalanced rotating component leads to
a harmonic excitation whose amplitude is proportional to the square of its frequency. The
constant of proportionality is

(4.62)

Using Equation (4.51) gives

(4.63)
mX
m0e

 = ¶(r, z)

A = m0e

mx$ + cx# + kx = m0e v2 sin (vt + c)

c = u0 + p

m x$ + cx# + kx = -m0e v2 sin (vt + u0)

u = vt + u0

-kx - cx# = mx$ + m0e v2 sin u

gFext = gFeff

ar, x = x
$

+ e v2 sin u

| ar>c | = e v2| ac | = x
$

ar = ac + ar>c

k
2

kc

e
w

2

(a)

N1

N2

N3

N4

cẋ

m0ẍ

m0ew2

(m – m0)ẍ

kx

External
forces

(b)

Effective
forces

=

FIGURE 4.12
(a) Machine with a rotating
unbalance produces a har-
monic excitation whose
amplitude is proportional to
the square of its frequency.
(b) FBDs of the machine at an
arbitrary instant.
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EXAMPLE 4 . 5
A 150-kg electric motor has a rotating unbalance of 0.5 kg, 0.2 m from the center of rota-
tion. The motor is to be mounted at the end of a steel (E � 210 � 109 N/m2) cantilever
beam of length 1 m. The operating range of the motor is from 500 to 1200 rpm. For what
values of I, the beam’s cross-sectional moment of inertia, will the steady-state amplitude of
vibration be less than 1 mm? Assume the damping ratio is 0.1.

SO LU T I ON
The maximum allowable value of 	 is

(a)

Since 	allow � 1 and , Figure 4.11 shows that two values of r correspond to 
	 � 	allow. These are determined using Equation (4.52)

(b)

Rearrangement leads to the following equation:

(c)
whose positive roots are

(d)

However if r � 0.787 corresponds to � � 1200 rpm then 	 � 	allow for all r in the operat-
ing range. Whereas if r � 0.787 corresponds to � � 500 rpm then 	 � 	allow for r over part
of the operating range. Thus requiring r � 0.787 over the entire operating range yields.

(e)

or �n � 159.7 rad/s. The one degree-of-freedom approximation for the natural frequency
of the motor attached to the end of a cantilever beam of negligible mass is

(f)

Thus,

(g)

Using a similar reasoning r � 1.71 should correspond to � � 500 rpm. Thus,

(h)

or �n � 30.6 rad/s. This requirement leads to I � 2.23 � 10�7 m4.
Thus the amplitude of vibration will be limited to 1 mm if I � 6.08 � 10�6 m4 or 

I � 2.23 � 10�7 m4. However, other considerations limit the design of the beam. The
smaller the moment of inertia, the larger the bending stress in the outer fibers of the beam
at the support.

(500 rev>min)(2p rad>rev)(1 min/60 s)

vn

7 1.71

I 7

(159.7 rad/s)2L3m

3E
=

(159.7 rad/s)2(1 m)3(150 kg)

3(210 * 109 N/m2)
= 6.07 * 10-6 m4

vn = A
3EI
mL3

(1200 rev/min)(2p rad/rev)(1 min >60 s)
vn

6 0.787

r = 0.787,  1.71

0.556r 4
- 1.96r 2

+ 1 = 0

1.5 =

r 2

2(1 - r 2) + (0.2r)2

z 6 1/12

¶allow =

mXallow

m0e
=

(150 kg)(0.001 m)

(0.5 kg) (0.2 m)
= 1.5
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4.4.3 VORTEX SHEDDING FROM CIRCULAR CYLINDERS
When a circular cylinder is placed in a steady uniform stream at sufficient velocity, flow
separation occurs on the cylinder’s surface, as illustrated in Figure 4.13. The separation
leads to vortex shedding from the cylinder and the formation of a wake behind the cylin-
der. Vortices are shed alternately from the upper and lower surfaces of the cylinder at a con-
stant frequency. The alternate shedding of vortices causes oscillating streamlines in the
wake which, in turn, lead to an oscillating pressure distribution. The oscillating pressure
distribution, in turn, gives rise to an oscillating force acting normal to the cylinder,

(4.64)

where F0 is the magnitude of the force and � is the frequency of vortex shedding.
These parameters are dependent upon the fluid properties and the geometry of the

cylinder. That is,

(4.65)

and (4.66)

where v � the magnitude of fluid velocity, [L]/[T ]
� � the fluid density, [M]/[L]3

� � the dynamic viscosity of fluid, [M]/([L][T ])
D � the diameter of cylinder, [L]
L � the length of cylinder, [L]

The dependent parameters F0 and � are both functions of five independent parameters.
Dimensional analysis theory implies that Equations (4.65) and (4.66) can be rewritten as
relationships between three dimensionless parameters. Indeed, nondimensional forms of
Equations (4.65) and (4.66) are

(4.67)

(4.68)

The dependent dimensionless parameters are the drag coefficient

(4.69)

which is the ratio of the drag force to the inertia force, and the Strouhal number

(4.70)S =

vD
2p v

CD =

F0

1
2r v 2 DL

S = f aRe, D
L
b

CD = f  aRe, 

D
L
b

v = v(v, r, m, D, L)

F0 = F0(v, r, m, D, L)

F (t ) = F0 
sin (vt )

υ

(a) (b)

FIGURE 4.13
(a) Circular cylinder in steady flow.
(b) Cross section of cylinder showing vor-
tices shed alternately from each surface
of the cylinder, resulting in a wake behind
the cylinder and a harmonic force acting
on the cylinder.
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which is the ratio of the inertia force due to the local acceleration of the inertia force due
to the convective acceleration of the inertia force.

The independent dimensionless parameters are the Reynolds number

(4.71)

which is the ratio of the inertia force to the viscous force and the diameter-to-length ratio D/L.
For long cylinders (D/L V 1), a two-dimensional approximation is used. Then the

effect of D/L on the drag coefficient and Strouhal number is negligible. Empirical data are
used to determine the forms of Equations (4.67) and (4.68) assuming that both the drag
coefficient and Strouhal number are independent of D/L.

The density and dynamic viscosity of air at 20°C are 1.204 kg/m3 and 1.82 � 10�5 N · s/m, 
respectively. Thus, for air at 20°C, the Reynolds number for flow over a 10-cm-diameter
circular cylinder at 20 m/s is

The Reynolds number for many situations involving wind-induced oscillations is between
1 � 103 and 2 � 105. Over this Reynolds number regime, both the drag coefficient and
the Strouhal number are approximately constant. For long cylinders (D/L V 1) empirical
evidence suggests that

(4.72)

(4.73)

From Equation (4.73) and the definition of the Strouhal number, Equation (4.70), 

(4.74)

Then from Equations (4.69), (4.72), and (4.74),

(4.75)

Hence the harmonic excitation to a circular cylinder provided by vortex shedding
when the Reynolds number is between 1 � 103 and 2 � 105 has a magnitude that is pro-
portional to the square of its frequency. Using the notation of Equations (4.50) and (4.51)
gives

(4.76)

and (4.77)

The theory is presented for vortex shedding from circular cylinders. If the frequency at
which the vortices are shed is near the natural frequency of the structure, then large-
amplitude vibrations exist. The effects of vortex shedding must be taken into account when
designing structures such as street lamp posts, transmission towers, chimneys, and tall
buildings. Vortex shedding also occurs from noncircular structures such as buildings and
bridges.

3.16 mX
r D 

3L
= ¶(r, z)

A = 0.317rD3L

F0 = 0.317 rD 
3 Lv2

y =  vD
0.4p

S L 0.2  1 * 103
6 Re 6 2 * 105

CD L 1  1 * 103
6 Re 6 2 * 105

Re =

(1.204 kg/m3)(20 m/s)(0.1 m)

1.82 * 10-5 N # s/m
= 1.3 * 105

R =

r v D

m
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EXAMPLE 4 . 6
A street lamp consists of a 60-kg light fixture attached at the end of a 3-m-tall solid steel
(E � 210 � 109 N/m2) cylinder with a diameter of 20 cm. Use a one degree-of-freedom
model consisting of a cantilever beam with a concentrated mass at its end to analyze the
response of the light fixture to wind excitation. Assume the beam has an equivalent viscous
damping ratio of 0.2.

(a) At what wind speed will the maximum steady-state amplitude of vibration due to
vortex shedding occur?

(b) What is the corresponding maximum amplitude?
(c) Redesign the light by changing its diameter such that the maximum amplitude of

vibration does not exceed 0.10 mm for any wind speed.

SO LU T I ON
Before proceeding with the analysis, there are several questions associated with the model-
ing that must be addressed. Vortices are shed along the entire length of the cylinder. The
two-dimensional assumption implies that the force per unit length is constant along the
entire length of the light post. Thus the force given by Equation (4.64) is really the result-
ant of this force per unit length distribution. Its point of application should be the mid-
point of the light post. However, the problem is not really two dimensional because of
among other things, the boundary layer of the earth. The presence of a boundary layer
causes a varying wind velocity over the length of the light post, which, in turn, causes a
nonuniform force per unit length distribution, as shown in Figure 4.14(a). Thus the actual
point of application of the resultant force will be somewhat higher than the midpoint of
the light post. In addition, the mass is assumed to be lumped at the end of the beam, while
the point of application of the applied force is elsewhere. The resultant force can be
replaced by a force of the same magnitude located at the end of the beam and a moment.
However, the moment causes rotational effects which are not adequately taken into
account in a one-degree-of-freedom model. At least a two-degree-of-freedom model should
be used. In order to attain an approximate result, these effects are neglected. A one degree-
of-freedom model is used where the excitation is provided by a concentrated harmonic load
located at the light of fixture, as shown in Figure 4.14(b).

Assume air at 20°C. The Rynolds number for a velocity of 20 m/s is

(a)Re =

(1.204 kg/m3)(20 m/s)(0.20 m)

(1.82 * 10-5
 N # s/m)

= 2.6 * 105

F0 sinωt

3 m

20 cm

60 kg

(a) (b)

FIGURE 4.14
(a) Street light post in steady wind is
subject to harmonic excitation whose
amplitude is proportional to the square
of the frequency because of vortex
shedding. (b) The model of the system
is a mass attached to the end of a can-
tilever beam.
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4.5 RESPONSE DUE TO HARMONIC EXCITATION
OF SUPPORT
Consider the mass-spring-dashpot system of Figure 4.15. The spring and dashpot are in
parallel with one end of each connected to the mass and the other end of each connected
to a moveable support. Let y(t) denote the known displacement of the support and let x (t)

This Reynolds number is higher than the 2 � 105 upper limit on the range of strict appli-
cability of the theory presented previously. However, the Strouhal number is only slightly
higher than 0.2. Using 0.2 as an approximation for the Strouhal number is in line with
other approximations made in the modeling.

(a) Using a one degree-of-freedom model, the natural frequency of the cantilever beam is

(b)

The magnitude of the excitation force is proportional to the square of its frequency. Thus,
from Equation (4.54), the maximum steady-state amplitude occurs for a frequency ratio of

(c)

Thus the frequency at which the maximum amplitude occurs is

� � 1.043(174.8 rad/s) � 182.2 rad/s (d)
The wind velocity that gives rise to this frequency is calculated using the definition of the
Strouhal number

(e)

(b) The value of 	 corresponding to this frequency ratio is calculated from Equation (4.55)

(f)

The corresponding maximum amplitude is calculated by using Equation (4.77)

(g)

(c) The maximum value of 	 is a function of � only and does not change with �n. The
steady-state amplitude can be limited to 0.1 mm for all wind speeds by requiring that 
	 � 2.55 for X � 0.1 mm. This leads to

(h)

Thus, the maximum diameter of the light pole should be 12.7 cm.

D = a3.16 mX
rL¶

b1>3
= 12.7 cm

X =

r D 
3 L¶

3.16m
=

(1.204 kg/m3)(0.2 m)3(3 m)(2.55)

3.16(60 kg)
= 3.9 * 10-4m

¶
 max 

 =  1

2z21 - z2
= 2.55

y =

vD
2pS

=

(182.2 rad/s)(0.2 m)

2p(0.2)
= 29.0 m/s

rmax 
=

1

21 - 2z2
= 1.043

vn = A
3EI
mL3 = A

3(210 * 109 N/m2)(p>64)(0.2 m)4

(60 kg)(3 m)3 = 174.8 rad/s
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denote the absolute displacement of the mass. Application of Newton’s law to the free-body
diagrams of Figure 4.15(b) yields

(4.78)

or (4.79)

Define

(4.80)

as the displacement of the mass relative to the displacement of its support. Equation (4.79)
is rewritten using z as the dependent variable

(4.81)

Dividing Equations (4.79) and (4.81) by m yields

(4.82)

and (4.83)

If the base displacement is given by a single-frequency harmonic of the form

(4.84)

then Equations (4.82) and (4.83) become

(4.85)

and (4.86)

Equation (4.86) shows that a mass-spring-dashpot system subject to harmonic base
motion is yet another example in which the magnitude of a harmonic excitation is propor-
tional to the square of its frequency. Using the theory of Section 4.4,

(4.87)

where (4.88)

where 	 is defined in Equation (4.52) and defined by Equation (4.45).
When Equations (4.87) and (4.88) are substituted into Equation (4.80) the absolute

displacement becomes

(4.89)x (t ) = Y 3¶  sin (vt - f) + sin vt4

f

Z = Y ¶(r, z)

z (t ) = Z   sin (vt - f)

z
$

+ 2zvnz
#

+ v2
nz = v2Y sin vt

x$ + 2zvnx
#

+ v2
nx = 2zvnvY cos vt + v2

nY sin vt

y (t ) = Y sin vt

z
$

+ 2zvnz
#

+ v2
nz = - y

$

x
$

+ 2zvnx
#

+ v2
nx = 2zvn y# + v2

n 
y

mz
$

+ cz# + kz = -my
$

z (t ) = x (t ) - y (t )

m  x
$

+ cx# + kx = cy# + ky

-k (x - y) - c (x# - y# ) = mx
$

(b)(a)

=

External
forces

Effective
forces

mẍc(ẋ – ẏ)k(x – y)k c

m
x(t)

y(t)

FIGURE 4.15
(a) Block is connected
through parallel combination
of spring and viscous damper
to a moveable support.
(b) FBDs at an arbitrary
instant. Spring and viscous-
damper forces include effects
of base motion.
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Using the trigonometric relationship for the sine of the difference of two angles, it is pos-
sible to express Equation (4.89) in the form

(4.90)

where (4.91)

and (4.92)

where T(r, �) is yet another nondimensional function of the frequency ratio and the damp-
ing ratio defined by

(4.93)

X/Y is the amplitude of the absolute displacement of the mass to the amplitude of dis-
placement of the base. 

Multiplying the numerator and denominator by �2 leads to

(4.94)

Thus T(r, �) is also the ratio of the acceleration amplitude of the body to the acceleration
amplitude of the base.

Equation (4.93) is plotted in Figure 4.16. The following are noted about T(r, �):

1. T(r, �) is near one for small r.

2. (4.95)lim 
t: �

T(r, z) =

2z
r

v2X
v2Y

= T (r, z)

T (r, z ) = A
1 + (2zr)2

(1 - r 2)2
+ (2zr)2

l = tan-1 c 2zr 3

1 + (4z2
- 1)r 2 d

X
Y

= T (r, z)

x (t ) = X sin (vt - l)

0
0 1 2 3

T

1

2

3

4

r
2

FIGURE 4.16
T(r, �) versus r for several
values of �. The range for

is called the range of
amplification, while the range
for is called the range
of isolation.

r 7 12

r 6 12
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3. For all �, T(r, �) grows until it reaches a maximum for a frequency ratio of

(4.96)

4. The maximum T(r, �) corresponding to the frequency ratio of Equation (4.96)

(4.97)

5. , independent of the value of �.

6. For is larger for smaller values of �. However, for is
smaller for smaller values of �.

7. For all values of �, T(r, �) is less than one when and only when .

The body is isolated from large accelerations of the base only if T(r, �) < 1. This occurs
on when . For this reason the range is called the range of isolation and

is called the range of amplification. When isolation occurs an increase in � hinders
isolation. Better isolation occurs for smaller damping ratios. Some damping is still required
to limit the amplitude of vibration during start up.

The function T(r, �) is called the transmissibility ratio. It is the ratio of the transmitted
acceleration to the acceleration of the base. When T � 1 the presence of an elastic element
between the base and the body actually amplifies the acceleration that is transmitted to the
body. Only when T � 1 is the transmitted acceleration less than the acceleration of the body.

The amplitude of relative motion, Z � Y	(r, �) is the amplitude of the maximum dis-
placement of the elastic element.

r 6 12
r 7 12r 7 12

r 7 12

r 7 22,T (r,  z)r 6 22,T (r, z)

T (12, z) = 1

Tmax = 4z2 c 21 + 8z2

2 + 16z2
+ (16z4

- 8z2
- 2)21 + 8z2

d1/2

rmax =

1
2z

 111 + 8z2
- 121/2

EXAMPLE 4 . 7
A 50 kg laboratory experiment is to be mounted onto a table in a laboratory. The table, which
is rigidly attached to the floor is vibrating due operation of the other machinery. Measurements
indicate that the floor’s acceleration amplitude is 1.2 m/s2 and it vibrates at 100 Hz. Accurate
use of the equipment requires that its acceleration amplitude be limited to 0.6 m/s2.

(a) What is the largest equivalent stiffness of a mounting of damping ratio 0.1 that can
be used to limit the acceleration amplitude to 0.6 m/s2?

(b) What is the maximum deflection of the mounting?

SO LU T I ON
(a) The transmissibility ratio is

(a)

Requiring T(r, 0.1) � 0.5 leads to

(b)

Squaring Equation (b), multiplying the resulting equation by the denominator of the right
hand side and rearranging gives

(c)r 4
- 2.12r 2

- 3 = 0

T (r, 0.1) = 0.5 = A
1 + 32(0.1)r42

(1 - r 2)2
+ 32(0.1)r42

T =

v2X
v2Y

=

0.6 m/s2

1.2 m/s2 = 0.5
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Mechanisms can be used to produce harmonic base excitations. One simple example is
the eccentric circular cam of Figure 4.17. When rotating at a constant speed, the cam pro-
duces a displacement of e sin �t to its follower, which, in turn, produces a harmonic base
excitation in the arrangement shown. The Scotch yoke of Figure 4.18 is another mecha-
nism that produces simple harmonic motion. When the crank is rotating at a constant
speed the base is given a displacement of l sin �t.

Equation (c) is solved leading to r � 1.76. Recalling and � � 100 Hz �
(100 cycles/s) (2� rad/cycle) � 6.28 � 102 rad/s gives

(d)

The maximum stiffness for an elastic mounting is

(f)

(b) The displacement of the mounting is the relative displacement between the experi-
ment and the table z(t). The maximum displacement is the steady-state amplitude which is

(g)

The steady-state amplitude of the table is

(h)

and (i)

The maximum displacement of the mounting is obtained by substituting Equation (h) and
Equation (i) into Equation (g) resulting in

(j)Z = (3.04 * 10-6 m)(1.46) = 4.43 * 10-6 m

¶(1.76, 0.1) =

(1.76)2

231 - (1.76)242 + 32(0.1)(1.76)42 = 1.46

Y =

v2Y
v2 =

1.2 m/s2

(6.28 * 102 rad/s)2 = 3.04 * 10-6 m

Z = Y¶(1.76, 0.1)

k = mv2
n = (50 kg)(3.57 * 102rad/s) = 6.39 * 106 N/m

vn =

v

r
=

6.28 * 102 rad/s
1.76

= 3.57 * 102 rad/s

r =

v
vn

c

e
m

k

c

l

m

k

FIGURE 4.17
Eccentric circular cam pro-
duces harmonic motion of fol-
lower which provides support
motion to the mass-spring-
viscous damper system.

FIGURE 4.18
Scotch yoke mechanism
produces simple harmonic
motion and provides support
excitation to mass-spring-
viscous damper system.
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EXAMPLE 4 . 8
A Scotch yoke mechanism provides a harmonic base excitation for the mass-spring-
dashpot system of Figure 4.18. The crank arm is 80 mm long. The speed of rotation of
the crank arm is varied and the resulting steady-state amplitude is recorded at each speed.
The maximum recorded amplitude of the 14.73 kg block is 13 cm at 1000 rpm. Determine
the spring stiffness and damping ratio.

SO LU T I ON
The amplitude of the base displacement is 0.08 m. The maximum displacement of the
mass is 0.13 m. Thus,

The value of  which corresponds to this Tmax is determined by solving Equation (4.97).
However, algebraic manipulation of Equation (4.97) yields a fifth-order polynomial equa-
tion for  2. A numerical method must be used to find . An easier trial-and-error
approach is outlined in the following discussion, and then used to find the value of  for
this example.

Equation (4.96) is rearranged as

A value of rmax � 1 is guessed and its corresponding value of  calculated from the preced-
ing equation. Equation (4.93) or (4.97) is then used to calculate the value of Tmax corre-
sponding to the guessed value of rmax. However, small changes in the accuracy of an
intermediate calculation using Equation (4.97) lead to large changes in the result. Thus,
Equation (4.93) is usually used. The calculated value of Tmax is compared against the
desired value of 1.625. If Tmax � 1.625 another guess for rmax, smaller than the previous
one, should be made. Other iteration schemes are possible, but the method presented is the
most direct using the equations as presented. The trial-and-error scheme is illustrated in the
following table:

Then, for rmax � 0.89,

and k = mv2
n = 2.04 * 105 N/m.

vn =

v

r
 max 

= a1000 

rev
min
b a2p 

rad
rev
b a 1  min 

60 s b  

1
0.89

= 117.7 rad/s

Tmax
rmax (guess) � [from Equation (4.93)]

0.98 0.147 3.180
0.90 0.381 1.702
0.89 0.407 1.640
0.88 0.437 1.573

z = A
1 - r 2

 max 

2r 4
 max 

T
 max 

=

X
 max 

Y
=

0.13 m
0.08 m = 1.625
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4.6 VIBRATION ISOLATION
Consider a machine bolted to its foundation. During operation the machine produces or
is subject to large amplitude harmonic forces. The force is directly passed onto the founda-
tion. This could lead to problems such as fatigue of the foundation and acoustic wave prop-
agation in the foundation.

The remedy to this situation is to mount the machine on a vibration isolator, which
can be discrete springs or elastic pads, as shown in Figure 4.19. The vibration isolator acts
to reduce the amplitude of the harmonic force transmitted to the foundation. With an exci-
tation force of F(t) � F0 sin (�t), the transmitted force is

(4.98)

The steady-state response of the system is x(t) � X sin (�t � ), thus

(4.99)

Let FT represent the amplitude of the transmitted force

(4.100)

and F0 represent the amplitude of the excitation force. It can be shown that

(4.101)

and  is as given in Equation (4.92).
The theory of vibration isolation to protect against large transmitted forces is the same

as the theory to protect against large transmitted accelerations. To see this, consider the dif-
ferential equation for the relative displacement, z � x � y, of a mass attached to a move-
able support,

(4.102)

The acceleration of the base is given by or using Equation (4.97)

(4.103)

where is the force developed in the elastic element connecting the mass and
the base.

Vibration isolation only occurs for . When isolation occurs it is negatively
affected by damping. Damping is present to protect against large amplitude oscillations
during start-up necessary to reach a value of r 7 12

r 7 12

F = cz# + kz

mx
$

= - (cz# + kz)

x
$

= z
$

+ y
$

mz
$

+ cz# + kz = -my
$

FT

F0

= T (r, z )

FTM = FT sin (vt - l)

FTM = kX sin (vt - f) + c v cos (vt - f)

f

FTM = kx + cx#

F(t)

F(t)

(a) (b)

FIGURE 4.19
(a) Elastic mounting is
used as a vibration isolator
to protect foundation
from large forces gener-
ated during operation of
the machine. (b) SDOF
model of machine
mounted on isolator.
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EXAMPLE 4 . 9
An air conditioner weighs 250 lb and is driven by a motor at 500 rpm. What is the required
static deflection of an undamped isolator to achieve 80 percent isolation (a) if � � 0 (b) if
� � 0.1?

SO LU T I ON
(a) Eighty percent isolation means that the transmitted force is reduced by 80 percent of
that if the machine were directly bolted to the floor. It is 20 percent of the value of the exci-
tation force,

(a)

For an undamped isolator

(b)
or

(c)

Since to achieve isolation, and a positive result is required from the square root,
the appropriate form of the preceding equation after the square root is taken is

(d)

which yields r � 2.45. The maximum natural frequency for the air conditioner-isolator
system to achieve 80 percent isolation is calculated as

(e)

The required static deflection is obtained from

(f)

or

(g)

(b) It is required to find r such that

(h)

or

(i)

Squaring both sides of Equation (g), multiplying by the denominator of the left hand side
and rearranging leads to

(j)r 4
- 2.96r 2

- 24 = 0

A
1 + 32(0.1)r42

(1 - r 
2)2

+ 32(0.1)r42 = 0.2

T (r, 0.1) = 0.2

�st =

g

v2
n

=

32.2 ft/s2

(21.4 rad/s)2 = 0.07 ft

vn = A
k
m

= A
g

�st

vn =

v

r
=

(500 rev>min)(2p rad>rev)(1 min/60 s)
2.45

= 21.4 rad/s

0.2 =

1

r 2
- 1

r 7 12

0.2 = A
1

(1 - r 2)2

T (r, 0) = 0.2

FT

F0

= 0.2
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Equation (h) is a quadratic equation in r2. Solution using the quadratic formula yields r 2 �
�3.64, 6.60. Choosing the positive value and taking the square root leads to r � 2.57.
Note that this value is greater than the value obtained for � � 0. Thus

(k)

The minimum static deflection is

(l)�st =

g

v2
n

=

32.2 ft/s2

(20.4 rad/s)2 = 0.0775 ft = 0.930 in.

vn 6

v

2.56
=

52.4 rad/s
2.57

= 20.4 rad/s

EXAMPLE 4 . 1 0
An industrial sewing machine has a mass of 430 kg and operates at 1500 rpm (157 rad/s).
It appears to have a rotating unbalance of magnitude m0e � 0.8 kg · m. Structural engi-
neers suggest that the maximum repeated force transmitted to the floor is 10,000 N. The
only isolator available has a stiffness of 7 � 106 N/m and a damping ratio of 0.1. If the iso-
lator is placed between the machine and the floor, will the transmitted force be reduced to
an acceptable level? If not, what can be done?

SO LU T I ON
The maximum allowable transmissibility ratio is

(a)

The natural frequency with the isolator in place is

(b)

which leads to a frequency ratio of . Use of this isolator actually amplifies the
force transmitted to the floor.

Adequate isolation is achieved only by increasing the frequency ratio, thus decreasing
the natural frequency. The maximum allowable natural frequency is obtained by solving for
r from

(c)

Equation (c) is squared and rearranged to yield the following quadratic equation for r2:

(d)

The appropriate solution is r � 1.75. Thus the maximum natural frequency is

(e)

If more than one of the described isolator were available, the natural frequency of the system
can be decreased by placing isolators in series. The equivalent stiffness for n isolators in

vn =

157 rad/s
1.75

= 89.7 rad/s

r 4
- 2.12r 2

- 2.89 = 0

T (r, 0.1) =  0.507 = A
1 + (0.2r)2

(1 - r 
2)2

+ (0.2r)2

1.24 6 12

vn = A
7 * 106 N/m

430 kg
= 127.6 rad/s

Tmax =

FTmax

m0ew 
2 =

10,000 N
(0.8 kg # m)(157 rad/s)2 = 0.507
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series is k/n. Further calculations show that at least two isolator pads in series are necessary
to reduce the natural frequency below 89.7 rad/s.

If only one isolator pad is available, the natural frequency is decreased by adding mass
to the machine. A mass of at least 440 kg must be rigidly attached to the machine and the
assembly placed on the existing isolator.

EXAMPLE 4 . 1 1
A flow-monitoring device of mass 10 kg is to be installed to monitor the flow of a gas in a
manufacturing process. Because of the operation of pumps and compressors, the floor of
the plant vibrates with an amplitude of 4 mm at a frequency of 2500 rpm. Effective oper-
ation of the flow-monitoring device requires that its acceleration amplitude be limited to 5g.
What is the equivalent stiffness of an isolator with a damping ratio of 0.05 to limit the
transmitted acceleration to an acceptable level? What is the maximum displacement of the
flow-monitoring device and what is the maximum deformation of the isolator?

SO LU T I ON
The acceleration amplitude of the floor is

(a)

The maximum allowable transmissibility ratio is

(b)

Requiring T (r, 0.05) � 0.179, we have

(c)

Solution of the preceding equation gives the minimum frequency ratio for which vibrations
are sufficiently isolated. It yields r � 2.60. Thus

(d)

The maximum stiffness of the isolator is

(e)

When T � 0.179, Equation (4.91) is used to calculate the steady-state amplitude of
the flow-monitoring device as

(f)

Since the isolator is placed between the floor and the flow-monitoring device, its deforma-
tion is equal to the relative displacement between the floor and the device.

The steady-state amplitude of the relative displacement is calculated by using
Equation (4.88).

(g)Z = ¶Y =

r 
2Y

2(1 - r 
2)2

+ (2zr)2
= 4.69 mm

X = Y T = (0.004 m)(0.179) = 0.72 mm

k = mv2
n = 1.01 * 105 N/m

vn 6

v

2.60
= 100.6 rad/s

0.179 6 A
1 + 0.01r 

2

1 - 1.99r 
2

+ r 
4

T
 max 

=

v2X
v2Y

=

5g

27.95 g = 0.179

v2Y = c a2500 

rev

min
b a2p 

rad
rev
b a1 

min

60 s
b2 d (0.004 m) = 274.1m/s2

= 27.95g
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4.7 VIBRATION ISOLATION FROM
FREQUENCY-SQUARED EXCITATIONS
A special case occurs when the amplitude of the excitation force is proportional to the
square of the excitation frequency, as for the harmonic excitation due to a rotating unbal-
ance. Since the maximum allowable force transmitted to the foundation is independent of
the frequency of excitation, the percentage of isolation required varies with the frequency.
When the excitation is caused by a rotating unbalance, Equation (4.101) becomes

or

(4.104)

The nondimensional function R (r, �) is defined as

(4.105)

R (r, �) is plotted in Figure 4.20. The following is noted about its behavior

1. R (r, �) is asymptotic to the line f (r ) � 2� r for large r. That is,
(4.106)

2. For increases with increasing r, from 0 at r � 0 and
reaches a maximum value. R then decreases and reaches a relative minimum. As r
increases from the value where the minimum occurs, R grows without bound and
approaches the asymptotic limit given by Equation (4.106). The values of r where the
maximum and relative minimum occur are obtained by setting, dR/dr � 0, yielding

(4.107)
Equation (4.107) is a cubic polynomial in r2. It has three roots. One root is the value of
r where the maximum occurs, another is the value of r where the relative minimum

1 + (8z2
- 1)r 2

+ 8z2(2z2
- 1)r 4

+ 2z2r 6
= 0

z 6 12/4 = 0.354, R(r, z)

limx : � R(r, z) = 2zr

R(r, z) = r 2C
1 + (2zr)2

(1 - r 2)2
+ (2zr)2

FT

m0ev
2
n

= r 2T (r, z) = R (r, z)

FT

m0e v2 = T (r, z)

0
0 1 2 543

R

2

4

6

8

10

12

r

ζ = 0.05 ζ = 0.353
ζ = 0.5

ζ = 0.2
ζ = 0.1

FIGURE 4.20
R(r, �) versus r for several
values of �.
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occurs, and one root is negative and irrelevant. Figure 4.21 shows the value of r for
which the minimum occurs as a function of �. Figure 4.22 shows the corresponding
value of R at its relative minimum.

3. R � 2 for for all values of �.

4. Equation (4.107) has a double root of for . The maximum 
and minimum coalesce for this value of �. For , is an inflection
point.

5. For , Equation (4.107) has no positive roots. Thus R does not reach a 
maximum, but grows without bound from R � 0 at r � 0.

If the natural frequency of a system whose vibrations are due to a rotating unbalance
is fixed, Figure 4.20 shows that the transmitted force has a minimum for some value of r.
If r exceeds this value, the force increases without bound as r increases. If � is small, the
curve in the vicinity of the relative minimum is flat. The transmitted force varies little over
a range of r. This suggests that for situations where vibrations must be isolated over a range
of excitation frequencies, it is best to chose �n such that the value of r at the center of the
operating range is near the value of r for which the relative minimum occurs.

The limit process used to develop Equation (4.106) is performed for a fixed value
of �n as � is increased. Thus, for a fixed �n, the transmitted force approaches m0e��n.

z 7 12/4

r = 12z = 0.354
z = 12>4 = 0.354r = 12

r = 12

0
0 0.1

z
0.2 0.40.3

r
4

2

6

8

10

0
0 0.1 0.2 0.40.3

r 1

2

FIGURE 4.21
Value of r for which the mini-
mum R(r, �) occurs as a func-
tion of �.

FIGURE 4.22
Rmin(�).
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The limit of FT as �n goes to zero for a fixed � is zero. Thus decreasing the natural fre-
quency decreases the magnitude of the transmitted force for a specific excitation frequency.
Decreasing the natural frequency such that the minimum is to the left of the operating
range reduces the magnitude of the repeating component of the transmitted force over a
portion of the operating range. However, the transmitted force may vary greatly over the
operating range.

EXAMPLE 4 . 1 2
A 250-kg pump operates at speeds between 1000 and 2400 rpm and has a rotating unbal-
ance of 2.5 kg · m. The pump is placed at a location in an industrial plant where it has
been determined that the maximum repeated force that should be applied to the floor is
Fmax. Specify the stiffness of an isolator of damping ratio 0.1 that can be used to reduce the
repeating component of the transmitted force to an acceptable level. Solve for (a) Fmax �
15,000 N; (b) Fmax � 10,000 N.

SO LU T I ON
If the pump is placed directly on the floor, the repeating component of the transmitted
force is 27,400 N at 1000 rpm and 157,800 N at 2400 rpm. Thus isolation is necessary.

(a) From Figure 4.22, for � � 0.1 the minimum value of R occurs for r � 2.94. If �n
is chosen such that r � 2.94 is at the center of the operating range, then

(a)

At the lower end of the operating range, the frequency ratio is 1.73 and the transmitted
force is

(b)

At the upper end of the operating range, the frequency ratio is 4.15 and the transmitted
force is

(c)

Thus, choosing an isolator such that r � 2.94 corresponds to 1200 rpm will reduce the
transmitted force to less than 15,000 N at all speeds between 1000 and 2400 rpm. The
stiffness of such an isolator is

(d)

(b) The above analysis works for but does not work for 
, as the transmitted force at both ends of the operating range is larger than10,000 N

FT
 max

=FT
 max

= 15,000 N

k = mv2
n = (250 kg)(60.55 rad/s)2

= 9.17 * 105 N/m

= 12,630 N

= (2.5 kg #m) (60.55 rad/s)2(4.15)2A
1 + (0.830)2

31 - (4.15)242 + (0.830)2

FT = m0e v2
nR (4.15, 0.1)

= 14,350 N

= 2.5 kg #  m (60.55 rad/s)2(1.73)2A
1 + (0.346)2

31- (1.73)242 + (0.346)2

FT = m0e v2
n 
R (1.73, 0.1)

vn =

1700 rpm

2.94
= 578.2 rpm = 60.55 rad/s
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4.8 PRACTICAL ASPECTS OF VIBRATION ISOLATION
Vibration isolation is required in a variety of military and industrial applications. Isolation
is required to reduce the force transmitted between a machine and its foundation during
ordinary operation or to isolate a machine from vibrations of its surroundings. Motors are
often isolated to protect mountings from forces arising from harmonic variation of torque
and unbalanced rotors. Electrical components such as transformers and circuit breakers are
isolated to protect surroundings from electromagnetic forces generated in solenoids or as a
result of alternating current. Large harmonic inertia forces are developed by rotating com-
ponents of single-cylinder reciprocating engines. Isolation is required to protect the engine
mounting from these forces. Other machines with rotating components such as fans,
pumps, and presses are often isolated to protect against inherent rotating unbalance.

The maximum stiffness of an isolator required for a particular application is calculated
by using the theory of Section 4.6. A SDOF system using an isolator is modeled as the
simple mass-spring-dashpot system of Figure 4.19(b).

Specifications provided in catalogs of commercially available isolators include allow-
able static deflections. If the isolated system of Figure 4.19 has a minimum required natu-
ral frequency �n, the required minimum static deflection of the isolator is

(4.108)

Isolation of low-frequency vibrations requires a small natural frequency, which leads to a
large isolator static deflection.

The vibration amplitude of a machine during operation is calculated from Equation (4.39)

(4.109)
mv2

nX

F0

= M(r, z)

�st =

g

v2
n

10,000 N when the center of the operating range corresponds to the minimum value of R.
Setting for � � 1000 rpm leads to

(e)

which leads to r � 2.012. Then

(f)

Then for � � 2400 rpm, r � 4.83 and

(g)

Thus, the transmitted force is less than 10,000 at all speeds within the operating range and

(h)k = mv2
n = (250 kg) (52.02 rad/s)2

= 6.77 * 105 N/m

FT = m0e v2
n 
R (4.83, 0.1) = 9810 N

vn =

104.7 rad/s
2.102

= 52.02 rad/s

T (r, 0.1) =

FTmax

m0e v2 =

10,000 N
(2.5 kg # m)  (104.7 rad/s)2 = 0.365

FT
 max

= 10,000 N
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Multiplying both sides of the preceding equation by r 2 leads to

(4.110)

where 	(r, �) is defined in Equation (4.52). Since vibration isolation requires and 
	(r, �) decreases and approaches 1 as r increases, the steady-state amplitude decreases as
isolation is improved. However, for fixed m, F0, and � the steady-state amplitude has a
lower bound given by

(4.111)

Equations (4.110) and (4.111) show that if an isolator is being designed to provide isola-
tion over a range of frequencies, the steady-state amplitude is greatest at the lowest operat-
ing speed.

Since vibration isolation requires , the speeds at which the maximum vibra-
tion amplitude occurs must be passed during start-up and stopping. The maximum vibra-
tion amplitude for a fixed �n is obtained using Equation (4.44) as

(4.112)

The smaller the natural frequency, the larger the maximum amplitude. In addition, the
larger the damping ratio, the smaller the maximum amplitude.

A large vibration amplitude can lead to ineffective operation of machinery. Large-
amplitude vibrations of machines which must be properly aligned with devices that feed
materials to the machine can lead to improper alignment and improper operation. Many
machine tools require a rigid foundation for effective operation. Equation (4.110) shows
that one way to reduce the amplitude of vibration during operation and the maximum
amplitude is to increase the mass of the isolated system. Equation (4.111) shows that the
only way to reduce the amplitude below a calculated value at a given operating speed is to
increase the system mass. Increasing the mass allows a proportional increase in the stiffness
required to achieve sufficient isolation.

The mass of a system can be increased by rigidly mounting the machine on a block of
concrete. A small machine can be mounted above ground, while a large machine is usually
mounted in a specially designed pit. The static load applied to the isolator and the mount-
ing is increased when the mass of the system is increased.

There are three important considerations in vibration isolator design: the maximum
amplitude during start-up, the steady-state amplitude, and the amplitude of the transmit-
ted force. There are three parameters which can be controlled: m, �n (or �st), and �. The
three parameters can be adjusted to provide the necessary isolation.

X
 max 

=

F0

m v2
n

1

2z21 - z2

r 7 12

X 7

F0

m v2

r 7 12

mv2X
F0

= r 2M(r, z) = ¶(r, z)

EXAMPLE 4 . 1 3
A milling machine of mass 450 kg operates at 1800 rpm and has an unbalance which
causes a harmonic repeated force of magnitude 20,000 N. Design an isolation system to
limit the transmitted force to 4000 N, the amplitude of vibration during operation to 
1 mm, and the amplitude of vibration during start-up to 10 mm. Specify the required stiff-
ness of the isolator and the minimum mass that should be added to the machine. Assume
a damping ratio of 0.05.
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SO LU T I ON
The maximum allowable transmissibility is

(a)

The minimum frequency ratio is determined by solving

(b)

which yields r � 2.48 and a maximum natural frequency of

(c)

The maximum amplitude during start-up for the 450-kg machine mounted on an
isolator such that the system natural frequency is 76.0 rad/s is

(d)

The resonant amplitude can be decreased to 10 mm only by increasing the mass to

(e)

When the mass is increased to 3460 kg, the amplitude of vibration of the milling
machine when operating at 1800 rpm is

(f)

The isolator stiffness is calculated by

(g)

The milling machine should be mounted on a concrete block of mass 3010 kg and the
system isolated by springs with an equivalent stiffness of 2 � 107 N/m.

k = mv2
n = (3460 kg) (76.0 rad/s)2

= 2.0 * 107 N/m

X =

20,000 N
(3460 kg) (76.0 rad/s)2 

1

231- (2.48)242 + 32(0.05)(2.48)42 = 0.19 mm

m =

20,000 N
(0.01 m) (76.0 rad/s)2 

1

2(0.05) 21 - (0.05)2
= 3460 kg

X
 max 

=

200,000 N
(450 kg) (76.0 rad/s)2 

1

2(0.05) 21 - (0.05)2
= 76.9 mm

vn =

v

2.48
= 76.0 rad/s

0.2 = A
1 + 0.01 r 

2

1 - 1.99r 
2

+ r 
4

T =

4000 N
20,000 N = 0.2

There are three classes of isolators in general use. The choice of an isolator for a partic-
ular application depends on the constraints noted previously, as well as other factors such
as cost, weight limitations space limitations, the amount of damping required, and envi-
ronmental conditions.

Helical coil steel springs are used as isolators when large static deflection (� 1 in. or 
3 cm) are required and a flexible foundation is acceptable. This occurs when good isolation
is required at low operating speeds. Hysteresis in steel springs is low, so discrete viscous
dampers are used in parallel with the springs to provide adequate damping. Steel springs
may be used in combination with other isolation methods when a machine must be
mounted on a concrete block. These isolators can be designed for specific use or can be
obtained commercially.
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Isolators made of elastomers are used in applications where small static deflections are
required. If used for larger static loads, the elastomers are subject to creep, reducing their
effectiveness after a period of time. Caution should be taken in using these isolators in
extreme temperatures. Hysteretic damping inherent in the isolators is usually sufficient.
However, discrete dampers can be employed in conjunction with these isolators. The
damping ratio of an isolator depends on the elastomeric material from which it is made,
the steady-state frequency, and the amplitude. The damping ratio for isolators made of nat-
ural rubber varies little with amplitude but is highly dependent on frequency. The damp-
ing ratio of a natural rubber isolator at 200 Hz is � � 0.03, while � � 0.09 at 1200 Hz.

Pads made of materials such as cork, felt, or elastomeric resin are often used to isolate
large machines. Pads used to isolate a specific machine can be cut from larger pads. Pads of
prescribed thicknesses can be placed on top of one another, acting as springs in series, to
provide increased flexibility.

4.9 MULTIFREQUENCY EXCITATIONS
A multifrequency excitation has the form

(4.113)

Without loss of generality, it is assumed that Fi � 0 for each i. The steady-state response
due to a multifrequency excitation is obtained using the response for a single-frequency
excitation and the principle of linear superposition. The total response is the sum of the
responses due to each of the individual frequency terms. Thus, the solution of Equation (4.2)
with the excitation of Equation (4.113) is

(4.114)

where (4.115)

(4.116)

(4.117)

and (4.118)

The maximum displacement from equilibrium is difficult to obtain. The maxima of
the trigonometric terms in Equation (4.114) do not occur simultaneously. An upper bound
on the maximum is

(4.119)X
 max 

… a
n

i =  1
Xi

Mi = M(ri, z) =  1

2(1 - r 2
i )

2
+ (2zri)

2

ri =

vi

vn

fi = tan-1 a 2zri

1 - r 2
i

b

Xi =

MiFi

meqv
2
n

x (t) =a
n

i =1

Xi sin (vi t + ci - fi )

F (t ) = a
n

i = 1

Fi  sin (vit + ci)
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EXAMPLE 4 . 14
A slider-crank mechanism is used to provide a base motion for the block shown in Figure 4.23.
Plot the maximum absolute displacement of the block as a function of frequency ratio for
a damping ratio of 0.05. The crank rotates with a constant speed, �.

SO LU T I ON
The instantaneous position of the block relative to point O is

(a)

Application of the law of sines gives

(b)

Thus

(c)

Assuming is small, the binomial expansion is used to expand the square root

(d)

where the expansion has been terminated after the term proportional to sin2 �t and the
double-angle formula is used to replace sin2 �t. The principle of linear superposition and
the theory of Section 4.6 are used to solve for the absolute displacement of the mass
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FIGURE 4.23
Slider crank mechanism
produces multi-frequency
base motion for SDOF
system.
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and   (i)

The response is the sum of the responses due to each frequency term plus the response due
to the constant term. The maximum displacement is difficult to attain. Instead an upper
bound is calculated

(j)

xmax/l versus �/�n is plotted in Figure 4.24 for and � � 0.05. The graph has two 
peaks. The first peak near �/�n � is smaller than the second peak near �/�n � 1. If
additional terms from the binomial expansion were used, higher harmonics would appear
in the solution. Small peaks on the frequency response curve will appear near values of
�/�n � 1/i where i is an even integer. The magnitude of the peaks grows smaller with
increasing i.

1
2

rN /l =
1
2

xmax 6 l  c1 -

1
4
a rN

l
b2 d + rNT1 +

1
4
arN

l
b2

T2

r2 =

2v
vn

4.10 GENERAL PERIODIC EXCITATIONS

4.10.1 FOURIER SERIES REPRESENTATION
Consider the function H(t) of Figure 4.25. It is periodic of period T. The function is con-
structed such that it is an odd function; that is, if a periodic extension of the function were
performed backward in time (Figure 4.26) and it existed for negative time, then

(4.120)H(- t ) = -H(t )

0
0 0.5 1 21.5

x m
ax

/l

2

1
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7

r1

FIGURE 4.24
Upper bound on absolute displacement as a function of frequency ratio for system with base motion
provided by slider crank mechanism.
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for all t, . Now consider the function

(4.121)

H1(t) is also a periodic function of period T. Now consider the function

(4.122)

H2(t) is a periodic function of period T/2. However, a function of period T2 � T/2 is also
periodic of period T, as

(4.123)

Consider the sequence of functions Hi(t) where

(4.124)

The ith function in the sequence Hi(t) is a periodic function of period Ti � T/i. But a func-
tion of period T/i is also periodic of period T, as

(4.125)Hi(t + T  ) = Hia t + i 

T
i
b = Hi(t + iTi 

) = Hi(t )

Hi(t ) =  sin a2pi
T

tb = sin (i v1t )

H2(t +T  ) = H2a t + 2
T
2

 b = H2(t + 2T2) = H2(t )

H2(t ) = sin a4p
T

tb = sin (2v1t)

H1(t ) = sin a2p
T

tb = sin (v1t )
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FIGURE 4.25
Odd periodic function.

H

–T
2

–T T
2

T
t

FIGURE 4.26
Periodic extension of F (t) one period into
negative time.



248 CHAPTER 4

The sequence of functions Hi(t), for i � 1, 2, 3, . . . is said to be complete over the set
of periodic odd functions, which means that any odd periodic function can be written
as a linear combination of elements of the sequence. That is, there exists constants bi
such that

(4.126)

The sequence of partial sums (with appropriate constants) con-
verges to the function of Figure 4.25.

An even function G(t), illustrated in Figure 4.27, is one where if a periodic extension
were made into negative time

(4.127)

for all . The function G0(t) � 1 is an even function that is periodic of any period.
The function G1(t) � cos � cos(�t) is an even periodic function of period T. Define
the sequence of functions Gi(t) � cos(i�t), i � 1, 2, 3, . . . . The function Gi(t) is an even
function that is periodic of period T/i, and thus, it is also periodic of period T. The
sequence is complete over the set of even periodic functions, which implies there exists con-
stants ai such that

(4.128)

A general periodic function is composed of an odd function and an even function, as
in Figure 4.28:

(4.129)F(t  ) = G(t  ) + H(t )
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�

i = 1

bi sin (i v1t)

–T
2

–T T
2

T

FIGURE 4.27
An even function.
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A function that is neither even or odd.
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Which implies that F(t ) can be written as

(4.130)

where

(4.131)

Equation (4.130) is called the Fourier series representation of F(t). The coefficients in the
expansion are called the Fourier coefficients. They are 

(4.132)

(4.133)

(4.134)

The Fourier series for F(t) has the following properties:
1. The Fourier series representation converges to F(t ) at all t where F(t) is continuous for

.
2. If F (t) has a finite jump discontinuity at t, the Fourier series representation converges

to , which is the average value of F(t).

3. The Fourier series representation converges to the periodic extension of F(t) for t �T.

4. If F(t) is an odd function defined by Equation (4.120), then the Fourier coefficients 
ai � 0 for i � 0, 1, 2, . . . .

5. If F(t) is an even function defined by Equations (4.127), then the Fourier coefficients
bi � 0 for i � 1, 2, . . . .

1
2[F (t 
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F (t )dt
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F (t ) =

a0

2
+ a

�

t = 1

3ai cos (vit ) +  bi  sin  (vit )4

EXAMPLE 4 . 1 5
One period of a periodic excitation is shown in Figures 4.29(a) through (c). Draw the func-
tion that the Fourier series representations for each of these excitations converge to for the
interval [�2T, 2T ].

SO LU T I ON
(a) The function for the convergence of the Fourier series representation is shown in 
Figure 4.29(d). The excitation is even and continuous everywhere.

(b) The function for the convergence of the Fourier series representation for
Figure 4.29(b) is shown in Figure 4.29(e). The function is neither even or odd. It converges
to [2 � (�1)]/2 � 1/2 at t � �2, �1, 0, 1, and 2.

(c) The function for the convergence of the Fourier series representation for Figure 4.29(c)
is shown in Figure 4.29(f). The function is odd. It converges to [2 � (�2)]/2 � 0 at t � �6,
�3, 0, 3, and 6. At t � �4, �1, 2, and 5, the Fourier series converges to [0 � 2]/2 � 1. At
t � �5, �2, 1, and 4, the Fourier series converges to [0 � (�2)]/2 � �1.
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Use of the trigonometric identity for the sine of the sum of two angles and algebraic
manipulation leads to an alternative form for the Fourier series representation

(4.135)

where (4.136)

and (4.137)

Note that , but . The inverse tangent func-
tion has the same argument, but it is multi-valued. A calculator typically evaluates the
inverse tangent between �	/2 and 	/2. The calculation for �i must be carried out using
the four quadrant evaluation of the inverse tangent. Using MATLAB, this involves using
the function atan2(a, b), where a is the numerator of the inverse tangent function,
and b is in the denominator.
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FIGURE 4.29
(a), (b), and (c) One period of periodic excitations for Example 4.15 parts (a), (b), and (c). (d), (e), and
(f) Functions that Fourier series converges to over [�2T, 2T ].
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4.10.2 RESPONSE OF SYSTEMS DUE TO GENERAL
PERIODIC EXCITATION
If F(t) is a periodic excitation for a SDOF system with viscous damping, the differential
equation governing the response of the system is

(4.138)

The principle of linear superposition is used to determine the response as

(4.139)

where Mi and are defined in Equation (4.118) and (4.116), respectively.
The principle of linear superposition used to find the steady-state solution of 

Equation (4.139) applies, because the Fourier series converges to something at every value
of t. Under this condition, the method applies and the response converges. While the exci-
tation may be discontinuous, the response of the system must be continuous.

fi

x (t ) =

1

meqv
2
n

 c a0

2
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�

i = 1

ci Mi  sin (v2
i t + ki - fi ) d

x
$

+ 2zvnx
#

+ v2
nx =

1
meq

 c a0

2
+ a

�

l = 1

ci 
sin(vi t + ki ) d

EXAMPLE 4 . 1 6
A punch press of mass 500 kg sits on an elastic foundation of stiffness k � 1.25 � 106 N/m
and damping ratio � � 0.1. The press operates at a speed of 120 rpm. The punching oper-
ation occurs over 40 percent of each cycle and provides a force of 5000 N to the machine.
The excitation force is approximated as the periodic function of Figure 4.30. Estimate the
maximum displacement of the elastic foundation.

SO LU T I ON
From the given information, the period of one cycle is 0.5 s and the natural frequency of
the system is 50 rad/s.

The excitation force is periodic, but it is neither an even function nor an odd function.
Its mathematical representation is

(a)

The Fourier coefficients for the Fourier series representation for F(t) are

(b)

ai =

2
0.5 s

 ¢
L

0.2 s

0
5000 N cos 4pit dt≤

a0 =

2
0.5 s

 ¢
L

0.2 s

0
5000 N dt +

L

0.5 s

0.2 s
(0) dt≤ = 4000 N

F (t ) = e5000 N 0 6 t 6 0.2 s
0 0.2 s 6 t 6 0.5 s

0.2 0.5 0.7 1.21 t(s)

F(t)

5000 N
FIGURE 4.30
Force developed during punching
operation of Example 4.16 is periodic.
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(c)

and (d)

(e)

The Fourier series representation of the excitation force is

(f)

where (g)

and (h)

An upper bound on the displacement is

(i)

A MATLAB program was written to develop the Fourier series representation for F(t)
and the response of the system, x(t). Figure 4.31 shows the MATLAB generated plots from
which the maximum displacement is determined.
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FIGURE 4.31
(a) Fourier series representation for F(t) with 50 terms. (b) x (t) over one period from 50 terms in the
Fourier series representation.
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4.10.3 VIBRATION ISOLATION FOR MULTI-FREQUENCY
AND PERIODIC EXCITATIONS
Vibration isolation of a system subject to a multifrequency excitation can be difficult,
especially if the lowest frequency is very low. Consider a system subject to an excitation
composed of n harmonics

(4.140)

The principle of linear superposition is used to calculate the total response of the system
due to this excitation. The principle of linear superposition is also used to calculate the
transmitted force leading to

(4.141)

where . Since the harmonic terms of Equation (4.141) are out of phase, their 
maxima occur at different times. A closed-form expression for the absolute maximum
is difficult to attain. The following is used as an upper bound:

(4.142)

An initial guess for the upper bound is obtained by determining the natural frequency such
that the transmitted force due to the lowest-frequency harmonic only is reduced to FT .
Since additional forces at higher frequencies are present, greater isolation is required.
The natural frequency can be systematically reduced from this initial guess, checking
Equation (4.142), until an upper bound is obtained.
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FIGURE 4.31
(Continued)
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EXAMPLE 4 . 1 7
The 500-kg punch press of Example 4.16 is to be mounted on an isolator such that the max-
imum of the repeating force transmitted to the floor is 1000 N. Determine the required
static deflection of an isolator, assuming a damping ratio of 0.1. What is the resulting max-
imum deflection of the isolator during the punching operation?

SO LU T I ON
From Example 4.16, the excitation force is periodic and is expressed by a Fourier series as

(a)

The 2000 N term is the average force applied to the punch during one cycle. It contributes
to the total static load applied to the floor and is not part of the repeating load. Application
of Equation (4.142) to the repeating components of loading gives

(b)

where (c)

An initial guess for an upper bound for the natural frequency is obtained by calculat-
ing r1 such that the transmitted force due to the lowest-frequency harmonic is less than
1000 N. This leads to

(d)

which gives r1 � 2.06. Defining

(e)

it is desired to solve

(f)

A lower bound on the value of r1 that solves the preceding equation is 2.06. A trial-and-error
solution using ten terms in the summation is used to determine r1, leading to r1 � 2.19. For
r1 � 2.19, an upper bound for the natural frequency is calculated as

(g)

The required static deflection of the isolator is . The static deflection
is excessive, and a flexible foundation is required. The total static load on the isolator is the
weight of the machine plus the average value of the excitation force, a0/2 � 2000 N. Thus,
the total static load to be supported is

(h)Fstatic = (500  kg)(9.81  m/s2) + 2000  N = 6905  N
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4.11 SEISMIC VIBRATION MEASURING INSTRUMENTS
Time histories of vibrations are sensed using seismic transducers. A transducer is a device that
converts mechanical motion into voltage. A schematic of a piezoelectric transducer is shown
in Figure 4.32. The transducer is mounted on a body whose vibrations are to be measured.
As the vibrations occur, the seismic mass moves relative to the transducer, causing deforma-
tion in the piezoelectric crystal. A charge is produced in the piezoelectric crystal that is pro-
portional to its deformation. The charge is amplified and displayed on an output device. The
measured signal is the motion of the seismic mass relative to the transducer housing.

4.11.1 SEISMOMETERS
A model of the transducer is shown in Figure 4.33. The piezoelectric crystal is assumed to
provide viscous damping. The purpose of the transducer is to measure the motion of the
body, y(t). However, it actually measures z(t), which is the displacement of the seismic mass
relative to the body. Assume the vibrations of the body are a single-frequency harmonic of
the form

(4.143)

The displacement of the seismic mass relative to the vibrating body is

(4.144)

where Z = Y¶(r, z)  f =  tan-1 ¢ 2zr

1 - r 2≤
z(t) = Z  sin (v t - f)

y (t ) = Y sin vt

Seismic
mass

Preload
spring

Housing

Output
Piezoelectric

element

x(t)

y(t)

Seismic
mass

Housing

z(t)

y(t)

m

k c

FIGURE 4.32
Diagram of a piezoelectric crystal trans-
ducer. As seismic mass moves, a charge is
produced in the piezoelectric element that
is proportional to its deflection. The trans-
ducer actually measures z(t) � x(t) � y(t).

FIGURE 4.33
Schematic representation of the trans-
ducer. The piezoelectric crystal provides
viscous damping and stiffness.
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and 	(r, � ) is defined by Equation (4.53) and r � �/�n, where �n and � are the natural
frequency and damping ratio of the transducer.

Figure 4.11 shows that 	 is approximately 1 for large r (r � 3). In this case the ampli-
tude of the relative displacement which is monitored by the transducer is approximately the
same as the vibration amplitude of the body. From Figure 4.8, it is noted that for large r, � is
approximately 	. Thus for large r, the transducer response is approximately that of the
response to be measured, but out of phase by 	 radians.

A seismic transducer that requires a large frequency ratio for accurate measurement is
called a seismometer. A large frequency ratio requires a small natural frequency for the trans-
ducer. This, in turn, requires a large seismic mass and a very flexible spring. Because of the
required size for accurate measurement, seismometers are not practical for many applications.

The percentage error in using a seismic transducer is

(4.145)

When using a seismometer the percentage error is

(4.146)

4.11.2 ACCELEROMETERS
The acceleration of the body is

(4.147)

Noting that Z/Y � 	(r, � ) and 	 � r2M(r, � ) leads to

(4.148)

Comparing Equation (4.144) to Equation (4.148) makes it apparent that

(4.149)

The negative sign in Equation (4.148) is taken into account in Equation (4.149) by sub-
tracting 	 from the phase. For small r, M(r, �) is approximately 1, and

(4.150)

Thus, for small r, the acceleration of the particle to which the seismic instrument is
attached is approximately proportional to the relative displacement between the particle
and the seismic mass, but on a shifted time scale. A vibration measuring instrument that
works on this principle is called an accelerometer. The transducer in an accelerometer
records the relative displacement, which is electronically multiplied by , which is the
square of the natural frequency of the accelerometer. The acceleration is integrated twice to
yield the displacement.
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The natural frequency of an accelerometer must be high to measure vibrations accu-
rately over a wide range of frequencies. The seismic mass must be small and the spring stiff-
ness must be large. The error in using an accelerometer is

(4.151)

Consider the measurement of the vibration of a multifrequency vibration,
(4.152)

According to the theory of Section 4.9 (the principle of linear superposition), the displace-
ment of a seismic mass relative to the housing of a seismic instrument is

(4.153)

The accelerometer measures . Note that each term in the summation of
Equation (4.153) has a different phase shift. When summed, the accelerometer output will
be distorted from the true measurement. This phase distortion is illustrated in
Figure 4.34(a), which compares the accelerometer output to the signal to be measured for
a 10-frequency vibration. The damping ratio of the accelerometer is 0.25, and the largest
frequency ratio in the measurement is 0.66.

Accelerometers are used only when r � 1. In this frequency range, the phase shift is
approximately linear with r for � � 0.7 (See Figure 4.8). Then
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FIGURE 4.34
Comparison of a(t), which is
the acceleration to be meas-
ured, and which is
the acceleration actually
measured or predicted, for a
vibration composed of 10
different frequencies. (a)
The phase distortion is obvi-
ous with an accelerometer
damping ratio 0.25. (b) The
accelerometer damping ratio
is 0.7, which eliminates the
phase distortion, giving a
phase shift.
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where � is the constant of proportionality. Using Equation (4.154) in Equation (4.153)
leads to

(4.155)

If ri V 1, then M (ri, � ) � 1 for i � 1, 2, . . . , n and

(4.156)

Thus, when an accelerometer with � � 0.7 is used, its output device duplicates the actual
acceleration, but on a shifted time scale. This is illustrated in Figure 4.34(b), which com-
pares the use of Equation (4.153) with  � � 0.7 to the actual acceleration for the example
of Figure 4.34(a).
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FIGURE 4.34
(Continued)

EXAMPLE 4 . 18
What is the smallest natural frequency of an accelerometer of damping ratio 0.2 that meas-
ures to vibrations of a body vibrating at 200 Hz with an error of a 2 percent?

SO LU T I ON
Requiring that the error in the measurement is less than 2 percent is equivalent to requir-
ing that

(a)

Since the damping ratio is 0.2, which is less than , M(r, 0.2) � 1 near r � 0. Thus, 
Equation (a) is equivalent to

M (r, 0.2) � 1.02 (b)

121/

100| 1 - M(r, 0.2) | 6 2
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4.12 COMPLEX REPRESENTATIONS
The use of complex algebra provides an alternative method to the solution of the differen-
tial equations governing the forced response of systems subject to harmonic excitation. It
can prove to be less tedious than the use of trigonometric solutions. Recall that if Q is a
complex number, it has the representation

(4.157)

where Q r � Re (Q) is the real part of Q and Q i � Im (Q) is the imaginary part of Q. The
complex number also has the polar form

(4.158)

where A is the magnitude of Q and � is the phase of Q. Euler’s identity

(4.159)

leads to

(4.160)

and (4.161)

In view of Euler’s identity, it is noted that

(4.162)

Thus the standard form of the differential equation governing the motion of a linear one
degree-of-freedom system subject to a single-frequency sinusoidal excitation can be written as

(4.163)x
$

+ 2 zvn x# + v2
nx =

F0

m
 Im(e ivt )

cos (vt ) = Re (e  
ivt )  sin (vt ) = Im (e 

ivt )

f = tan-1 ¢Q i

Q r

 ≤
A = 2Q2

r + Q2
i

e 
if

= cos f + i sin f

Q = Ae 
i f

Q = Q r + iQ i

or

(c)

Equation (c) is solved leading to r � 0.146 or r � 1.349. However, the accelerometer
works on the principle of small r, so the second solution is rejected. It is also rejected
because for some r � 1.349, M(r, 0.2) � 0.98 and when the error in the accelerometer
measurement is greater than 2 percent. Thus, it is required that r � 0.146, leading to

(d)
v

vn

6 0.146 Q vn 7

v

0.146
=

¢200 

cycles

s
≤ ¢2p  rad

cycle
≤

0.146
= 8.60 * 103 rad

s

1

2(1 - r 2)2
+ 32(0.2)r42 6 1.02
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Then the solution of Equations (4.163) is the imaginary part of the solution of
(4.164)

A solution of Equation (4.164) is assumed as

(4.165)

where H is complex. Substitution of Equation (4.165) into Equation (4.164) leads to

(4.166)

Equation (4.166) can be rewritten by using the definition of the frequency ratio r � � /�n:

(4.167)

Multiplying the numerator and denominator by the complex conjugates of the denominator
puts H in its proper form as

(4.168)

Then, from Equations (4.160) and (4.161), H can be written as

(4.169)

where (4.170)

and (4.171)

Equations (4.170) and (4.171) are the same as those derived by using a trigonometric solu-
tion. The system response is

(4.172)

A graphical interpretation of the complex representation of the excitation and response is
shown in Figure 4.35.

4.13 SYSTEMS WITH COULOMB DAMPING
The differential equations derived using the free-body diagram of Figure 4.36 governing
the response of a one degree-of-freedom system with Coulomb damping due to a harmonic
excitation are

(4.173a)

(4.173b)

where Ff � �mg is the magnitude of the friction force.

mx
$

+ kx = F0 sin  (vt + c) + Ff            x
#

6 0

mx
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+ kx = F0 sin  (vt + c) - Ff            x
#

7 0

x (t ) = Im (Xe -ife 
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1 - r 
2 b

X =

F0

mv2
n

1

2(1 - r 2)2
+ (2zr)2

H = Xe -if

H =

F0

mv2
n3(1 - r 2)2

+ (2zr)24(1 - r 2
- 2izr)

H =

F0

mv2
n(1 - r 2

+ 2izr)

H =

F0

m(v2
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+ 2i zvvn)

x (t ) = He ivt
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m
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FIGURE 4.35
Graphical representation
of excitation and response
in complex plane.
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If the initial displacement and velocity are both zero, motion commences only when
the excitation force is as large as the friction force. Motion will continue until the resultant
of the spring force and the excitation force is less than the friction force,

(4.174)

The resultant eventually grows large enough such that the inequality in Equation (4.174)
is no longer satisfied, when motion again commences. This process is known as stick-slip
and can occur several times during one cycle of motion.

Equation (4.173) is nonlinear. Thus, the principles guiding the solution of linear dif-
ferential equations are not applicable. Specifically, the general solution cannot be written
as a homogeneous solution independent of the excitation plus a particular solution. Thus,
even though free vibrations of a system with Coulomb damping decay linearly and even-
tually cease, it is not possible to predict the particular solution as a steady-state solution.
Indeed, from the preceding discussion, the stick-slip process should occur for large time
and cannot be predicted by a particular solution.

The analytical solution to Equation (4.173) can be attained using a procedure similar
to that of Section 3.7 used to obtain the free-vibration response of a system subject to
Coulomb damping. The solution of Equations (4.173a and b) are readily available over the
time that the equation governs. The constants of integration are determined by noting that
the velocity is zero and the displacement is continuous at the time when the equation first
begins to govern. Equation (4.174) must be checked over each half-cycle to determine if
and when the mass sticks.

The analytical solution is very involved and difficult to use to predict long-term behav-
ior. In many applications only the maximum displacement is of interest. It is a function of
five parameters

(4.175)X = f  (m, v, vn, F0, Ff  
)

| kx - F0 sin vt | 6 Ff 
Q x# = 0

N

=kx

mg

External
forces

Effective
forces

Ff = µmg

F0 sinwt

N

mẍ 

mẍ 

=
kx

mg

Ff = µmg

F0 sinwt

(a)

(b)

FIGURE 4.36
FBDs for systems subject
to Coulomb damping and a
harmonic excitation at an
arbitrary instant for (a)

and (b) .x# 6 0x# 7 0
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Using [M], [L], and [T] as basic dimensions, the Buckingham Pi theorem implies that
the nondimensional formulation involves 6 � 3 � 3 dimensionless groups. The non-
dimensional formulation of Equation (4.176) is

(4.176)

where (4.177)

For small �, the friction force is much less than the magnitude of the excitation force, and
it is expected that the transient solution will decrease as t increases and a harmonic steady
state of the form

(4.178)

exists for large t. In this case the effects of Coulomb damping can be reasonably approxi-
mated by an equivalent viscous damping model as discussed in Section 3.9. The equivalent
viscous damping coefficient for Coulomb damping is

(4.179)

An equivalent damping ratio is defined by

(4.180)

Rearrangement of Equation (4.180) leads to

(4.181)

where Mc, the magnification factor for Coulomb damping, is

(4.182)

Using eq in place of  in Equation (4.42) leads to

(4.183)

which is solved for Mc, yielding

(4.184)

The magnification factor for Coulomb damping is plotted in Figure 4.37 as a function of
r for several values of �. The following are noted from Equation (4.184) and Figure 4.37.

Mc(r, i) = Q
1 - a4i

p b
2

(1 - r 2)2

Mc(r, i) =

1

A(1 - r 2)2
+ ¢ 4i
pMc
≤ 2

Mc =

mv2
nX

F0

zeq =

2i  F0

prmv2
nX

=

2i
p r Mc

zeq =

ceq

2mvn

=

2Ff

pmvvnXc

ceq =

4Ff

pvXc

x (t ) = Xc sin (v t - fc 
)

i =

Ff

F0

mv2
nX

F0

= f (r, i)
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1. The small � theory predicts that Mc(r, �) exists only for � � 	/4. The equivalent 
viscous damping theory cannot be used to predict the maximum displacement 
for � � 	/4.

2. (4.185)

3. Resonance occurs for systems with Coulomb damping with small � when r � 1.
Resonance occurs because, for small �, the excitation provides more energy per cycle
of motion than is dissipated by the friction. Since free vibrations sustain themselves at
the natural frequency, the extra energy leads to an amplitude buildup.

4. For all values of r, Mc is smaller for larger �.

When Equation (4.181) is substituted into Equation (4.45) and the resulting equation
manipulated, the following result for the phase angle occurs:

(4.185a)

(4.185b)

The phase angle is constant with r, except that it is positive for r � 1 and negative  
for r � 1.

The preceding theory is sufficient for small �. For larger �, the equation is truly non-
linear and the results more complex. However, it is expected that larger � leads to smaller-
amplitude vibrations and less serious problems. In the absence of initial energy, vibrations
will not be initiated for � � 1.

fc = - tan-1≥
4i
p

A1 - a4i
p b

2
¥             r 7 1

fc = tan-1≥
4i
p

A1 - a4i
p b

2
¥             r 6 1

limr  :� Mc(r, i) =

1
r 2

0
0 1 2

1
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3

r

ι = 0.7 ι = 0.05

ι = 0.6
ι = 0.4

M
c

FIGURE 4.37
Mc(r, �) versus r for different
values of � using an equivalent
viscous-damping coefficient.



264 CHAPTER 4

EXAMPLE 4 . 1 9
A Scotch yoke mechanism operating at 30 rad/s is used to provide base excitation to a block
as shown in Figure 4.38. The block has a mass of 1.5 kg and is connected to the Scotch
yoke through a spring of stiffness 500 N/m. The coefficient of friction between the block
and the surface is 0.13. Approximate the steady-state response of the block.

SO LU T I ON
The differential equation governing the motion of the block is

(a)

The amplitude of the excitation is kl. Thus

(b)

The system’s natural frequency and frequency ratio are

(c)

The Coulomb damping magnification factor is

(d)

The steady-state response is calculated from

(e)

(f)

The phase angle is calculated from Equation (4.185b) as

(g)

The response of the system is

(h)x (t ) = 0.0588 sin (18.26t + 0.0488)m

fc = -  tan -1≥
4(0.038)
p

1 - a4(0.038)
p

b2
¥ = -0.0488

X = (0.1  m)(0.587) = 0.0588  m

mv2
nX

kl
=

X
l

= Mc(1.64, 0.038)

Mc(1.64, 0.038) = Q
1 - c4(0.038)

p
d2

31 - (1.64)242 = 0.587

vn = A
k
m

= 18.26  rad/s           r =

v

vn

= 1.64

i =

mmg

kl
=

(0.13)(1.5  kg)(9.81  m/s2)

(500  N/m)(0.1  m)
= 0.038

mx
$

+ kx = kl   sin vt < mmg

l = 10 cm

ω = 30 rad/s

1.5 kg

k = 500 N/m

μ = 0.13

FIGURE 4.38
Scotch yoke mechanism providing
base displacement for system with
Coulomb damping.
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4.14 SYSTEMS WITH HYSTERETIC DAMPING
Recall from Section 3.8 that the energy dissipated per cycle of motion for a system with
hysteretic damping is independent of frequency but proportional to the square of the
amplitude. This leads to the direct analogy between viscous damping and hysteretic damp-
ing and the development of an equivalent viscous damping coefficient

(4.186)

The true forced response of a mass-spring system with hysteretic damping is non-linear.
The equivalent viscous damping coefficient of Equation (4.186) is valid only when the
excitation consists of a single-frequency harmonic. During the initial part of the response,
the transient solution and the particular solution have harmonic terms with different fre-
quencies. On the basis of the viscous damping analogy, it is suspected that the transient
solution decays leaving only the steady-state solution after a long time. The differential
equation governing the steady-state response of a mass-spring system with hysteretic damp-
ing due to a single-frequency harmonic excitation is assumed to be

(4.187)

It is noted that the generalization of Equation (4.187) to a more general excitation is not
permissible because the damping approximation is valid only for a single-frequency har-
monic excitation. The equation is also nonlinear so that the method of superposition is not
applicable to determine particular solutions for multifrequency excitations.

The steady-state solution of Equation (4.187) is obtained by comparison with
Equation (4.2). The equivalent damping ratio is

(4.188)

The steady-state response is

(4.189)

where Xh and �h are obtained by analogy with Equations (4.37), (4.42), and (4.45)

(4.190)

(4.191)

(4.192)

Equations (4.191) and (4.192) are plotted in Figures 4.39 and 4.40. The following are
noted from these equations and figures:

1. (4.193)Mh(0, h) =

1

21 + h 2

fh = tan-1a h
1 - r 2 b

Mh(r, h) =

1

2(1 - r 2)2
+ h 2

mv2
nXh

F0

= Mh(r, h)

x (t ) = Xh sin (vt - fh 
)

zeq =

h
2r

mx
$

+

kh
v

 x# + kx = F0 sin (vt + c)

ceq =
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2. (4.194)

3. For a given h, when r � 1 and the maximum value of .

4. The phase angle is non-zero for r � 0. The response is never in phase with the excitation.
5.

Most damping is not viscous, but hysteretic. The differences are slight, but noticeable.
Viscous damping is often assumed, even when hysteretic damping is present. The viscous
damping assumption is easier to use because the damping ratio is independent of fre-
quency. For hysteretic damping, the damping ratio is higher for lower frequencies.

If the concept of complex frequency from Section 4.13 is used, the differential equa-
tion for the forced response with hysteretic damping becomes

(4.195)mx$ +
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v

 x# + kx = F0e
ivt
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Magnification factor for
hysteretic damping for
different values of h.

FIGURE 4.40
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ing is never in phase with the
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Assuming a solution of the form, results in
(4.196)

which is the same response obtained from the differential equation as

(4.197)

Thus, the forced response of a system with hysteretic damping can be modeled by a system
with a complex stiffness of k (1 � ih).

mx
$

+ k(1 + ih)x = F0e
ivt

H =

F0

-mv2
+ k (1 + ih)

x (t ) = He ivt

EXAMPLE 4 . 2 0
A 100-kg lathe is mounted at the midspan of a 1.8-m simply supported beam 
(E � 200 � 109 N/m, I � 4.3 � 10�6 m4). The lathe has a rotating unbalance of 0.43 kg . m
and operates at 2000 rpm. When a free vibrations test is performed on the system it is
found that the ratio of amplitudes on successive cycles is 1.8 to 1. Determine the steady-
state amplitude of vibration induced by the rotating unbalance. Assume the damping is
hysteretic.

SO LU T I ON
The beam’s stiffeness is

(a)

The natural frequency and frequency ratio are

(b)

(c)

The logarithmic decrement and hysteretic damping coefficient are calculated as

(d)

The appropriate form of � for hysteretic damping is

(e)

(f)

The lathe’s steady-state amplitude is

(g)X =

m0e

m
¶h(0.787, 0.187) =

0.43  kg # m

100  kg
 (1.46) = 6.3  mm

¶h(0.787, 0.187) =

(0.787)2

231 - (0.787)242 + (0.187)2
= 1.46

¶h(r, h) =

r 2

2(1 - r 2)2
+ h 2

d = ln  1.8 = 0.588  h =

d

p
= 0.187

r =

v

vn

=

(2000  rev/min)(2p  rad/rev)(1   min /60  s)

266.1  rad/s
= 0.787

vn = A
k
m

= A
7.08 * 106

  N/m
100  kg

= 266.1  rad/s

k =

48EI
L3 =

48(200 * 109
  N/m2)(4.3 * 10-6

  m4)

(1.8  m)3 = 7.08 * 106
  
 N/m
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4.15 ENERGY HARVESTING
In MEMS systems, the desire is to harvest energy from vibration: that is, to capture the
energy from unwanted vibrations. A crude energy harvester, shown in Figure 4.41, con-
sists of a seismic mass attached through an elastic element to the body whose vibrations
are to be harvested (say, a machine). In addition to the stiffness which is necessary to
generate vibrations of the harvester, a damping element must be present. The damping
is to facilitate power transfer from the harvester and convert the power to electrical
energy.

The harvester is subject to the vibrations of its base, which excites the harvester. The
relative vibration between the harvester and the machine is

(4.198)

The energy harvested by the viscous damper over one cycle of motion is the work done by
the force in the viscous damper as leading to

(4.199)

The average power is

(4.200)

Substituting Z � Y�(r, � ), c � 2��mn, and yields

(4.201)

A nondimensional average power is defined as

(4.202)

Equation (4.202) is a nondimensional relationship for the average power generated by a
specific energy harvester over a range of frequencies. The nondimensional function 
� (r, �) is plotted in Figure 4.42 for several values of �.

The maximum average power is obtained from

(4.203)

Evaluation of Equation (f ) leads to
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=
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m
x
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FIGURE 4.41
An energy harvester captures
the vibrations of a body and
converts the energy of the
vibration to electrical energy.
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The solutions to Equation (g) are

(4.205)

The maximum average power is obtained by substituting Equation (4.205) into Equa-
tion (4.205). Equation (4.205), which is plotted in Figure 4.43, shows that for 

a real value of r that solves Equation (4.204) does not exist. The value z 7
13
3 = 0.577

r = � c3
2

(2 - 4z2) �
1
2
232 - 144z2

+ 144z4 d0.5
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FIGURE 4.42
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Solution of Equation (4.204)
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of r for which the power has a maximum only exists for � � 0.577. The plot of the maxi-
mum average power over the range 0 	 � 	 0.577 is plotted in Figure 4.44. The maximum
average power reaches a maximum around � � 0.45.

Figure 4.44 is the plot of maximum power versus � for an energy harvester of a given
natural frequency; the natural frequency appears in the nondimensionalization of �. In
energy harvesting, the task is to decide upon the best natural frequency �n to harvest the
energy at the vibration frequency �. A reformulation yields of the average power dissipated
by the viscous damper such that � is a parameter in the non-dimensionalization of and
yields

(4.206)

Figure 4.45 shows 
(r, �)versus r for several values of �. The maximum of 
(r, �) over all
r is obtained from

(4.207)

which yields

(4.208)

The real solution of Equation (4.208) is plotted in Figure 4.46, and the maximum average
power from Equation (4.206) is plotted in Figure 4.47 on page 272.

r = c1
3
a1 - 2z2 � 24 - z2

+ z4b d0.5

d £

dr
=

d
dr

 c zr

(1 - r 2)2
+ (2zr)2 d =

z3-3r 4
+ (2 - 4z2)r 2

+ 14
3(1 - r 2)2

+ (2zr)242 = 0

P
mv3Y 2 =

z

r
¶

2(r, z) = £  (r, z)

 P

0
0 0.1 0.2 0.3

z
0.4 0.70.5 0.6

ψ
m

ax

1.5

1

0.5

2

2.5FIGURE 4.44
�max versus �.



Harmonic Excitation of SDOF Systems 271

0
0 0.5 1.51

Φ

1

0.5

1.5

2

2.5

3

r

z = 0.1

z = 0.2

z = 0.3

z = 0.4

z = 0.5

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

0 0.1 0.2 0.3 0.4

z
0.70.5 0.6

r

1

FIGURE 4.45

 (r, �) versus r for several
values of �.

FIGURE 4.46
Solution of Equation (4.207)
as a function of �.



272 CHAPTER 4

The maximum power is predicted to approach infinity for � � 0, but this is the reso-
nance condition. A steady-state is not reached, so the solution is not applicable. Figure 4.47
suggests that the optimal damping ratio is small. However, part of the damping ratio is
from the electrical circuit that captures the energy. Thus, damping is required. However,
from Figure 4.45, it is clear that a larger damping ratio gives a wider range of frequencies
over which the harvester can be used.
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FIGURE 4.47

max versus �.

EXAMPLE 4 . 2 1
An energy harvester is being designed with a damping ratio of 0.1 to harvest vibrations at
an amplitude of 0.1 mm 30 Hz. The mass of the harvester is 1.5 g. What is the theoreti-
cal power harvested in one hour of operation?

SO LU T I ON
Equation (4.208) implies that r � 0.9962, and the natural frequency of the harvester
should be

(a)

The nondimensional function 
 is

(b)£(0.9962, 0.1) =

(0.1)(0.9962)

31 - (0.9962)24 + 32(0.1)(0.9962)42 = 2.50

vn = 0.9962a30 

cycles

s
b a 2p  rad

cycle
b = 187.8  rad/s
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The average power harvested over one cycle is obtained from Equation (4.206) as

(c)

The number of cycles executed in one hour is

(d)

The power harvested in one hour is

(e)P = n P = 108,000(0.2511  mW) = 27.2  W

n = (1  hr)(3600  s/hr)(30  cycles/s) = 108,000  cycles

(0.0001m)2(2.50) = 0.2517 mW

 P = mv3Y  
2
£(0.9962, 0.1) = (0.0015 kg)(188.5 rad/s)3

4.16 BENCHMARK EXAMPLES

4.16.1 MACHINE ON FLOOR OF INDUSTRIAL PLANT
During operation, the machine develops a sinusoidal force of amplitude of 20,000 lb at a
speed of 80 rad/s. The ratio of the excitation frequency to the natural frequency is

(a)

Assuming the system is undamped, the steady-state amplitude of the machine is

(b)

Assuming viscous damping with a damping ratio of 0.0110, the steady-state amplitude is

(c)

The amplitude of the machine assuming hysteretic damping of the hysteretic damping
coefficient 0.0347 is

(d)

The force transmitted to the floor is too large. A vibration isolator is designed to pro-
tect the floor from large transmitted forces generated during operation of the machine.
An isolator modeled as a spring in parallel with a viscous damper is placed between the
machine and the foundation. If the mass of the beam is ignored, the isolator is in series
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with the beam, as illustrated in Figure 4.48(a), but the stiffness of the beam is much
larger than the stiffness of the isolator. The equivalent stiffness is approximately that of
the isolator. Thus, the flexibility of the beam is ignored, and the isolator is designed based
upon a SDOF model, as illustrated in Figure 4.48(b).

To limit the transmitted force to 5000 lb,

(e)

which is equivalent to

(f)

The required value of r is obtained by solving Equation (f ) for a specific value of �. The
maximum natural frequency is . The maximum stiffness is
determined from , recalling that the weight of the machine is 1000 lb. The results 
of the calculation for � � 0 are r � 2.24, and . 

The mass of the machine without the added inertia effects of the beam was used in the
calculation of the stiffness.

The assumption that the stiffness of the beam is much larger than the stiffness of the
isolator is checked. The maximum isolator stiffness is 3.93 � 104 lbf/ft, whereas the stiff-
ness of the beam is 7.74 � 105 lbf/ft, which is 19.7 times the stiffness of the isolator. Thus,
the assumption is valid.

Allowing the maximum transmitted force to vary, Figure 4.49 shows the maximum
stiffness as a function of maximum transmitted force for � � 0 and � � 0.1.

4.16.2 SIMPLIFIED SUSPENSION SYSTEM
The differential equation of the vehicle as it traverses a road is

(a)

The displacement of the vehicle relative to the road is z � x � y and is governed by the
equation

(b)mz
$

+ cz# + kz = m y
$

m x
$

+ cx# + kx = cy# + ky

k = 3.93 * 104 lbf/ftvn = 35.6 rad/s,
k = mv2

n

vn =
v
r  with v = 80 rad/s

0.25 = A
1 + (2zr)2

(1 - r)2
+ (2zr)2

T(r, z) =

FT

F0

=

5000  lb

20,000  lb
= 0.25

ciki

m

x

kb
ck

m

x

(a) (b)

FIGURE 4.48
(a) When the mass of the beam is ignored, the
beam is in series with the isolator. As an approxi-
mation, when a series combination is used to cal-
culate the equivalent stiffness of the isolator and
the beam, the stiffness of the beam is much larger
than the stiffness of the isolator and can be
ignored. (b) SDOF model of isolator between
the machine and the beam.
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or

(c)

Consider the vehicle having a constant horizontal speed v as it traverses a road with a sinu-
soidal road contour . Since the vehicle is traveling at a constant horizontal 
speed, it traverses a distance � in time vt. Thus, the time-dependent displacement imparted to
the vehicle is . Thus, the input is a sinusoidal input of frequency .
The input to the relative displacement equation is a frequency-squared excitation of
amplitude m�2Y. The key steady-state quantities are the steady-state amplitude of relative
displacement

(d)

and the amplitude of absolute acceleration

(e)

The amplitude of absolute acceleration can be written as

(f)

Plots of Z versus vehicle speed and A versus speed of the empty vehicle (for a half-loaded
vehicle and a fully loaded vehicle for d � 5 m and Y � 0.02) are given in Figures 4.50 and
4.51, respectively. The plots are made for a vehicle with �n � 6.32 rad/s and a damping
ratio of 0.316.

A
v2

nY
= r 2T(r, z) = R(r, z)

A = v2X = v2YT(r, z)

Z = Y¶(r, z)

v =
2pv

dy (t ) = Y sin 12pv
d t2

y (j ) = Y sin 12pjd 2

z
$

+ 2zvnz
#

+ v2
nz = y

$

FIGURE 4.49
Maximum stiffness of isolator
as a function of maximum
transmitted force for � � 0
and � � 0.1.
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Next, consider the vehicle as it traverses a periodic road whose contour is shown in
Figure 4.52, which models a road with expansion joints every 3 m. The Fourier series for
the road contour is

(g)y (j) =

a0

2
+ a

�

i = 1

(ai cos bi j + bi sin bi 
j )

0

0.005

0.015

0.02

0.03

0 105 2015 25 3530 5040 45

Z
/Y

0.025

0.01

0.035

v (m/s)

m = 300 kg
m = 450 kg
m = 600 kg

FIGURE 4.50
Z/Y versus speed for a vehicle
that is empty, half-loaded,
and fully loaded.
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A
/m

w
2 n

5

2

6

v (m/s)

m = 300 kg
m = 450 kg
m = 600 kg

FIGURE 4.51
A/w2Y versus speed for the
empty vehicle, a half-loaded
vehicle, and a fully loaded
vehicle.
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where

(h)

The function defining the road joints is expressed as

(i)

The Fourier coefficients are

(j)

(k)

and

(l)
= L-

0.01
pi

 e c1 +

i 2

25[1 - (0.2i )2]
d [cos(0.4pi ) - 1] f i Z 5

0    i = 5

bi =

2
3 mL

T

0
y (j) sin(bi j)dt =

2
3L

0.6

0
0.02 a1 - cos2  

p

0.6
 jb  sin a2

3
 pi jbd j

= L
0.01

pi
 e1 +

i 
2

25[1 - (0.2i )2]
f  sin (0.4pi ) i Z 5

         0.0020    i = 5

ai =

2
3 mL

T

0
y (j ) cos (bi j ) dt =

2
3L

0.6

0
0.02a1 - cos2

 

p

0.6
 jb  cos a  

2
3

 pi jbd j

a0 =

2
3 mL

T

0
y (j ) d j =

2
3L

0.6

0
0.02a1 - cos2 

p

0.6
 jbdj = 0.004

y (j ) = e0.02 11 - cos2 p
0.6 j2 0 … j … 0.6 m

0 0.6 … j … 3 m 

li =

2pi
3

–0.005

0

0.01

0.015

0 21 43 5 76 108 9

y(
x  

)

0.02

0.005

0.025

x

0.02 1 – cos2 px
0.6

FIGURE 4.52
Periodic road contour with
expansion joints every 3 m.
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The Fourier series converges y(�), as illustrated in Figure 4.53. Rewriting the Fourier
series as

(m)

where

(n)ci = (a2
i + b2

i )
1/2

= L
0.01
pi

 e1 +

i 2

25[1 - (0.2i )2]
f  22(1 - cos 0.4pi )  i Z 5

                                0.02                                        i = 5

y (j) =

a0

2
+ a

�

t =  1
ci  sin (bi  

j + ki 
)

FIGURE 4.53
Convergence of Fourier series representation to y(�) with (a) 5 terms, (b) 8 terms, (c) 15 terms, and
(d) 25 terms.
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and

(o)

Since the vehicle is traveling at a constant horizontal speed, it traverses a distance � in
time vt. Thus, the motion excitation applied to the wheels is y(vt) or

(p)y (t ) =

a0

2
+ a

�

t = 1

ci sin (bi vt + ki )

ki = tan-1 
ai

bi

= μ
tan - 1J sin 0.4 pi

- (cos 0.4 pi - 1) K      i Z 0  

          -

p

2
                               i = 5

0
–5

0

5

10

15

20
×10–3

0.5 1 1.5

(c)
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0
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0
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(d)

x

y(
x)

2 2.5 3

FIGURE 4.53
(Continued)
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The differential equation governing the displacement of the body of the vehicle is

(q)

or

(r)

Noting that the solution of Equation (q) with a single-frequency term on the right-hand
side with magnitude Y is y(t) � YT(r, �) sin (�t � �), the principle of linear superposition
is applied yielding

(s)

where

(t)

The plot of the steady-state response over on period is given in Figure 4.54 for v � 30 m/s.
The acceleration is

(u)

The steady-state acceleration is plotted in Figure 4.55 for v � 30 m/s.

a (t ) = a
�

i = 1

(liv)2T (ri, z)ci sin (livt + ki - li )

ri =

vBi

vn

x (t ) =

a0

2
+ a

�

i =1

T (ri, z)ci sin (bivt + ki - li 
)

+ v2
n c

a0

2
 + a

�

i = 1

ci sin (bi vt + ki 
) d

x
$

+ 2zvn x# + v2
n 
x = 2za

�

t = 1

ci 
biv cos (bivt + ki 

)

x
$

+ 2zvnx# + v2
nx = 2zvn y# + v2

n y

0 0.05 0.1 0.15
t (s)

0.2 0.25 0.3 0.35
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2.7
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FIGURE 4.54
Displacement of vehicle
as a function of time for
v � 30 m/s.
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4.17 FURTHER EXAMPLES

0 0.05 0.1 0.15
t (s)

0.2 0.25 0.3 0.35
–10

15

10

5

0

–5

a 
(m

/s
2 )

FIGURE 4.55
Acceleration of vehicle as a
function of time for v � 30 m/s.

EXAMPLE 4 . 2 2
A 50-kg machine tool is mounted on an elastic foundation that is modeled as a spring and
viscous damper in parallel. In order to determine the properties of the foundation, a force
with a magnitude of 8000 N is applied to the machine tool at a variety of speeds. It is
observed that the maximum steady-state amplitude is 2.5 mm, which occurs at 35 Hz.
Determine the equivalent stiffness and equivalent damping coefficient of the foundation.

SO LU T I ON
The maximum steady-state amplitude occurs for a frequency ratio of 

and corresponds to a magnification factor . Substituting 
given numbers leads to

(a)

and

(b)

Eliminating �n between Equations (a) and (b) yields

(c)

Rearranging Equation (c) leads to

(d)6.286z4
- 6.286z2

+ 1 = 0

0.756 =

1 - 2z2

2z21 - z2

(50 kg) v2
n (0.0025  m)

8000 N =

1

2z21 - z2

(35 cycles/s)(2p rad>cycle)

vn

= 21 - 2z2

=

1

2z11 - z2
Mmax =

m v2
n 
Xmax

F0

rm  
=  vm /vn =1 1 -  2z2
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whose solutions are � � 0.446, 0.895. The smaller value of � is the appropriate solution,
as it is less than for which M reaches a maximum. Thus,

(e)

The stiffness is calculated is
(f)

and the damping coefficient is

(g)c = 2zmvn = 2(0.446)(50 kg) (245.7 rad/s) = 1.26 * 104 N # s/m

k = mv2
n = (50 kg) (245.7 rad/s)2

= 4.0 * 106 N/m

vn =

v

21 - 2z2
=

70p rad/s

21 - 2(0.446)2
= 283.2 rad/s

1>12

EXAMPLE 4 . 2 3
A 65 kg industrial sewing machine operates at 125 Hz and has a rotating unbalance of
0.15 kg ·m. The machine is mounted on a foundation with a stiffness of 2 � 106 N/m and
a damping ratio of 0.12. Determine the machine’s steady amplitude.

SO LU T I ON
The natural frequency of the system is

(a)

The frequency ratio for the excitation is

(b)

The steady-state amplitude is found from

(c)

Equation (c) is solved, yielding

(d)X =

m0e

m
¶(4.48, 0.12) = a0.15 kg # m

65 kg
b1.051 = 2.43 mm

mX
m0e

= ¶(4.48, 0.12) =

(4.48)2

2(1 - 4.482)2
+ 32(0.12)(4.48)42 = 1.051

r =

v

vn

=

(125 cycles/s)(2p rad/cycle)

175.5 rad/s
= 4.48

vn = A
k
m

= A
2 * 106 N/m

65 kg
= 175.4 r/s

EXAMPLE 4 . 24
A 500 kg tumbler has a rotating unbalance of 12.6 kg, which is 5 cm from its axis of rota-
tion. For what stiffnesses of an elastic mounting of damping ratio 0.06 will the tumbler’s
steady–state amplitude be less than 2 mm for all speeds of operation between 200 rpm and
600 rpm?

SO LU T I ON
From the given information, the allowable value of the nondimensional parameter � is

(a)¶all =

mXall

m0e
=

(500 kg)(0.002 m)

(12.6 kg)(0.05 m)
 = 1.587
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The curve of �(r, 0.06) versus r is shown in Figure 4.56. Since �all � 1 there are two values
of r for which �(r, 0.06) � �all. These can be found by solving

(b)

The solutions are r � 0.788, 1.635. Consider first the lower value of r, � 	 1.587 for r 	 0.788.
Thus, if r � 0.788 corresponds to � � 600 rpm, the steady-state amplitude is less than 2 mm
for all speeds less than 600 rpm. Thus, requiring r 	 0.788 or equivalently ,
this implies �n � 761.4 rpm or . This
leads to

(c)

If r � 1.635 corresponds to � � 200 rpm, then � 	 1.537 or X 	 2 mm for all � � 200 rpm.
Thus, r � 1.635 implies that , which leads to �n 	 122.3 rpm or 
�n 	 12.81 rad/s. The allowable stiffnesses are

(d)

Thus, the steady-state amplitude of the machine is less than 2 mm at all speeds between
200 rpm and 600 rpm if k � 3.18 � 106 N/m or k 	 8.21 � 104 N/m.

k 7 (500 kg) (12.81 rad/s)2
= 8.21 * 104 N/m

200 rpm
vn

7 1.635

k 7 1500 kg2a79.73 

r
s
 b2

= 3.18 * 106 N/m

vn 7 1761.4 rev
min212p rad

rev 211 min
60 s 2 = 79.73 rad/s

600 rpm
vn

6 0.788

r 2

2(1 - r 2)2
+ 32(0.06)r42 = 1.587

0 0.5 1 1.5 2 2.5 3 3.5
r

r1 r2 4
0

0.5

1

1.5

1.587

2

2.5

3

Λ
 (

r,
 0

.0
6)

FIGURE 4.56
�(r, 0.06) versus r.

EXAMPLE 4 . 2 5
What is the minimum static deflection of an isolator to provide 85 percent isolation to a
fan that operates at speeds between 1500 rpm and 2200 rpm if (a) the isolator is undamped
and (b) the isolator has a damping ratio � � 0.1?

SO LU T I ON
Eighty-five percent isolation leads to a transmissibility ratio of T � 0.15.

(a) If the isolator is undamped, the appropriate equation to use is

(a)T(r, 0) =

1
r 2

- 1
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which leads to and r � 2.77. Since T(r, 0) 	 0.15 for r � 2.77, it is 
required that r � 2.77 corresponds to the lowest allowable frequency at � � 1500 rpm �
157.1 rad/s. To this end,

(b)

which gives �n � 56.7 rad/s. The required static deflection is

(c)

(b) If the isolator has a damping ratio of 0.1, then

(d)

Squaring both sides and rearranging leads to

(e)

whose solution is r � 2.953. Following the procedure in part (a), the required natural fre-
quency is calculated as �n � 53.2 rad/s and s � 3.5 mm. The increased damping ratio
leas to a lower natural frequency and a higher required static deflection.

r 4
- 3.737r 2

- 43.44 = 0

T(r, 0.1) = 0.15 = A
1 + 32(0.1)r42

(1 - r 2)2
+ 32(0.1)r42

s =

mg

k
=

g

v2
n

=

9.81 m/s2

(56.7 rad/s)2 = 3.1 mm

157.1 rad/s
vn

= 2.77

0.15 =
1

r 2
- 1

EXAMPLE 4 . 26
A 50 kg machine has a rotating unbalance. The machine is mounted on an elastic founda-
tion with a stiffness of 1.3 � 105 N/m, and damping ratio of 0.04 and operates at 1500 rpm.
An accelerometer is mounted on the machine to monitor its steady-state vibrations.
(a) What is the minimum natural frequency of an accelerometer of damping ratio 0.2 such

that it measures the vibrations of the machine with no more than 2 percent error? 
(b) When the accelerometer of part (a) is used, it measures a steady-state amplitude of 

14.8 m/s2. What is the magnitude of the rotating unbalance?
(c) What is the accelerometer output if the machine operates at 1200 rpm?

SO LU T I ON
(a) The percent error in the accelerometer measurement is E � 100�1 � M (r, �)| where
the frequency ratio refers to the ratio of the frequency of excitation to the natural frequency
of the accelerometer. The accelerometer works in the range of small r and

. In order for the error to be less than 2 percent,

(a)

or M(r, 0.2) 	 1.02, which implies that

(b)

The solutions of Equation (a) are r 	 0.146 and r � 1.35. However, requiring r � 1.35
will lead to the error being greater than 2 percent for when 100[1 � M(r, 0.2)] 	 0.98.

1

2(1 - r 2)2 + 32(0.2)r42 6 1.02

1003M(r, 0.2) - 14 6 2

z 6
1
12

. Thus, M(r, z) 7 1
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Thus, the minimum natural frequency for the error to be less than 2 percent requires that
r � 1.46 corresponds to � � 1500 rpm. To this end

(c)

which leads to �n � 1076 rad/s.
(b) The error in the measurement is 2 percent. Thus, if A is the actual acceleration and

B is the measurement, then B � 1.02A. With B � 14.8 m/s2, this gives A � 14.5 m/s2.
Then the amplitude of the steady-state vibration is related to the acceleration amplitude by
A � �2X. With � � 1500 rpm � 157.1 rad/s, the steady-state amplitude is 
X � 5.87 � 10�4 m. For the machine with a rotating unbalance,

where rm is the ratio of the excitation frequency to the natural frequency of the machine.
Performing the necessary calculations, the natural frequency of the machine is

(d)

The frequency ratio is

(e)

Then

(f)

and the magnitude of the rotating unbalance is

(g)

(c) The machine now rotates at � � 1200 rpm � 125.7 rad/s. Thus, 
and �(2.46, 0.04) � 1.197. The steady-state response of the machine is x(t) �
X sin where

(h)

and

(i)

Thus, the steady-state response of the machine is

(j)x (t ) = 6.32 *  10-4  sin  (125.7t +  0.0389) m

f =  tan -1 c2(0.04)r

1 - r 2 d =  tan-1 c (0.08)(2.46)

1 - (2.46)2 d = -0.0389 rad

X =

m0e

mm
¶(r, 0.04) =

0.0264 kg # m

50 kg
 (1.197) = 6.32 * 10-4 m

(vt - f)

r =
125.7 rad/s
51.0 rad/s = 2.46

m0e =

mX
¶(3.08, 0.04)

=

(50 kg)(5.9 * 10-4 m)

1.12
 = 0.0264 kg # m

¶(3.08,0.04) =

(3.08)2

231 - (3.08)242 +
 32(0.04)(3.08)42 = 1.12

r =

v

vn

=

157.1 rad/s
51.0 rad/s

= 3.08

vn = A
k

mm
= Q

1.3 * 105
 

N
m

50 kg
= 51.0 rad/s

mX
m0e

= ¶(rm, 0.04)

a1500
rev
min
b a2p

rad
rev
b a 1 min

60 sec
b

 vn

= 0.146
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The accelerometer output is where and M(0.117,0.2)
� 1.013. The error in the accelerometer measurement is 1.3 percent. z(t) is the displace-
ment of the seismic mass relative to the machine and is given as

(k)

where

(l)

and

(m)

Thus, the accelerometer output is

(n)= 10.03 sin(125.7t - 0.0072) m/s2

a(t) = -

(1076 rad/s)2

1.013
 (8.78 * 10-6  m) sin(125.7t + 0.0389 - 0.0461)

fa = tan-1 c2(0.2)(0.117)

1 - (0.117)2 d = 0.0461 rad

Za = X¶(0.117, 0.2) = (6.32 * 10-4 m)(0.013) = 8.78 * 10-6 m

z(t) = Za sin (125.7t + 0.0389 - fa 
)

ra =
125.7 rad/s
1076 rad/s = 0.117-

v2
n

M(ra, 0.2)z (t)

EXAMPLE 4 . 2 7
An energy harvester is being designed to harvest energy from a MEMS system whose vibra-
tions are given by

(a)

The harvester is to have damping ratio 0.2 and a mass of 0.002 g.

(a) What is the best natural frequency for the harvester?
(b) How much power is harvested in one hour?

SO LU T I ON
(a) Since the periods of both terms in the vibration are not the same, it is difficult to define
the average power over one cycle. The period over which both vibrations repeat is

(b)

The relative response between the harvester and the machine is

(c)

The power dissipated by the viscous damper over this period is

(d)+ 0.3¶(r1, z)¶(r2, z)[sin(f2 - f1) - sin(2.821 + f2 - f1)]}

= 2zmvn10-6{0.226¶
2(r1, z) + 0.763¶

2(r1, z)
+ (15)(500)¶(r1, z) cos(500t - f2)]

2 dt

P = 10-12

L

0.0282

0
c[(10)(400)¶(r1, z)cos (400t - f1)

z (t) = 10¶(r1, z) sin(400t - f1) + 15¶(r2, z) sin(500t - f2)

Tc =

2p(900)

(400)(500)
= 0.0282 s

y (t ) = (10 sin 400t + 15 sin 500t ) mm
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Equation (d) is plotted against �n in Figure 4.57. The largest power harvested is 0.277 �W
and occurs for �n � 468 rad/s.

(b) The number of cycles in one hour is

(e)

The power captured in one hour is

(f)P = a0.277 
mW

cycle
b  (1.27 * 105 cycles) = 3.52 * 10-2 W

n = a 3600 s/hr
0.0282 s/cycle

b  (1 hr) = 1.27 * 105 cycles

EXAMPLE 4 . 28
The torsional spring of the system of Example 3.16 is attached to an actuator which provides
a harmonic displacement of � sin �t to the system as shown in Figure 4.58. Take � � 10°.

(a) If the electromagnet is turned off determine the form of the magnification factor for
the pendulum (Mc ), assuming Coulomb damping. What is the steady-state amplitude
of the pendulum if � � 4 rad/s?

(b) If the electromagnet is turned on, predict the steady-state amplitude of the pendulum
if � � 4 rad/s.

SO LU T I ON
If the electromagnet is turned off the pendulum is subject to Coulomb damping with a
resisting moment of 0.0629 N · m (Example 3.16). The differential equation governing the
forced oscillations of the pendulum is

(a)I u
$

+ ktu = kt£ sin vt + e -Mf  u# 7 0
Mf    u

#

6 0

300 350 400 450 500 550
ωn (rad/s)

600
0.05

0.1

0.15

0.2

0.25

0.3

P
 (

µ
W

)

FIGURE 4.57
Plot of power harvested versus �n for system of Example 4.27.
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where I � 0.183 kg · m2 and kt � 1.8 N · m/rad. The theory regarding steady-state vibra-
tion of systems with Coulomb damping applies with (in Example 3.16 if was found that
Mf � 0.0157 N # M)

(b)

The magnification factor is

(c)

For � � 4 rad/s, and Mc (1.27, 0.2) � 1.63. The steady-state
amplitude is

(d)

(b) If the electromagnet is turned on, the system has viscous damping which dominates
the Coulomb damping. The differential equation governing the motion of the system is

(e)

which is written in standard form as

(f)

The steady-state amplitude is given by

(g)

The demping ratio is 0.011 (Example 3.16) and for � � 4 rad/s, .
Thus,

(h)™ = (10°)M(1.27,0.011) = (10°)
1

231 - (1.27)242 + 32(0.011)(1.27)42 = 16.29°

r =
4 rad/s

3.14 rad/s = 1.27

™ =

kt£

kt

 M (r, z) = £M(r,  z)

u
$

+ 2zvn u
#

+ v2
n u = v2

n £ sin vt

I  u
$

+ ct u
#

+ kt u = kt£ sin vt

™ =

kt£

Iv2
n

 Mc(1.27,0.2) =

(1.8 N # m/rad)(10°)

(0.183 kg # m2)(3.14 rad/s)2 (1.63) = 16.26°

r =
4 rad/s

3.14 rad/s = 1.27

Mc(r, 0.2) = Q
1 - c4(0.05)

p
d2

(1 - r 2 )2 = A
0.996

(1 - r 2)2 =

0.998

| 1 - r 2 |

i =

Mf

kt£
=

0.0157 N # m

a1.8
N # m

rad
b (10°)a2p rad

360°
b

= 0.050

y sin ωt

Electromagnet

FIGURE 4.58
System of Example 4.28.



Harmonic Excitation of SDOF Systems 289

4.18 CHAPTER SUMMARY

4.18.1 IMPORTANT CONCEPTS
The topics covered in this chapter included steady-state vibrations of SDOF systems. The
following refer to these topics.
• Resonance, which is characterized by an unbounded growth in amplitude, occurs in an

undamped system when the input frequency coincides with the natural frequency.
• Resonance occurs because the work done by the external force is not necessary to sus-

tain the vibrations at the natural frequency.
• Beating, which occurs in an undamped system when the input frequency is near but not

equal to the natural frequency, is characterized by a continual build up and decay of
amplitude.

• Free vibrations of a damped system die out after a period of time leaving only the par-
ticular solution, which is the steady–state solution. 

• The steady–state response of a system with viscous damping due to a single-frequency
harmonic excitation is at the same frequency as the input but at a different phase angle.

• The amplitude of the response is affected by the stiffness, inertia, and damping proper-
ties of the system.

• The nondimensional magnification factor, which is the ratio maximum force developed
in the spring to the maximum of the excitation force, is a function of the frequency ratio
and the damping ratio M(r, �).

• The frequency response is studied by considering the behavior of M(r, �) for varying r for
different values of � where M(0, �) � 1 and M(r, �) � 0. For , M(r, �)
increases as r increases from zero and reaches a maximum before it starts decreasing. For

, M(r, �) decreases monotonically with increasing r.

• Frequency-squared excitations occur when the amplitude of excitation is proportional
to the square of the frequency. A machine with a rotating unbalance is an example of a
system with frequency-squared excitation.

• The frequency response for frequency-squared excitations is given by a nondimensional
function �(r, �) where �(r, 0) � 0 and �(r, �) � 1. For , �(r, �) 
reaches a maximum and then approaches 1 from above. For , �(r, �) has no
maximum and approaches 1 from below.

• Harmonic-based motion is analyzed by considering the displacement of the mass rela-
tive to the base. The relative displacement is governed by the standard differential equa-
tion in which the mass times acceleration of the base replaces the forcing term. The
steady-state amplitude of relative displacement is given by the amplitude of the base
motion times �(r, �).

• The ratio of the amplitude of acceleration of the mass to the amplitude of acceleration
of the base is given by a nondimensional function T(r, � ), which is only less than 1 for

.r 7 12

z 7
1
12

z 6
1
12

limr :�

z 7
1
12

z 6
1
12

limr :�
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• The range is called the range of isolation; is called the range of ampli-
fication.

• An increase in damping ratio leads to an increase in T(r, �) in the range of isolation.
Damping hurts isolation.

• Vibration isolation theory includes protection of machines from large amplitude accel-
erations of their bases and the protection of foundations from large amplitude forces
developed in machines.

• The steady–state response due to multi-frequency excitations is obtained using the prin-
ciple of linear superposition.

• Any periodic excitation has a Fourier series representation which converges pointwise to
the function at all times where it is continuous.

• All Fourier cosine coefficients are zero for an odd function. All Fourier sine coefficients
are zero for an even function.

• Seismic vibration measuring instruments have a seismic mass which moves relative to
the body whose vibrations are being measured.

• Seismometers measure the motion of the seismic mass relative to its housing and oper-
ate with a large frequency ratio where �(r, �) is close to l.

• Accelerometers measure the acceleration of the body whose vibrations are to be meas-
ured and operate with a small frequency ratio where M(r, �) is close to 1.

• An equivalent viscous-damping ratio is used to formulate a magnification factor for
Coulomb damping.

• The steady-state behavior of a system with hysteretic damping can be obtained using a
complex stiffness.

• An energy harvester has a seismic mass which vibrates relative to the body whose vibra-
tions are being harvested. The average power harvested per cycle of steady-state motion
increases with the decreasing damping ratio of the harvester.

4.18.2 IMPORTANT EQUATIONS
Standard form of differential equation governing forced vibrations of linear, single degree-of-
freedom systems

(4.2)

Particular solution for undamped system when excitation frequency coincides with natural
frequency

(4.20)

Response when beating occurs

(4.22)x (t ) =

2F0

meq(v
2
n - v2)

sin c av - vn

2
b t d cos c av + vn

2
b t d

xp(t ) = -

F0

2meqvn

t cos(vnt + �)

x
$

+ 2zvn
 x

#

+ v2
n x =

1
meq

 Feq(t )

r 6 12r 7 12
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Steady–state response of system with viscous damping

(4.32)

Frequency ratio

(4.38)

Magnification factor

(4.39)

Functional form of magnification factor

(4.42)

Phase angle

(4.45)

Frequency-squared excitation

(4.50)

Amplitude of response due to frequency-squared excitation

(4.51)

Functional form of �(r, �)

(4.52)

Rotating unbalance as frequency-squared excitation

(4.62)

Frequency response due to rotating unbalance

(4.63)

Displacement of mass relative to base

(4.80)

Differential equation for relative motion of mass to base due to harmonic-base excitation

(4.86)

Amplitude of motion of mass relative to base

(4.88)

Steady–state response of absolute displacement

(4.90)x (t ) = X  sin (vt - l)

Z = Y¶(r, z)

z
$

+ 2zvn z# + v2
nz = v2Y  sin vt

z (t ) = x (t ) - y (t )

mX
m0e

= ¶(r, z)

A = m0e

¶(r, z) =

r 2

2(1 - r 2)2
+ (2zr )2

meqX

A
= ¶(r, z)

F0 = Av2

f =  tan -1 a 2zr

1 - r 2 b

M(r, z) =

1

2(1 - r 2)2
+ (2zr )2

M =

meqv
2
n X

F0

r =

v

vn

xp(t ) = X  sin (vt + � - f)
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Amplitude of absolute displacement

(4.91)

Functional form of T(r, �)

(4.93)

Ratio of acceleration amplitudes

(4.94)

Ratio of amplitude of transmitted force to amplitude of excitation

(4.101)

Vibration isolation due to rotating unbalance

(4.104)

Functional form of R(r, �)

(4.105)

Fourier series representation of periodic functions

(4.130)

(4.131)

(4.132)

(4.133)

(4.134)

Alternate form of Fourier series

(4.135)

Response due to general periodic excitation

(4.139)x (t) =

1
meqv

2
n

 c a0

2
+ a

�

i = 1

ci Mi sin(vi t + ki - fi ) d

F (t ) =

a0

2
+ a

�

i = 1

ci sin (vi t + ki )

bi =

2

TL

T

0
F (t) sinvi t dt  i =  1, 2, Á

ai =

2
TL

T

0
F (t) cosvi t dt  i = 1, 2, Á  

a0 =

2
TL

T

0
F (t ) dt

vi =

2pi
T

F (t ) =

a0

2
+ a

�

i = 1

(ai cos vit + bi sin vit )

R(r, z ) = r 2A
1 + (2zr )2

(1 - r 2)2
+ (2zr )2

FT

m0ev
2
n

= r 2T(r, z ) = R (r, z )

FT

F0

= T(r, z)

v2X
v2Y

= T(r, z)

T(r, z) = A
1 + (2zr )2

(1 - r 2)2
+ (2zr )2

X
Y

= T(r, z)
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Percent error in using seismometer

(4.146)

Percent error in using accelerometer

(4.151)

Magnification factor for Coulomb damping

(4.184)

Magnification factor for hysteretic damping

(4.191)

Average power harvested during cycle

(4.206)

PROBLEMS

SHORT ANSWER PROBLEMS
For Problems 4.1 through 4.16, indicate whether the statement presented is true or false.
If true, state why. If false, rewrite the statement to make it true.

4.1 The steady–state response of a linear SDOF system occurs at the same frequency
as the excitation.

4.2 Beating is characterized by a continual build-up of amplitude.
4.3 The amplitude of a machine subject to a rotating unbalance approaches one for

large frequencies.
4.4 An increase in damping leads to an increase in the percentage of isolation.
4.5 The phase angle for an undamped system is always 
.
4.6 The phase angle depends upon F0, which is the amplitude of excitation.
4.7 If � is positive in the equation x(t) � X sin(�t � �), the response lags the

excitation.
4.8 M(r, �) approaches 0 for large r for all values of �.
4.9 �(r, � ) approaches 0 for large r for all values of �.
4.10 T(r, �) approaches 1 for large r for all values of �.
4.11 The amplitude of the response of a system relative to the motion of its base is

given by R(r, � ) if the base is subject to a single-frequency harmonic excitation.
4.12 The phase angle for the response of a system with Coulomb damping is

independent of the frequency of excitation.
4.13 The equation for the response of a system with hysteretic damping is nonlinear

in general but is linear when the system is subject to a single-frequency
excitation.

P
mv3Y 2 =

z

r ¶
2(r, z) = £(r, z)

Mh(r, h ) =

1

2(1 - r 2)2
+ h 2

Mc(r, i) = C
1 -  ( 

4i
p )2

(1 -  r 
2)2

E = 100| 1 - M(r, z) |

E = 100 |1 - ¶ |
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4.14 A seismometer actually measures the displacement of the seismic mass relative
to the displacement of the body the instrument is set up to measure.

4.15 Hysteretic damping can be modeled using a differential equation with a
complex stiffness.

4.16 M(r, �) has a maximum when .

Problems 4.17 through 4.38 require a short answer.

4.17 Explain why resonance occurs for undamped systems when the natural
frequency coincides with the excitation frequency.

4.18 Why doesn’t the amplitude grow unbounded when the frequency of excitation
coincides with the natural frequency for systems with viscous damping?

4.19 For an undamped system, when is the response out of phase with the
excitation?

4.20 In the equation x(t) � X sin(�t � �), when is � negative?
4.21 How many real positive values of r satisfy the following.

(a) M(r, 0.3) � 3
(b) M(r, 0.8) � 1.2
(c) M(r, 0.1) � 1.3

4.22 How many real positive values of r satisfy the following.

(a) �(r, 0) � 1
(b) �(r, 0.1) � 1.5
(c) �(r, 0.9) � 1.3
(d) �(r, 0.3) 	 3

4.23 How many real positive values of r satisfy the following.

(a) T(r, 0.1) � 1
(b) T(r, 0.5) � 0.5
(c) T(r, 0) � 3

4.24 How many real positive values of r satisfy the following.

(a) (r, 0.05) � 0

(b) (r, 0.4) � 0

(c) (r, 0.8) � 0

4.25 Explain the concept of frequency response.
4.26 How is frequency response determined for a machine with a rotating

unbalance?
4.27 How is frequency response determined for the motion of a machine on a

moveable foundation?
4.28 Explain why vibration isolation is difficult at low speeds.
4.29 What is percentage isolation?
4.30 Explain why protecting a foundation from large forces generated by a machine

is similar to protecting a body from large accelerations by its base.

dR
dr

dR
dr

dR
dr

z 6
1
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4.31 Seismometers have a ___________ natural frequency and thus operate only for
___________ frequency ratios.

4.32 Explain the concept of phase distortion. Why is it a problem for accelerometers
and not seismometers?

4.33 Explain the principle of linear superposition and how it applies to systems with
multiple frequency input.

4.34 Why does the principle of linear superposition apply to general periodic input?
4.35 Explain the concept of stick-slip.
4.36 What are the limitations on , which is the nondimensional value of the ratio of

the force causing Coulomb friction to the amplitude of the excitation force?
4.37 Why is viscous damping used in vibration isolation, since it has a negative effect

on vibration isolation?
4.38 Does a steady–state response of the differential equation exist for the

following?
(a)
(b)
(c)

Problems 4.39 through 4.59 require short calculations.

4.39 Find all real positive values of r that satisfy the following.

(a) M(r, 0) � 1.4
(b) M(r, 0.4) � 3
(c) M(r, 0.8) 	 1.2

4.40 Find all positive values of r that satisfy the following.

(a) T(r, 0.1) 	 1
(b) T(r, 0.8) � 1
(c) T(r, 0.4) � T(r, 0.3)

4.41 A machine with a mass of 30 kg is operating at a frequency of 60 rad/s. What
equivalent stiffness of the machine’s mounting leads to resonance?

4.42 An undamped SDOF system with a natural frequency of 98 rad/s is subject to a
excitation of frequency 100 rad/s. (a) What is the period of response? (b) What
is the period of beating?

4.43 A machine operates at 100 rad/s and has a rotating component of mass 5 kg
whose center of mass is 3 cm from the axis of rotation. What is the amplitude
of the harmonic excitation experienced by the machine?

4.44 Convert 1000 rpm to rad/s.
4.45 A machine is subject to a harmonic excitation with an amplitude of 15,000 N.

The force transmitted to the floor through an isolator has an amplitude of 3000 N.
What percentage isolation is achieved by the isolator?

4.46 A 50 kg machine is mounted on an isolator with a stiffness of 6 �105 N/m.
During operation, the machine is subject to a harmonic excitation with a
frequency of 140 rad/s. (a) What is the frequency ratio? (b) Does this isolator
actually isolate the vibrations?

3x
$

+ 2700x = 20 sin 10t

3x
$

+ 40 x
#

+ 2700x = 20 sin 30t

3x
$

+ 2700x = 20 sin 30t
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4.47 Recall that the Fourier series representation of a periodic function is

Describe which of the Fourier coefficients (a0, ai, bi, or none) are zero for each
of the functions (illustrated over one period) shown in Figure SP4.46.

F =

a0

2
+ a

�

i = 1

(ai cos vi t + bi sin vi t )

200 N

100 N

200 N

0.1 0.2 0.8 0.9 1.0

0.1 0.2

0.03

(a) (b)

(c)

(e)

(d)

0.1 0.2

0.06

200

–100

0.3 0.4
–200 N

0.1 1.0

300 N

–200 N

0.2 0.4 0.6 0.8 1.0

FIGURE SP4.46

FIGURE SP4.47

4.48 Draw the function that the Fourier series representation of the function shown
in Figure SP4.47 converges to on the interval [�5, 5].

4.49 What is the largest frequency whose vibrations can be measured by an undamped
accelerometer of natural frequency 200 rad/s if the error is no more than 1 percent?

4.50 What is the smallest frequency whose vibrations can be measured by an
undamped seismometer of natural frequency 20 rad/s if the error is no more
than 1.5 percent?
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Find the steady-state solution of the differential equation for Problems 4.51
through 4.59.

4.51
4.52
4.53
4.54
4.55

4.56

4.57

4.58

4.59 Match the quantity with the appropriate units (units may used more than once,
some units may not be used).

(a) Steady-state amplitude, X (i) m
(b) Steady-state amplitude of torsional oscillations, (ii) none
(c) Magnification factor, M(r, �) (iii) N
(d) Transmissibility ratio, T(r, �) (iv) N/m2

(e) Acceleration amplitude, �2X (v) rad
(f ) Relative displacement amplitude, Z (vi) N · s/m
(g) Frequency ratio, r (viii) N · s · m/rad
(h) Equivalent viscous-damping coefficient for

Coulomb damping, ceq (ix) N · s
(i) Ratio of friction force to excitation force,  (x) N · m
(j) Hysteretic-damping coefficient, h (xi) m/s2

(k) Energy captured by energy harvester, E (xii) W/cycle
(l) Average power captured by energy harvester, (xiii) N/m

CHAPTER PROBLEMS
4.1 A 40 kg mass hangs from a spring with a stiffness of 4 �104 N/m. A harmonic

force with a magnitude of 120 rad/s is applied. Determine the amplitude of the
forced response.

4.2 Determine the amplitude of forced oscillations of the 30 kg block of Figure P4.2.

P

™

3x
$

+ 2700x = e50 sin 20t - 5  x# 7 0
50 sin 20t + 5  x# 6 0

3x
$

+ 30x
#

+ 2700x = 30 sin 50t + 20 sin 20t

3x
$

+

2700(0.002)

v
 x# + 2700x = 20 sin vt

3x
$

+ 30x# + 2700x = 30(0.002)(40) cos 40t + 2700(0.002) sin 40t
3x

$

+ 30x# + 2700x = 0.01v2 sin vt
3x

$

+ 30x
#

+ 2700x = 20 sin 10t
3x

$

+ 2700x = 20 sin 60t
3x

$

+ 2700x = 20 sin 10t

200 sin 10t

30 kg

10 cm

IP = 0.68 kg · m2

400 N/m

FIGURE P4.2
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4.3 For what values of M0 will the forced amplitude of angular displacement of the
bar in Figure P4.3 be less than 3° if � � 25 rad/s?

4.4 For what values of � will the forced amplitude of the bar in Figure P4.3 be less
than 3° if M0 � 300 N · m?

4.5 A 2 kg gear with a radius of 20 cm is mounted to the end of a 1-m long steel
(G � 80 � 109 N/m2) shaft. A moment M � 100 sin 150t is applied to the
gear. For What shaft radii is the value of the forced amplitude of torsional
oscillations less than 4°?

4.6 During operation, a 100 kg reciprocating machine is subject to a force F(t) �
200 sin 60t N. The machine is mounted on springs of an equivalent stiffness 
of 4.3 � 106 N/m. What is the machine’s steady-state amplitude?

4.7 A 40 kg pump is to be placed at the midspan of a 2.5-m long steel (E � 200 �
109 N/m2) beam. The pump is to operate at 3000 rpm. For what values of the
cross-sectional moment of inertia will the oscillations of the pump be within 3 Hz
of resonance?

4.8 To determine the equivalent moment of inertia of a rigid helicopter component,
an engineer decides to run a test in which she pins the component a distance of
40 cm and mounts the component on two springs of stiffness 3.6 � 105 N/m,
as shown in Figure P4.8. She then provide a harmonic excitation to the
component at different frequencies and finds that the maximum amplitude
occurs at 50 rad/s. What is the equivalent centroidal moment of inertia
predicted by the test?

Slender bar of
mass m

Mo sin ωt

L = 40 cm

k = 1 × 104 N/m

m = 0.8 kg

L
2

k

k

L
4

L
4

FIGURE P4.3

Helicopter
component

3.6 × 105 N/m

Mo sin wt

40 cm 10 cm

G
3.6 × 105 N/m

m = 4 Kg

FIGURE P4.8
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4.9 The modeling of an airfoil requires at least two degrees-of-freedom. However,
its torsional stiffness is unknown, so an engineer devises a test. She prevents the
airfoil from motion in the transverse direction at A but still allows it to rotate as
shown in Figure P4.9. She then places two springs with a stiffness of 3 � 104 N/m
at the tip of the airfoil and excites the airfoil with a harmonic excitation at the
tip. She notices that the maximum amplitude of the tip occurs at a frequency of
150 rad/sec. The mass of the airfoil is 15 kg, and the moment of inertia of the
airfoil about its mass center is 4.4 kg · m2. The distance between the mass
center and A is 20 cm, and the tip is 60 cm from A.

4.10 A machine with a mass of 50 kg is mounted on springs of equivalent stiffness
6.10 � 104 N/m and subject to a harmonic force of 370 sin 35t N while
operating. The natural frequency is close enough to the excitation frequency 
for beating to occur. 

(a) Write the overall response of the system, including the free response.
(b) Plot the response of the system.
(c) What is the maximum amplitude?
(d) What is the period of beating?

4.11 A machine with a mass of 30 kg is mounted on springs with an equivalent stiffness
of 4.8 � 104 N/m. During operation, it is subject to a force of 200 sin �t.
Determine and plot the response of the system if the machine is at rest in
equilibrium when the forcing starts and at (a) � � 20 rad/s, (b) � � 40 rad/s,
and (c) � � 41 rad/s.

4.12 A 5 kg block is mounted on a helical coil spring such that the system’s natural
frequency is 50 rad/s. The block is subject to a harmonic excitation of
amplitude 45 N at a frequency of 50.8 rad/s. What is the maximum
displacement of the block from its equilibrium positions?

4.13 A 50-kg turbine is mounted on four parallel springs, each with a stiffness of 
3 � 105 N/m. When the machine operates at 40 Hz, its steady–state amplitude
is observed as 1.8 mm. What is the magnitude of the excitation?

FIGURE P4.9

3 × 104 N/m

3 × 104 N/m

60 cm

F0 sin ωt

G A

20 cm
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4.14 A system with an equivalent mass of 30 kg has a natural frequency of 120 rad/s
and a damping ratio of 0.12 and is subject to a harmonic excitation of amplitude
2000 N and frequency 150 rad/s. What are the steady–state amplitude and
phase angle of the response?

4.15 A 30-kg block is suspended from a spring with a stiffness of 300 N/m and
attached to a dashpot of damping coefficient of 120 N · s/m. The block is
subject to a harmonic excitation of amplitude 1150 N at a frequency of 20 Hz.
What is the block’s steady–state amplitude?

4.16 What is the amplitude of steady–state oscillation of the 30 kg block of the
system of Figure P4.16?

2000 sin 100t N

2700 N . s/m

10
cm

20 cm

4 × 106 N/m

IP = 3 kg . m2
40 kg

30 kg

FIGURE P4.16

4.17 If � � 16.5 rad/s, what is the maximum value of M0 such that the disk of
Figure P4.17 rolls without slip?

4000 N/m
10 cm

20-kg thin disk

M0 sin ωt

µ = 0.12

50 N . s/m

FIGURE P4.17

4.18 If M0 � 2 N · m, for what values of � will the disk of Figure P4.17 roll
without slip?

4.19 For what values of d will the steady–state amplitude of angular oscillations be
less than 1° for the rod of Figure P4.19?

FIGURE P4.19

1000 sin 50t
4 × 104 N/m

20-kg slender rod

100 N . s/m
4
3

m2
3

m

d
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4.20 A 30-kg compressor is mounted on an isolator pad of stiffness 6 � 105 N/m.
When subject to a harmonic excitation of magnitude 350 N and frequency 
100 rad/s, the phase difference between the excitation and steady–state response
is 24.3°. What is the damping ratio of the isolator and its maximum deflection
due to this excitation?

4.21 A thin disk with a mass of 5 kg and a radius of 10 cm is connected to a
torsional damper of coefficient 4.1 N · s · m/rad and a solid circular shaft with
a radius of 10 mm, length 40 cm, and shear modulus 80 � 109 N/m2. The disk
is subject to a harmonic moment of magnitude 250 N · m and frequency 600 Hz.
What is the amplitude of steady–state torsional oscillations?

4.22 A 50-kg machine tool is mounted on an elastic foundation. An experiment is
run to determine the stiffness and damping properties of the foundation. When
the tool is excited with a harmonic force of magnitude 8000 N at a variety of
frequencies, the maximum steady–state amplitude obtained is 2.5 mm,
occurring at a frequency of 32 Hz. Use this information to determine the
stiffness and damping ratio of the foundation.

4.23 A machine with a mass of 30 kg is placed on an elastic mounting of unknown
properties. An engineer excites the machine with a harmonic force with a
magnitude of 100 N at a frequency of 30 Hz. He measures the steady–state
response as having an amplitude of 0.2 mm with a phase lag of 20°. Determine
the stiffness and damping coefficient of the mounting.

4.24 A 80-kg machine tool is placed on an elastic mounting. The phase angle is
measured as 35.5° when the machine is excited at 30 Hz. When the machine is
excited at 60 Hz, the phase angle is 113°. Determine the equivalent damping
coefficient and equivalent stiffness of the mounting.

4.25 A 100-kg machine tool has a 2-kg rotating component. When the machine is
mounted on an isolator and its operating speed is very large, the steady–state
vibration amplitude is 0.7 mm. How far is the center of mass of the rotating
component from its axis of rotation?

4.26 A 1000 kg turbine with a rotating unbalance is placed on springs and viscous
dampers in parallel. When the operating speed is 20 Hz, the observed
steady–state amplitude is 0.08 mm. As the operating speed is increased, the
steady–state amplitude increases with an amplitude of 0.25 mm at 40 Hz and
an amplitude of 0.5 mm for much larger speeds. Determine the equivalent
stiffness and damping coefficient of this system.

4.27 A 120-kg fan with a rotating unbalance of 0.35 kg · m is to be placed at 
the midspan of a 2.6-m simply supported beam. The beam is made of steel 
(E � 210 � 109 N/m2) with a uniform rectangular cross section of height of 5 cm. 
For what values of the cross-sectional depth will the steady–state amplitude of the
machine be limited to 5 mm for all operating speeds between 50 and 125 rad/s?

4.28 Solve Chapter Problem 4.27 assuming the damping ratio of the beam is 0.04.
4.29 A 620-kg fan has a rotating unbalance of 0.25 kg · m. What is the maximum

stiffness of the fan’s mounting such that the steady–state amplitude is 0.5 mm or
less at all operating speeds greater than 100 Hz? Assume a damping ratio of 0.08.

Problems 4.30 and 4.31 refer to the following situation: The tail rotor section of the heli-
copter of Figure P4.30 consists of four blades, each of mass 2.1 kg, and an engine box of
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4.31 Determine the steady–state amplitude of vibration if one of the blades in
Figure P4.30 snaps off during flight.

4.32 Whirling is a phenomenon that occurs in a rotating shaft when an attached
rotor is unbalanced. The motion of the shaft and the eccentricity of the rotor
cause an unbalanced inertia force, pulling the shaft away from its centerline,
causing it to bow. Use Figure P4.32 and the theory of Section 4.5 to show that
the amplitude of whirling is

where e is the distance from the center of mass of the rotor to the axis of the shaft.

X = e¶(r, z)

mass 25 kg. The center of gravity of each blade is 170 mm from the rotational axis. The
tail section is connected to the main body of the helicopter by an elastic structure. The nat-
ural frequency of the tail section has been observed as 150 rad/s. During flight the rotor
operates at 900 rpm. Assume the system has a damping ratio of 0.05.

4.30 During flight a 75-g particle becomes stuck to one of the blades, 25 cm from
the axis of rotation. What is the steady–state amplitude of vibration caused by
the resulting rotating unbalance?

FIGURE P4.30

4.33 A 30-kg rotor has an eccentricity of 1.2 cm. It is mounted on a shaft and
bearing system whose stiffness is 2.8 � 104 N/m and damping ratio is 0.07.
What is the amplitude of whirling when the rotor operates at 850 rpm? Refer
to Chapter Problem 4.32 for an explanation of whirling.

O

C
G

θ

FIGURE P4.32
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4.34 An engine flywheel has an eccentricity of 0.8 cm and mass 38 kg. Assuming a
damping ratio of 0.05, what is the necessary stiffness of the bearings to limit its
whirl amplitude to 0.8 mm at all speeds between 1000 and 2000 rpm? Refer to
Chapter Problem 4.32 for an explanation of whirling.

4.35 It is proposed to build a 6-m smokestack on the top of a 60-m factory. The
smokestack will be made of steel (� � 7850 kg/m3) and will have an inner
radius of 40 cm and an outer radius of 45 cm. What is the maximum
amplitude of vibration due to vortex shedding and at what wind speed will it
occur? Use a SDOF model for the smokestack with a concentrated mass at its
end to account for inertia effects. Use � � 0.05.

4.36 What is the steady–state amplitude of oscillation due to vortex shedding of the
smokestack of Chapter Problem. P4.35 if the wind speed is 22 mph?

4.37 A factory is using the piping system of Figure P4.37 to discharge environmentally
safe waste-water into a small river. The velocity of the river is estimated as 5.5 m/s.
Determine the allowable values of l such that the amplitude of torsional oscillations
of the vertical pipe due to vortex shedding is less than 1°. Assume the vertical pipe
is rigid and rotates about an axis perpendicular to the page through the elbow.
The horizontal pipe is restrained from rotation at the river bank. Assume a
damping ratio of 0.05.

Fresh water
20°C

Steel pipes:

G = 80 × 109 N/m2

Dinner = 14 cm

υ = 5.5 m/s

t = 1 cm (pipe thickness)

p = 7800 kg/m3

l

3 m

1 m

FIGURE P4.37

4.38–4.42 Determine the amplitude of steady–state vibration for the systems shown in
Figures P4.38 through P4.42. Use the indicated generalized coordinate.

0.02 sin 100t m

100 N . s/m

2.8 kg

x

1.5 × 104 N/m

3 × 104 N/m

0.01 sin 250t m

3 m 1 m

400 N . s/m1 × 105 N/m

5 kg

θ

FIGURE P4.38 FIGURE P4.39
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4.43 A 40 kg machine is attached to a base through a spring of stiffness 2 � 104 N/m
in parallel with a dashpot of damping coefficient 150 N · s/m. The base is given
a time-dependent displacement 0.15 sin 30.1t m. Determine the amplitude of
the absolute displacement of the machine and the amplitude of displacement of
the machine relative to the base.

4.44 A 5-kg rotor-balancing machine is mounted on a table through an elastic
foundation of stiffness 3.1 � 104 N/m and damping ratio 0.04. Transducers
indicate that the table on which the machine is placed vibrates at a frequency 
of 110 rad/s with an amplitude of 0.62 mm. What is the steady–state amplitude 
of acceleration of the balancing machine?

4.45 During a long earthquake the one-story frame structure of Figure P4.45 is subject
to a ground acceleration of amplitude 50 mm/s2 at a frequency of 88 rad/s. Deter-
mine the acceleration amplitude of the structure. Assume the girder is rigid and
the structure has a damping ratio of 0.03.

0.08 sin 200t m
115 kg

E = 210 × 109 N/m2 

I = 4.6 × 10–5 m4 
x1.5 m

0.035 sin 10t m

m = 4 kg

50 cm
q

0.1 sin 300t rad

1.5 kg . m2
G = 80 × 109 N/m2

J = 4.6 × 10–6 m4

θ

1.1 m

FIGURE P4.40

FIGURE P4.41 FIGURE P4.42

x(t)

ẍ(t)

Columns

Girder
m = 2000 kg

k = 1.8 × 106 N/m

k
2

k
2

FIGURE P4.45
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4.46 What is the required column stiffness of a one-story structure to limit its accel-
eration amplitude to 2.1 m/s2 during an earthquake whose acceleration ampli-
tude is 150 mm/s2 at a frequency of 50 rad/s? The mass of structure is 1800 kg.
Assume a damping ratio of 0.05.

4.47 In a rough sea, the heave of a ship is approximated as harmonic of amplitude 
20 cm at a frequency of 1.5 Hz. What is the acceleration amplitude of a 20-kg
computer workstation mounted on an elastic foundation in the ship of stiffness
700 N/m and damping ratio 0.04? 

4.48 In the rough sea of Chapter Problem 4.47, what is the required stiffness of an
elastic foundation of damping ratio 0.05 to limit the acceleration amplitude of
a 5-kg radio set to 1.5 m/s2?

4.49 Consider the one degree-of-freedom model of a vehicle suspension system of
Figure P4.49. Consider a motorcycle of mass 250 kg. The suspension stiffness 
is 70,000 N/m and the damping ratio is 0.15. The motorcycle travels over a
terrain that is approximately sinusoidal with a distance between peaks of 10 m
and the distance from peak to valley is 10 cm. What is the acceleration
amplitude felt by the motorcycle rider when she is traveling at

(a) 30 m/s
(b) 60 m/s
(c) 120 m/s

k = 70,000 N/m

z = 0.15250 kg

FIGURE P4.49

4.50 For the motorcycle of Chapter Problem 4.49 determine (a) the “frequency
response” of the motorcycle’s suspension system by plotting the amplitude of
acceleration versus motorcycle speed and (b) determine and plot the amplitude
of displacement of the motorcycle versus its speed.

4.51 What is the minimum static deflection of an undamped isolator that provides
75 percent islolation to a 200-kg washing machine at 5000 rpm?

4.52 What is the maximum allowable stiffness of an isolator of damping ratio 0.05 that
provides 81 percent isolation to a 40-kg printing press operating at 850 rpm?

4.53 When set on a rigid foundation and operating at 800 rpm, a 200-kg machine
tool provides a harmonic force with a magnitude of 18,000 N to the
foundation. An engineer has determined that the maximum magnitude of a
harmonic force to which the foundation should be subjected to is 2600 N.

(a) What is the maximum stiffness of an undamped isolator that provides
sufficient isolation between the tool and the foundation?

(b) What is the maximum stiffness of an isolator with a damping ratio of 0.11?



306 CHAPTER 4

4.54 A 150-kg engine operates at 1500 rpm.
(a) What percent isolation is achieved if the engine is mounted on four

identical springs each of stiffness 1.2 � 105 N/m?
(b) What percent isolation is achieved if the springs are in parallel with a viscous

damper of damping coefficient 1000 N · s/m?
4.55 A 150 kg engine operates at speeds between 1000 and 2000 rpm. It is desired

to achieve at least 85 percent isolation at all speeds. The only readily available
isolator has a stiffness of 5 � 105 N/m. How much mass must be added to the
engine to achieve the desired isolation?

4.56 Cork pads with a stiffness of 6 � 105 N/m and a damping ratio of 0.2 are used
to isolate a 40-kg machine tool from its foundation. The machine tool operates
at 1400 rpm and produces a harmonic force of magnitude 80,000 N. If the pads
are placed in series, how many are required such that the magnitude of the
transmitted force is less than 10,000 N?

4.57 A 100-kg machine operates at 1400 rpm and produces a harmonic force of
magnitude 80,000 N. The magnitude of the force transmitted to the founda-
tion is to be reduced to 20,000 N by mounting the machine on four identical
undamped isolators in parallel. What is the minimum stiffness of each isolator?

4.58 A 10-kg laser flow-measuring device is used on a table in a laboratory. Because
of operation of other equipment, the table is subject to vibration. Accelerometer
measurements show that the dominant component of the table vibrations is at
300 Hz and has an amplitude of 4.3 m/s2. For effective operation, the laser can
be subject to an acceleration amplitude of 0.7 m/s2.
(a) Design an undamped isolator to reduce the transmitted acceleration, to an

acceptable amplitude.
(b) Design the isolator such that it has a damping ratio of 0.04.

4.59 Rough seas cause a ship to heave with an amplitude of 0.4 m at a frequency of
20 rad/s. Design an isolation system with a damping ratio of 0.13 such that a
45 kg navigational computer is subject to an acceleration of only 20 m/s2.

4.60 A sensitive computer is being transported by rail in a boxcar. Accelerometer
measurements indicate that when the train is traveling at its normal speed of 
85 m/s the dominant component of the boxcar’s vertical acceleration is 8.5 m/s2

at a frequency of 36 rad/s. The crate in which the computer is being transported
is tied to the floor of the boxcar. What is the required stiffness of an isolator
with a damping ratio of 0.05 such that the acceleration amplitude of the 60 kg
computer is less than 0.5 m/s2? With this isolator, what is the displacement of
the computer relative to the crate?

4.61 A 200 kg engine operates at 1200 rpm. Design an isolator such that the
transmissibility ratio during start-up is less than 4.6 and the system achieves 80
percent isolation.

4.62 A 150 kg machine tool operates at speeds between 500 and 1500 rpm. At each
speed a harmonic force of magnitude 15,000 N is produced. Design an isolation
system such that the maximum transmitted force during start-up is 60,000 N
and the maximum transmitted steady–state force is 2000 N.
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4.63 A 200 kg testing machine operates at 500 rpm and produces a harmonic force of
magnitude 40,000 N. An isolation system for the machine consists of a damped
isolator and a concrete block for mounting the machine. Design the isolation
system such that all of the following are met.

(i) The maximum transmitted force during start-up is 100,000 N.
(ii) The maximum transmitted force in the steady–state is 5000 N.

(iii) The maximum steady–state amplitude of the machine is 2 cm.

4.64 A 150-kg washing machine has a rotating unbalance of 0.45 kg · m. The machine
is placed on isolators of equivalent stiffness 4 � 105 N/m and damping ratio 0.08.
Over what range of operating speeds will the transmitted force between the
washing machine and the floor be less than 3000 N?

4.65 A 54-kg air compressor operates at speeds between 800 and 2000 rpm and
has a rotating unbalance of 0.23 kg · m. Design an isolator with a damping
ratio of 0.15 such that the transmitted force is less than 1000 N at all
operating speeds.

4.66 A 1000 kg turbomachine has a rotating unbalance of 0.1 kg · m. The machine
operates at speeds between 500 and 750 rpm. What is the maximum isolator
stiffness of an undamped isolator that can be used to reduce the transmitted
force to 300 N at all operating speeds?

4.67 A motorcycle travels over a road whose contour is approximately sinusoidal, 
y(z) � 0.2 sin (0.4z) m where z is measured in meters. Using a SDOF model,
design a suspension system with a damping ratio of 0.1 such that the acceleration
felt by the rider is less than 15 m/s2 at all horizontal speeds between 30 and 
80 m/s. The mass of the motorcycle and the rider is 225 kg.

4.68 A suspension system is being designed for a 1000 kg vehicle. A first model of
the system used in the design process is a spring of stiffness k in parallel with a
viscous damper of damping coefficient c. The model is being analyzed as the
vehicle traverses a road with a sinusoidal contour, y(z) � Y sin (2
 z/d) when
the vehicle has a constant horizontal speed v. The suspension system is to be
designed such that the maximum acceleration of the passengers is 2.5 m/s2 for
all vehicle speeds less than 60 m/s for all reasonable road contours. It is
estimated that for such contours, Y 	 0.01 m and 0.2 m 	 d < 1 m. Specify k
and c for such a design.

4.70 A 20 kg block is connected to a spring of stiffness 1 � 105 N/m and placed on a
surface which makes an angle of 30° with the horizontal. A force of 300 sin 80t N
is applied to the block. The steady–state amplitude is measured as 10.6 mm.
What is the coefficient of friction between the block and the surface?

4.71 A 40 kg block is connected to a spring of stiffness 1 � 105 N/m and slides on a
surface with a coefficient of friction 0.2. When a harmonic force of frequency
60 rad/s is applied to the block, the resulting amplitude of steady–state
vibrations is 3 mm. What is the amplitude of the excitation?

4.72–4.73 Determine the steady–state amplitude of motion of the 5-kg block. The
coefficient of friction between the block and surface is 0.11. (See Figures P4.72
and P4.73.)
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4.74 Use the equivalent viscous damping approach to determine the steady–state
response of a system subject to both viscous damping and Coulomb damping.

4.75 The area under the hysteresis curve for a particular helical coil spring is 0.2 N · m
when subject to a 350 N load. The spring has a stiffness of 4 � 105 N/m. 
If a 44 kg block is hung from the spring and subject to an excitation force of
350 sin 35t N, what is the amplitude of the resulting steady–state oscillations?

4.76 When a free-vibration test is run on the system of Figure P4.76, the ratio of
amplitudes on successive cycles is 2.8 to 1. Determine the response of the pump
when it has an excitation force of magnitude 3000 N at a frequency of 2000 rpm.
Assume the damping is hysteretic.

E = 200 × 109 N/m2

I = 2.4 × 10–4 m4

215 kg

3.1 m

FIGURE P4.76

4.77 When a free-vibration test is run on the system of Figure P4.76, the ratio of
amplitudes on successive cycles is 2.8 to 1. When operating, the engine has a
rotating unbalance of magnitude 0.25 kg · m. The engine operates at speeds
between 500 and 2500 rpm. For what value of � within the operating range
will the pump’s steady–state amplitude be largest? What is the maximum
amplitude? Assume the damping is hysteretic.

4.78 When the pump at the end of the beam of Figure P4.76 operates at 1860 rpm,
it is noted that the phase angle between the excitation and response is 18°.
What is the steady–state amplitude of the pump if it has a rotating unbalance 
of 0.8 kg · m and operates at 1860 rpm? Assume hysteretic damping.

4.79 A schematic of a single-cylinder engine mounted on springs and a viscous
damper is shown in Figure P4.79. The crank rotates about O with a constant
speed �. The connecting rod of mass mr connects the crank and the piston of
mass mp such that the piston moves in a vertical plane. The center of gravity of
the crank is at its axis of rotation.

(a) Derive the differential equation governing the absolute vertical displacement of
the engine including the inertia forces of the crank and piston, but ignoring
forces due to combustion. Use an exact expression for the inertia forces in
terms of mr, mp, �, the crank length r, and the connecting rod length l.

(b) Since F(t) is periodic, a Fourier series representation can be used. Set up, but
do not evaluate, the integrals required for a Fourier series expansion for F(t).

y(t) = 2.7 × 10–4 sin 180t m

2 × 105 N/m

5 kg

x

µ

FIGURE P4.72
FIGURE P4.73

y(t) = 3.2 × 10–4 sin 220t m

1 × 105 N/m 1 × 105 N/m
5 kg

x

µ
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(c) Assume r/l 1. Rearrange F(t) and use a binomial expansion such that

(d) Truncate the preceding series after i � 3. Use trigonometric identities to
approximate

(e) Find an approximation to the steady–state form of x (t).

F (t ) L b1 cos vt + b2 cos 2vt + b3 cos 3vt

F (t ) = a
�

i = 1
ai a r

l
b i

V

10,000 N

–10,000 N

0.1 s 0.2 s 0.3 s

10,000 N

F

0.1 s 0.2 s

10,000 N

0.1 0.2 0.3

10,000 N

0.1 0.2

FIGURE P4.82

FIGURE P4.84

FIGURE P4.83

FIGURE P4.85

mp

mr

l

r

k
2

k
2

c

FIGURE P4.79

4.80 Using the results of Problem P4.79, determine the maximum steady–state response
of a single-cylinder engine with mr � 1.5 kg, mp � 1.7 kg, r � 5.0 cm, l � 15.0 cm,
� � 800 rpm, k � 1 � 105 N/m, c � 500 N · s/m, and total mass 7.2 kg.

4.81 A 5-kg rotor-balancing machine is mounted to a table through an elastic founda-
tion of stiffness 10,000 N/m and damping ratio 0.04. Use of a transducer reveals
that the table’s vibration has two main components: an amplitude of 0.8 mm at
a frequency of 140 rad/s and an amplitude of 1.2 mm at a frequency of 200
rad/s. Determine the steady–state response of the rotor balancing machine.

4.82–4.86 During operation a 100-kg press is subject to the periodic excitations shown.
The press is mounted on an elastic foundation of stiffness 1.6 � 105 N/m and
damping ratio 0.2. Determine the steady–state response of the press and approxi-
mate its maximum displacement from equilibrium. Each excitation is shown over
one period.
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4.87 Use of an accelerometer of natural frequency 100 Hz and damping ratio 0.15
reveals that an engine vibrates at a frequency of 20 Hz and has an acceleration
amplitude of 14.3 m/s2. Determine

(a) The percent error in the measurement
(b) The actual acceleration amplitude
(c) The displacement amplitude

4.88 An accelerometer with a natural frequency of 200 Hz and damping ratio of 0.7
is used to measure the vibrations of a system whose actual displacement is 
x (t ) � 1.6 sin 45.1t mm. What is the accelerometer output?

4.89 An accelerometer with a natural frequency of 200 Hz and damping ratio of 0.2
is used to measure the vibrations of an engine operating at 1000 rpm. What is
the percent error in the measurement?

4.90 When a machine tool is placed directly on a rigid floor, it provides an excitation
of the form

to the floor. Determine the natural frequency of the system with an undamped
isolator with the minimum possible static deflection such that when the
machine is mounted on the isolator the amplitude of the force transmitted to
the floor is less than 3500 N.

4.91 Use the force shown in Figure P4.91 as an approximation to the force provided by
the punch press during its operation. Rework Example 4.17 for the excitation.

F (t ) = (4000 sin 100t + 5100 sin 150t) N

10,000

–10,000

0.1 0.2 0.3 0.4

FIGURE P4.86

4000 N

0.1 s 0.3 s 0.4 s 1 s 1.1 s
FIGURE P4.91

4.92 A 550-kg industrial sewing machine has a rotating unbalance of 0.24 kg · m.
The machine operates at speeds between 2000 and 3000 rpm. The machine is
placed on an isolator pad of stiffness 5 � 106 N/m and damping ratio 0.12.
What is the maximum natural frequency of an undamped seismometer that can
be used to measure the steady–state vibrations at all operating speeds with an
error less than 4 percent. If this seismometer is used, what is its output when
the machine is operating at 2500 rpm?



Harmonic Excitation of SDOF Systems 311

4.93 The system of Figure P4.93 is subject to the excitation

What is the output in mm/s2 of an accelerometer of natural frequency 100 Hz
and damping ratio 0.7 placed at A?

F (t) = 1000 sin 25.4t + 800 sin (48t + 0.35) -300 sin(100t + 0.21) N

1.8 m
0.6 m

100 N . s/m

12.8 kg

F(t)4.8 × 104 N/m

FIGURE P4.93

4.94 What is the output, in mm, of a seismometer with a natural frequency of 2.5 Hz
and a damping ratio of 0.05 placed at point A for the system of Figure P4.93?

4.95 A 20 kg block is connected to a moveable support through a spring of stiffness
1 � 105 N/m in parallel with a viscous damper of damping coefficient 600 N · s/m.
The support is given a harmonic displacement of amplitude 25 mm and frequency
40 rad/s. An accelerometer of natural frequency 25 Hz and damping ratio 0.2 is
attached to the block. What is the output of the accelerometer in mm/s2?

4.96 An accelerometer has a natural frequency of 80 Hz and a damping coefficient of
8.0 N · s/m. When attached to a vibrating structure, it measures an amplitude
of 8.0 m/s2 and a frequency of 50 Hz. The true acceleration of the structure is
7.5 m/s2. Determine the mass and stiffness of the accelerometer.

4.97 Vibrations of a 30 kg machine occur at 150 rad/s with an amplitude of 0.003 mm.

(a) Design an energy harvester with a damping ratio of 0.2 that harvests
theoretical maximum power over one cycle of vibrations from the body.

(b) What is the power harvested by this harvester in one hour?

4.98 An energy harvester is being designed to harvest the vibrations form a 200 kg
machine that has a rotating unbalance of 0.1 kg · m which operates at 1000 rpm.
The harvester is to have a mass of 1 kg and a damping ratio of 0.1.

(a) What is the stiffness of the harvester?
(b) What is the power harvested from the machine if it operates continuously

in one day.
4.99 An energy harvester is being designed for a vehicle with a simplified suspension

system similar to that in the benchmark examples. The harvester, which is to 
be mounted on the vehicle, is to harvest energy as the vehicle vibrates while
traveling. The harvester will have a mass of 0.1 kg, damping ratio of 0.1, and
natural frequency of 30 rad/s. Estimate how much power is harvested over one
cycle of a sinusoidal road with a spatial period of 10 m and amplitude of 5 mm
while the vehicle is traveling at 50 m/s.
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4.100 How much energy is harvested over one period by the energy harvester of
Problem 4.99 if the vehicle is traveling at 50 m/s over a road whose contour is
shown in Figure P4.100.

Y
(ξ

)
10 cm 280 cm

FIGURE P4.100

4.101 An energy harvester is being designed to harvest energy from a MEMS system.
The harvester consists of a micro-cantilever beam vibrating in a viscous liquid
such that its damping ratio is 0.2. The micro-cantilever beam is made of silicon
(E � 1.9 � 1011 N/m2) is 30 	m long, is rectangular in cross section, has a
base width of 2 	m, and a height of 0.5 	m. The mass density of silicon is 
2.3 g/cm3.

(a) What is the natural frequency of the energy harvester using a SDOF model?
Use the equivalent mass of a cantilever beam at its end.

(b) What energy is harvested over one cycle of motion if the harvesting occurs
at the natural frequency with a vibration amplitude of 1 	m?

(c) What is the average power harvested over one cycle?
(d) What is the power harvested over one hour?



C h a p t e r 5

TRANSIENT VIBRATIONS
OF SDOF SYSTEMS

5.1 INTRODUCTION
When vibrations of a mechanical or structural system are initiated by a periodic excitation,
an initial transient period occurs where the free-vibration response is as large as the forced
response. The free-vibration response quickly decays, resulting in a steady-state motion.
In many cases, when a system is subject to a nonperiodic excitation, the free vibration
response interacts with the forced response and is important throughout the duration of
the motion of the system. Such is the case when a system is subject to a pulse of finite dura-
tion where the period of free vibration is greater than the pulse duration.

One example of a nonperiodic excitation is the ground motion of an earthquake. The
response of structures due to ground motion is obtained by using the methods of this chapter.
An earthquake is usually of short duration, but maximum displacements and stresses occur
while the earthquake takes place. The terrain traveled by a vehicle is usually nonperiodic.
Suspension systems must be designed to protect passengers from sudden changes in road
contour. Forces produced in operation of machines in manufacturing processes are often
nonperiodic. Sudden changes in forces occur in presses and milling machines.

Forced vibrations of SDOF systems are described by the differential equation

(5.1)x
$

+ 2zvnx
#

+ v2
nx =

Feq(t)

meq
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Initial conditions, values of x (0) and , complete the problem formulation. Solution of
Equation (5.1) for periodic forms of Feq(t) is discussed in Chapter 4.

The purpose of this chapter is to analyze the motion of systems undergoing transient
vibrations. Equation (5.1) is a second-order linear nonhomogeneous ordinary differential
equation. For certain forms of Feq(t), the method of undetermined coefficients, as applied in
Chapter 4, can be used to determine the particular solution. The homogeneous solution is
added to the particular solution, resulting in a general solution involving two constants of
integration. Initial conditions are applied to evaluate the constants of integration. If damping
is present the homogeneous solution dies out, leaving the particular solution as a steady-state
solution. The method of undetermined coefficients is best suited for harmonic, polynomial,
or exponential excitations and not useful for most excitations studied in this chapter.

The initial conditions and the homogeneous solution have an important effect on the
short-term transient motion of vibrating systems. For these problems, it is convenient to
use a solution method in which the homogeneous solution and particular solution are
obtained simultaneously and the initial conditions are incorporated in the solution.

Many excitations are of short duration. For short-duration responses, the maximum
response may occur after the excitation has ceased. Thus it is necessary to develop a solu-
tion method which determines the response of a system for all time, even after the excita-
tion is removed. In addition, many excitations change form at discrete times. For these
excitations a solution method in which a unified mathematical form of the response is
determined is a great convenience.

The primary method of solution presented in this chapter is use of the convolution
integral. The convolution integral is derived using the principle of impulse and momen-
tum and linear superposition. It can also be derived by application of the method of vari-
ation of parameters. The convolution integral provides the most general closed-form
solution of Equation (5.1). The initial conditions are applied in the derivation of the inte-
gral, and need not be applied during every application. The convolution integral can be
used to generate a unified mathematical response for excitations whose form changes at dis-
crete times. Since it only requires evaluation of an integral, it is easy to apply.

A second method presented in this chapter is the Laplace transform method. Initial
conditions are applied during the transform procedure and the Laplace transform can be
used to develop a unified mathematical response for excitations whose form changes at dis-
crete times. Use of tables of transforms makes application of the method convenient. The
algebraic effort can be less than that using the convolution integral for damped systems, if
appropriate transforms are available in a table. However, if the appropriate transforms are
not available in a table, determination of the response is difficult.

The system’s transfer function is the ratio of the Laplace transform of its output to the
Laplace transform of its input. Thus, the transfer function is independent of the input. It
is a property of the system itself and contains information regarding the system’s dynamics.
If the transfer function for a system is known, multiplication by the transform of the input
leads to the transform of the system response, which can be inverted. The transfer function
is also the Laplace transform of its impulsive response, which is the response due to a unit
impulse.

There are some excitations in which a closed-form solution of Equation (5.1) does not
exist. In these cases, the convolution integral does not have a closed-form evaluation, and
application of the Laplace transform method leads only to the convolution integral. In
addition, situations exist when the excitation is not known explicitly at all values of time.

x# (0)
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The excitation may be obtained empirically. In these situations, numerical methods must
be used to develop approximations to the response at discrete times. These numerical
methods include numerical evaluation of the convolution integral and direct numerical
solution of Equation (5.1).

Whether the solution is obtained using the convolution integral, Laplace transforms,
or numerical methods, questions arise regarding maximum displacement, maximum trans-
mitted force, and design used to reduce maximum vibration. These questions are answered
for pulses of finite duration. The response spectrum, which is a nondimensional plot of
maximum displacement versus duration of the pulse, is drawn when the shape of the pulse
matters. For short-duration pulses, the shape of the pulse does not matter (only the total
impulse imparted to the system matters), and the design of the system to minimize the
maximum displacement is based upon the concept of isolator efficiency.

5.2 DERIVATION OF CONVOLUTION INTEGRAL

5.2.1 RESPONSE DUE TO A UNIT IMPULSE
The impulse delivered to a system by a force between times t1 and t2 is defined as

(5.2)

An impulsive force is a very large force applied over a very short interval of time. The prin-
ciple of impulse and momentum (a form of Newton’s second law integrated over time) is

(5.3)

where v(t) is the system’s velocity at time t. If the limit of the time over which the force is
applied approaches zero and the impulse remains finite, it is said that an impulse is applied
to the system. In this context, impulse refers to an impulsive force which is applied instan-
taneously.

Consider a SDOF system at rest in equilibrium. Let x (t) be a generalized coordinate
representing the displacement of a particle. A linear SDOF system has the equivalent sys-
tems model of Figure 5.1(a). An impulse of magnitude I is applied to a system at rest at 

mv (t1) + I = mv (t2)

I =

L

t2

t1

F (t)d t

F (t )

(a)

(b)

ceq

meq

keq
x(t)

Feq(t)

meqυ=+

=+System momenta
before impulse

System momenta
after impulse

System external
impulses

I

FIGURE 5.1
(a) Equivalent system model of a
linear SDOF system. (b) Impulse
and momentum diagrams used to
obtain velocity immediately after
application of an impulse.
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t � 0 as shown in Figure 5.1(b). The principle of impulse and momentum is used to cal-
culate the velocity of the particle immediately after application of the impulse as

(5.4)

Application of an impulse leads to a discrete change in velocity. The velocity immedi-
ately after application of the impulse is I/m. Thus, the response of the system is the same
as the solution initial value problem

(5.5)

with

(5.6)

and

(5.7)

For a system whose free vibrations are underdamped, the solution of Equations (5.5)
through (5.7) is

(5.8)

Equation (5.8) can be written as

(5.9)

where

(5.10)

is the response due to a unit impulse applied at .
For a system that is critically damped,

(5.11)

and for an overdamped system,

(5.12)

If the unit impulse is not applied at but at a time , the response at time is
shifted by such that

(5.13)

where is the unit step function of argument which takes on a value of 0
for and a value of 1 for . The unit step function’s presence in Equation (5.13)
guarantees that the response does not occur until the impulse has been applied. Actually,

t � t0t � t0

t - t0,u(t - t0 )

x (t ) = h (t - t0)u(t - t0)

t0

tt0t = 0

h (t) =

e-zvnt

2meqvn2z2
- 1

 aevd1z2
- 1t

- e-vd
1z2

- 1t b

            =

e-zvnt

meqvn2z2
- 1

 sinh avd2z2
- 1t b

h (t ) =

1
meq

 te -vnt

t = 0

h (t ) =

1
meqvd

 e -zvnt sin vd t

x (t ) = Ih (t )

x (t ) =

I
meqvd

 e -zvnt sin vd t

x# (0) =

I
m

x (0) = 0

x
$

+ 2zvnx# + v2
n x = 0

v =

I
meq
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the response for an impulse applied at t � 0 should be multiplied by u(t), but is meas-
ured from 0. For an underdamped system,

(5.14)

An alternative to using a non-zero initial velocity to determine the response of a
system to a unit impulse is to use a unit impulse function (see Appendix A) as the forcing
function in the differential equation. The unit impulse function �(t) is the mathematical
representation of a force required to provide a unit impulse to a system. It possesses the
properties of an impulsive force. It is zero except at t � 0, where it is infinite; yet its integral
over time is equal to 1. Use of the unit impulse function as the forcing function in the
differential equation gives

(5.15)

The solution of the differential equation is h(t ), which is called the impulsive response.
If the impulse is applied at a time other than zero (say t0), the force required to

cause the impulse is �(t – t0), and the differential equation governing the response of
the system is

(5.16)

The solution of Equation (5.16) is h(t � t0)u(t � t0). If the magnitude of the applied
impulse is other than one (say I ), the differential equation becomes

(5.17)

The solution to Equation (5.17) is Ih(t � t0)u(t � t0 ).

x
$

+ 2zvn x
#

+ v2
n x =

I
m

 d(t - t0 )

x
$

+ 2zvn x
#

+ v2
n x =

1
m

 d(t - t0 )

x$ + 2zvn x
#

+ v2
n x =

1
m

 d(t )

h (t - t0) =

1
meqvd

 e -zvn (t - t0) sin 3vd (t - t0 )4

t

EXAMPLE 5 . 1
During its operation, a punch press is subject to impulses of magnitude at t � 0
and at t � 1.5 sec. The mass of the press is 10 kg, and it is mounted on an elastic pad with
a stiffness of 2 � 104 N/m and damping ratio of 0.1. Determine the response of the press.

SO LU T I ON
The natural frequency of the system is

(a)

The damped natural frequency is

(b)

The differential equation governing the response of the press is

(c)x
$

+ 8.94x# + 2000x =

1
10

 35d (t ) + 5d (t - 1.5)4

vd = vn21 - z2
= 44.7  rad/s21 - (0.1)2

= 44.5  rad/s

vn = A
k
m

= A
2 * 104

  N/m

10  kg
= 44.7  rad/s

5 N # s
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The principle of linear superposition is used to find the response of the system as

(d)

The graph of the time response is shown in Figure 5.2

5.3 RESPONSE DUE TO A GENERAL EXCITATION
Consider a SDOF system subject to an arbitrary external force, as illustrated in Figure 5.3(a).
The time scale is written as �, because t is reserved for the time at which the response is to be
calculated. The interval from 0 to t is broken into n subintervals each of duration �� as illus-
trated in Figure 5.3(b). An effect of the force on the interval from k�� to (k 	 1)�� is to 
provide an impulse with a magnitude of

(5.18)

to the system as shown in Figure 5.3(c). The mean value theorem of integral calculus
implies that there exists a where such that

(5.19)I n
k = F (t*

k )�t

k�t … t*
k … (k + 1)�tt*

k

I n
k =

L

(k + 1)�t

k�t

F (t)dt

+ e -4.47t + 6.705 sin(44.5t - 66.75)u (t - 1.5)4 m
= 0.01123e -4.47t sin(44.5t )u (t )

+

5  N # s

(10  kg)(44.5  rad/s)
 e -4.47(t -  1.5) sin344.5(t - 1.5)4u (t - 1.5)

x (t ) =

5  N # s
(10  kg)(44.5  rad/s)

 e -4.47t sin(44.5t )u(t )

0 0.5 1 1.5
t (s)

2 2.5 3

10
×10–3

8

6

4

2

0x 
(m

)

–2

–4

–6

–8

FIGURE 5.2
Time dependent response of
a punch press subject to two
impulses.
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If �� is small, the effect of the force applied between k�� and (k 	 1)�t can be approxi-
mated by an impulse of magnitude applied at tk � (k 	 1/2)�t. Thus, as illustrated in
Figure 5.2(b), the excitation F (t) applied between 0 and t is approximated by the sequence
of impulses .

The response of the system at time t due to an impulse with a magnitude of applied
at time tk is obtained using Equations (5.8) and (5.13):

(5.20)

The force F(�) from 0 to t is approximated by

(5.21)F (t) = a
n

k =  1
I n

kd(t - tk )

x n
k (t ) = I n

k h (t - tk)u(t - tk )

I n
k

I n
k , k = 0, 1, 2, . . . , n - 1

I n
k

FIGURE 5.3
(a) Arbitrary excitation
applied to a SDOF system.
(b) The interval from 0 to t is
divided into n equal intervals
of duration �t� t /n. (c) The
effect of the force applied
during the kth interval is
approximated by the effect
at time t due to an impulse
of an appropriate magnitude.
In the limit as n approaches
infinity, the approximation
becomes exact.
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(b)
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F(t0
∗)∆t

t0
∗

F(t1
∗)∆t

t1
∗

F(t2
∗)∆t

t2
∗

F(t3
∗)∆t

t3
∗

F(t4
∗)∆t

t4
∗

F(tn–2)∆t

tn–2

F(tn–1)∆t

tn–1

2∆t 3∆t 4∆t 5∆t

∗
∗

∗∗

(a)

F(t)

t

(n – 2) ∆t  (n – 1) ∆t t = n∆t
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The system is aware of the time history of the applied force, but it cannot predict the
future. Thus, since Equation (5.1) is linear and has F(�) as expressed in Equation (5.21) on
the right-hand side, the principle of linear superposition is applied to determine the
response at time t as

(5.22)

The approximation of Equation (5.21) becomes exact in the limit as n → �r �t → 0.
To this end,

(5.23)

In the limit as n → , �k and � *k become a continuous variable �. Also, in the limit, the
sum becomes a Riemann sum and

(5.24)

For a system whose free vibrations are underdamped, Equation (5.10) is used in
Equation (5.24), leading to

(5.25)

The integral representation of Equation (5.24) is called the convolution integral. It can be
used to determine the response of a SDOF system initially at rest in equilibrium subject to
any form of excitation. The convolution integral solution is valid for all linear systems where
h(t) is viewed as the response of the system due to a unit impulse at t � 0. It is the solution
of the differential equation of Equation (5.1) that is subject to x(0) � 0 and .

The response of a system with a nonzero initial velocity is obtained by adding to the
convolution integral of Equation (5.24) the response of the system due to a unit impulse
at t � 0 necessary to cause the initial velocity. The response of a system that is not in its
equilibrium position at t � 0 is obtained by defining a new independent variable as 
y � x �x (0). The differential equation governing y(t) is

(5.26)

The convolution integral is used to obtain

(5.27)

The resulting general solution for a system whose free vibrations are underdamped is

(5.28)
 
x (t ) = x (0) e -zvnt cos vd t +

x# (0) + zvnx (0)

vd

 e -zvn t sin vd t
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1
m eqvdL
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0
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0
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  sin vd (t - t)d t

x (t ) =
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EXAMPLE 5 . 2
Find the response of an underdamped SDOF mass-spring-dashpot system initially at rest
in equilibrium when the force

(a)

is applied.

SO LU T I ON
Application of Equation (5.25) for this particular form of F (t ) gives

(b)* U e -zvnt3(a - zvn ) sin vd t - vd cos vd t4 - vd e
-atV

=

F0

m eqvd (v2
n - 2zvna + a2)

x (t ) =

L

t

0

F0e
-at

m eqvd

 e -zvn(t - t) sin vd (t - t)d t

F (t ) = F0e
-at

EXAMPLE 5 . 3

FIGURE 5.4
Excitation of Example 5.3.

F(t)

t0

F0

t

A press of mass m is mounted on an elastic foundation of stiffness k. During operation, the
force applied to the press builds up to its final value F0 in a time t0, as illustrated in 
Figure 5.4. Determine the response of the press for (a) t � t0, and (b) t � t0.

SO LU T I ON
The force applied to the press can be expressed as

(a)

For an undamped system, the convolution integral of Equation (5.25) becomes

(b)

(a) For the convolution integral yields

(c)

x (t ) =

1

mvnL

t

0

F0

t

t0

 sin vn(t - t)d t

           =

F0

mvnt0

 c t
vn

 cos vn(t - t) +

1

v2
n

 sin vn(t - t) dt =  t

 t =  0

          =

F0

mv2
nt0

 a t -

1

vn

 sin vntb

t � t0,

x (t ) =

1
mvnL

t

0
F (t) sin vn(t - t)d t

F (t ) = c F0

t
t0

           t 6 t0

F0                 t Ú t0
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(b) For application of the convolution integral leads to

(d)-

1
vn

 cos vn(t - t0) d
=

F0

mv2
nt0

 c t0 cos vn(t - t0) +

1
vn

 sin vn(t - t0) -

1
vn

 sin vnt +

1
vn

+ c 1
vn

 cos vn(t - t) dt =  t

t =  t 0

s
=

F0

mvn

 c c t
vn

 cos vn(t - t) +

1
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n

 sin vn(t - t) dt =  t 0

t =  0

x(t) =

1
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 c
L

t0

0
F0 
t

t0

 sin vn(t - t)dt +

L

t

t0

F0 sin vn(t - t)dt d
t � t0,

EXAMPLE 5 . 4
The restroom door of Example 3.9 is designed such that it is critically damped. The door
is closed when a man applies a force of 10 N for a duration of 2 s to the knob. What is the
time dependent response of the door?

SO LU T I ON
Using data from Example 3.9, the force applied to the knob results in a moment applied
to the door of

(a)

The differential equation governing the motion of the door is

19.35 	 44.1 	 25� (b)

The convolution integral solution of Equation (b) subject to � (0) � 0 and is

(c)

For t � 2 s, the integral becomes

(d)

The integral is evaluated by letting u � t � t, leading to

(e)

u(t ) = 0.465
L
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t
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L
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0
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           = -0.465 c u
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1
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= b9.0           t 6 2
  0           t 7 2

u
#

u
$

M = (10  N)(0.90  m) = 9.0 N # m
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For t � 2 s, the convolution integral leads to

(f)

Let u � t � �, then

(g)
Thus,

(h)u(t ) = b0.361 - 0.361e -1.14t
- 0.412te -1.14t

           
 t 6 2  s

3.58t e -1.14t
- 4.84e -1.14t

                                                 t 7 2  s

u(t ) = 0.470
L

t

t -  2
ue -1.14udu

           = 0.357e -1.14(t -  2)
+ 0.408(t - 2)e -1.14(t -  2)

- 0.357e -1.14t
- 0.408te -1.14t

           = 3.58te -1.14t
- 4.84e -1.14t

u(t ) =

9.0

19.35L

2

0
(t - t)e -1.14(t -  t)d t

5.4 EXCITATIONS WHOSE FORMS CHANGE
AT DISCRETE TIMES
Many engineering systems are subject to a force whose mathematical form changes at discrete-
values of time. Such is the case with the force applied to the press in Example 5.3. The force
linearly increases to its maximum value in a time t0. The mathematical form of the response
of the press is different for t � t0 than it is for t � t0. It is more convenient to have unified
mathematical forms for the excitation and response. To this end, the unit step function,
introduced in Appendix A, is used.

If a constant force F0 is not applied until time t0, it can be represented using a delayed
unit step function

(5.29)F (t ) = b0                    t … t0

F0                 t 7 t0

= F0u(t - t0 )

EXAMPLE 5 . 5
Use the unit step function to write a unified mathematical expression for each of the forces
of Figure 5.5.

FIGURE 5.5
Excitations of Example 5.5.

t0
(a)

F0

t0 3t0 4t0
(b)

F0

t0
(c)

F0 Exponential decay
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SO LU T I ON
Each of the forces of Figure 5.5 can be written as the sum and/or difference of functions
that are nonzero only after a discrete time. The graphical breakdown for each function is
shown in Figure 5.6. The unit step function is used to write a mathematical expression for
each term in the forcing functions, leading to

FIGURE 5.6
Graphical breakdown of excitations of Example 5.5 into functions that can be written by using unit step functions.

t0 F0u(t)

(a)

(b)

F0

t0

F0
= –

F0u(t – t0)
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t0

F0

3t0 4t0 t0

F0
= –

t0
F0t/t0 F0t/t0u(t – t0)

F0

3t0

F0
+

+

–

t0
F0u(t – 3t0)

F0(4 – t/t0)u(t – 3t0) F0(4 – t/t0)u(t – 4t0)

F0u(t – t0)

F0

4t0

F0
–

3t0 4t0

F0
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Many functions found in practice can be written as combinations of impulses, step
functions, ramp functions, exponentially decaying functions, and sinusoidal pulses. Many
functions which cannot be mathematically defined in terms of these functions are often
approximated by these functions for estimation purposes.

Table 5.1 provides the response of an undamped SDOF system to common excitation
terms delayed by a time t0. The responses are derived from the convolution integral making
use of the following formula:

(5.30)
L

t

0
F (t)u (t - t0)d t = u (t - t0 )

L

t

t0

F (t)d t

(c)

F0e–α(t–t0)u(t – t0)

t0 t

F0

t0

F0
=

+

–

F0t/t0u(t)

F0

t0

F0t/tØu(t – t0)

F0

EXAMPLE 5 . 6
Use the convolution integral to derive the responses of an undamped linear SDOF system
of mass m and natural frequency when subject to the delayed exponential excitation
illustrated in Table 5.1.

vn

(a) (a)

(b)

(b)

(c) (c)F (t ) =

F0t

t0

3u (t ) - u (t - t0 )4 + F0e
-a(t -  t0)u (t - t0 )

+

F0
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(t - 4t0)u (t - 4t0)

=

F0

t0

tu (t) -

F0

t0

(t - t0 )u (t - t0) -

F0

t0

(t - 3t0)u (t - 3t0)

+ F0a4 -

t
t0

b3u (t - 3t0) - u(t - 4t0)4
F (t) =

F0t

t0

3u (t) - u (t - t0)4 + F03u (t - t0) - u (t - 3t0)4
F (t ) = F03u (t ) - u (t - t0)4

FIGURE 5.6
(Continued)
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Delayed impulse
Excitation:
Response: meqv

2
n x (t )/A = vn  sin  vn (t - t0)u (t - t0)
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F
(t

)
A

0.5

Impulsive excitation

Unit impulse

t
0.5

1

0

–0.5

0.5

–1

0 1
t

1.5 2 2.5

Response for delayed impulse

m
 w

n2 x
(t

)
A

0.5

2.5

0.4

0.2

0.6

1.0

0.0
0 1

t
1.5 2 2.5

Delayed step excitation

0.8

F
(t

)
A

0.5

2.5

1.0

0.5

1.5

2.0

0.0
0 1

t
1.5 2 2.5

Response for delayed step

m
 w

n2 x
(t

)
A

Delayed step function
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Response: meqv
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Delayed ramp function
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Response: meqv
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Response of an undamped SDOF to common forms of
excitation

T A B L E 5 . 1
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Delayed exponential function

Excitation:

Response: meqv
2
n x (t )/A = 3e -a(t -  t0)

+ a/vn  sin  vn(t - t0)

       -  cos  vn(t - t0)4/(1 + a2/v2
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Delayed sine function:
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This table provides the response of an undamped SDOF system to common forms of excitation. Many forms of excitation
can be written as combinations of the excitations whose system responses are provided in the table. Superposition can
be used to determine the response due to these excitations. In other cases, excitations can be approximated by combina-
tions of excitations in this table. Then this table and superposition is used to approximate the response of an undamped
SDOF system.

The table provides the mathematical form of the excitation and response as well as graphical representations. In all
cases, values of �n � 10 rad/s and r0 � 0.5 s were used to generate the graphs. The values of specific parameters used for
specific excitations are given.

T A B L E 5 . 1 ( C O N T I N U E D )
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SO LU T I ON
The mathematical representation of the forcing function is

(a)

The convolution integral of Equation (5.25) is used to write the solution as

(b)

which using Equation (5.30) is rearranged as

(c)

x (t ) = u(t - t0) 
F0

meqvnL

t

0
e -a(t- t0) sin vn(t - t

t
)d t

         = u(t - t0) 
F0

meqvn(a
2

+ v2
n )

 3vne
-a(t -  t0) + a sin vn(t - t0)

                                                                                      - vn cos vn(t - t0)4

x (t ) =

F0

meqvnL

t

0
e -a(t -  t0)u (t - t0) sin vn(t - t)dt

F (t ) = F0e
-a(t -  t0)u(t - t0)

Often, excitations are linear combinations of the function whose responses are pre-
sented in Table 5.1. The general form of an excitation that changes form at discrete times
t1, t2, . . . , tn is

(5.31)

Application of the convolution integral to the excitation of Equation (5.31), using
Equation (5.30), yields

(5.32)

Equation (5.32) shows that the total response is the sum of the responses due to the indi-
vidual terms of the excitation. This result is due to the linearity of Equation (5.1). The
effects of any nonzero initial conditions are included with the response due to f1(t ).

x (t ) = a
n

i =  1
u(t - ti )L

t

ti

f i (t)h (t - t) d t

F (t ) = a
n

i =  1
f i (t )u (t - ti )

EXAMPLE 5 . 7
Use Table 5.1 to develop the response of a linear, SDOF system of mass m and natural 
frequency �n when subject to the triangular pulse excitation of Figure 5.7.

SO LU T I ON
The triangular pulse can be written as the sum and difference of ramp functions as shown.
The response due to the triangular pulse is obtained by adding and subtracting the
responses due to each ramp function according to

(a)
where the individual responses are determined from Table 5.1.

For xa(t), the ramp function entry of Table 5.1 is used with A � F0/t1, B � 0, and 
t0 � 0 leading to

(b)xa(t ) =

F0

mv2
n

c t
t1

-

1
vnt1

 sin vnt d

x (t ) = xa(t ) - xb(t ) + x c(t ) - xd (t )
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FIGURE 5.7
(a) Triangular pulse of
Example 5.7 and its graphical
breakdown. (b)–(e) Response
of a SDOF undamped system
due to the component parts
of a triangular pulse excita-
tion obtained using Table 5.1.
(f) Response of a SDOF
system due to triangular
pulse excitation obtained
using the principle of linear
superposition. (g) Comparison
of triangular pulse and the
resulting excitation.
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0

0

1

–1

–2
2t1

t
t1

m
w

n2 x
d(
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xb(t) is determined from the ramp function entry of Table 5.1 with A � F0/t1, B � 0,
t0 � t1. This gives

(c)

For xc(t), the ramp function entry of Table 5.1 is used with A � �F0/t1, B � 2F0, and
t0 � t1. This leads to

(d)

xd(t) is determined using the ramp function entry of Table 5.1 with A � �F0/t1, 
B � 2F0, and t0 � 2t1. This gives

(e)

Simplifying the resulting expression in each interval of time yields

(f)

The response of each component part and the total response is shown in Figure 5.7(b)
through (g).

x (t ) =

F0

mv2
n

 f
t
t1

-

1

vnt1

 sin vnt                                                                                    0 … t … t1

2 -

t
t1

+

1

vnt1

32 sin vn(t - t1) -  sin vnt4                                 t1 … t … 2t1

1
vnt1

32 sin vn(t - t1) -  sin vnt -  sin vn(t - 2t1)4            t1 7 2t1

xd (t ) =

F0

mv2
n

c a2 -

t
t1

b +

1
vnt1

 sin vn(t - 2t1) du(t - 2t1)

x c(t ) =

F0

mv2
n

c a2 -

t
t1

b -  cos vn(t - t1) +

1
vnt1

 sin vn(t - t1) du (t - t1)

xb(t ) =

F0

mv2
n

c t
t1

-  cos vn(t - t1) -

1
vnt1

 sin vn(t - t1) du (t - t1)

5.5 TRANSIENT MOTION DUE TO BASE EXCITATION
Many mechanical systems and structures are subject to nonperiodic base excitation. A rigid
wheel traveling along a road contour excites motion of a vehicle through the suspension
system. Earthquakes excite structures through base motion.

Recall the governing equation for the relative displacement between a mass and its base
when the mass is connected to the base through a spring and viscous damper in parallel

(5.33)

where y is the prescribed base motion. If and , the convolution integral
is used to solve Equation (5.33), yielding

(5.34)z (t ) = -meqL

t

0
y
$

(t)h (t - t)d t

z# (0) = 0z (0) = 0

z
$

+ 2zvnz
#

+ v2
nz = - y

$
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Equation (5.34) is integrated by parts to write the solution in terms of the base velocity

(5.35)

where

(5.36)

(5.37)

If the base displacement is known, it can be differentiated to calculate the velocity and
Equation (5.35) can be used to determine the relative displacement. Alternatively, the
absolute displacement of the base can be attained by solving

(5.38)

When applied to Equation (5.38), the convolution integral yields

(5.39)x (t ) = -meqL

t

0
32zvn y# (t) + v2

n y (t)4h (t - t)dt

x
$

+ 2zvnx
#

+ v2
nx = -2zvn y# - v2

n y

x =  tan -1a21 - z2

z
b

 
e -zvnt

meq21 - z2
 sin (vd t - x)h

#

(t ) = -

h
#  
(t - t)d tz (t ) = meq3y# (0)h (t) -

L

t

0
y# (t)

EXAMPLE 5 . 8
Determine the response of a block of mass m connected through a spring of stiffness k
to a base when the base is subject to the rectangular velocity pulse of Figure 5.8. Use 
(a) Equation (5.35) and (b) Equation (5.34).

SO LU T I ON
The mathematical expression for the velocity pulse is

(a) By definition u(0) � 0, thus . In using Equation (5.35) for an undamped,
system, note that  � p/2 and sin (�nt � p/2) � cos �nt. Application of Equation (5.35)
then yields

(a)

Using Equation (5.30) to evaluate the integral leads to

(b)

(b) The base acceleration is obtained by differentiating the base velocity with respect
to time. Noting that the derivative of the unit step function is the unit impulse function,
differentiation gives

(c)y
$

(t) = v 3d(t ) - d(t - t0)4

z (t ) = -v 3u (t )
L

t

0
 cos vn(t - t)d t - u (t - t0)L

t

t0

 cos vn(t - t)d t4
           =

v
vn

3 sin vn(t - t0)u(t - t0) -  sin  (vnt )u(t )4

z (t ) = -v
L

t

0
3u (t) - u (t - t0)4 cos vn(t - t)d t

y# (0) = 0

y# (t ) = v3u (t ) - u (t - t0)4



332 CHAPTER 5

The base velocity changes instantaneously at t � 0 and t � t0. Instantaneous velocity
changes result only from applied impulses.

Substituting the base acceleration into Equation (5.34) gives

(d)

The integrals are evaluated after noting

(e)

The relative displacement is determined as

(f)z (t ) =

v
vn

3 sin vn (t - t0)u(t - t0 ) -  sin  (vnt )u(t )4

L

t

0
d(t - t0)f (t)d t = f (t0) u (t - t0)

z (t ) = -

v
vnL

t

0
3d(t) - d (t - t0)4  sin vn(t - t)d t

FIGURE 5.8
Velocity pulse for Example 5.8.

t0 t

v (t)

v

5.6 LAPLACE TRANSFORM SOLUTIONS
The Laplace transform method is a convenient method for finding the response of a
system due to any excitation. The basic method is to use known properties of the trans-
form to transform an ordinary differential equation into an algebraic equation, using the
initial conditions. The algebraic equation is solved to find the transform of the solution.
This transform is inverted by using properties of the transform and a table of known
transform pairs.

The Laplace transform can be used to solve linear ordinary differential equations with
constant or polynomial coefficients. The method easily handles excitations whose form
changes with time. Such excitations are written in a unified mathematical expression by
using the unit step functions. The shifting theorems help perform the transform and eval-
uate the inversions.

The Laplace transform is not as easy to apply as the convolution integral unless one has
extensive experience in its use. The main drawback of the method is the difficulty in invert-
ing the transform. A formal inversion theorem, involving contour integration in the com-
plex plane, is available, but is beyond the scope of this text.

The transform pairs and properties used in the following discussion are summarized
and explained in Appendix B.
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Let X(s) be the Laplace transform of the generalized coordinate for a SDOF system.
That is,

(5.40)

Let F(s) be the Laplace transform of the known forcing function which, for a specific form
of Feq(t), is calculated from the transform definition, referring to a table of transform pairs,
or using basic properties in conjunction with a table.

Taking the Laplace transform of Equation (5.1) and using linearity of the transform,

(5.41)

The property for transform of derivatives allows the transform of the differential equation
for x(t) into an algebraic equation for X(s). Its application to Equation (5.41) gives

which rearranges to

(5.42)

The definition and linearity of the inverse transform is used to find x(t),

(5.43)

The inverse transform of each term of Equation (5.43) depends on the types of roots in
the denominator, which, in turn, depend on the value of �. For a given �, the inverse transform
of the last term of Equation (5.43) is directly determined. The inverse transform of the first
term is determined only after specifying Feq(t) and taking its Laplace transform.

If the system is undamped, � � 0, and the inverse transform of the second term
becomes

(5.44)

Using transform pairs B4 and B5 to invert the transforms for an undamped system

(5.45)

If the free vibrations are underdamped, then the denominator has two complex roots. In
this case, it is convenient to complete the square of the denominator as

(5.46)s2
+ 2zvns + v2

n = (s + 2zvn )2
+ v2

n(1 - z2)

L-1b (s + 2zvn )x(0) + x# (0)

s2
+ 2zvns + v2

n

r = x (0) cos vnt +

x# (0)

vn

 sin vnt

L-1b (s + 2zvn )x (0) + x# (0)

s2
+ 2zvns + v2

n

r = L-1b sx (0) + x# (0)

s2
+ v2

n

r
    = x (0) L-1b s

s2
+ v2

n

r + x# (0) L-1b 1

s2
+ v2

n

r

x (t ) =

1
meq
L-1b F (s)

s2
+ 2zvns + v2

n

r + L-1b (s + 2 zvn )x (0) + x# (0)

s2
+ 2zvns + v2

n

r
X(s) =

F (s)
meq

+ (s + 2zvn )x (0) + x# (0)

s2
+ 2zvns + v2

n

s2X(s) - sx (0) - x# (0) + 2zvn3sX (s ) - x(0)4 + v2
nX(s ) =

F (s )
meq

L{x$ } + 2zvn L{x#} + v2
nX (s) =

F (s )
m eq

X(s) =

L

�

0
x (t )e -stdt
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Substituting Equation (5.46) into the last term of Equation (5.43) yields

(5.47)

Equation (5.47) is written in a form for use in the first shifting theorem (that is, wherever
s appears, it appears as in the denominator). Using linearity of the inverse trans-
form, we have

(5.48)

The first shifting theorem along with transform pair B5 are used to invert the first term,
while the first shifting theorem and transform pair B4 are used to invert the second term,
yielding for an underdamped system:

(5.49)

If the free vibrations are critically damped, the denominator of Equation (5.43) is a
perfect square as (s 	�n)

2 and it yields

(5.50)

Using linearity of the inverse transform, the right-hand side of Equation (5.50) is rewritten as

(5.51)

Inverting using transform pairs B3 on the first term and the first shifting theorem and
transform pair B2 on the second term leads to:

(5.52)

When the free vibrations are overdamped, the denominator of Equation (5.43) can be
factored into two linear factors (s – s1)(s – s2) where ands1 = -vn(z + 2z2

- 1)

L-1b (s + 2zvn )x (0) + x# (0)

s2
+ 2zvns + v2

n

r = x (0)e -vnt + (vnx (0) + x# (0))te -vnt

L-1b (s + 2zvn )x (0) + x# (0)

s 2
+ 2zvns + v2

n

r
    = x (0) L-1 b 1

s + vn

r + (vnx (0) + x# (0))L-1b 1

(s + vn )2
r

L-1b (s + 2zvn )x (0) + x# (0)

s 2
+ 2zvns + v2

n

r = L-1b (s + 2vn )x (0) + x# (0)

(s + vn )2 r

L-1b (s + 2zvn )x(0) + x# (0)

s 2
+ 2zvns + v2

n

r
                      = x (0)e -zvnt cos (vn21 - z2t )

                           + 3x# (0) + zvnx (0)4e -zvnt sin (vn21 - z2t )

L-1 b (s + 2zvn )x (0) + x# (0)

s2
+ 2zvns + v2

n

r
       = x (0) L-1 b (s + zvn )

(s + zvn )2
+ v2

n(1 - z2 )
r

              + (x# (0) + zvnx (0))L-1 b 1

(s + zvn )2
+ v2

n(1 - z2 )
r

s + zvn

L-1b (s + 2zvn )x (0) + x# (0)

s2
+ 2zvns + v2

n

r = L-1b (s + 2zvn )x (0) + x# (0)

(s + zvn )2
+ v2

n(1 - z2)
r
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. A partial fraction decomposition of the transform leads to

(5.53)

The transform is inverted using transform pair B3, yielding

(5.54)

The inverse transform of the first term of Equation (5.43) is found by finding for
the particular form of , forming , and inverting using algebraic
manipulations, transform properties, and a table of known transform pairs.

F (s)/(s 2
+ 2zvn s + v2

n )F (t )
F (s)

L-1b (s + 2zvn )x(0) + x# (0)

s2
+ 2zvns + v2

n

r
      =

3(s1 + 2zvn )x (0) + x# (0)4
s1 - s2

e s1t +

3(s2 + 2zvn )x (0) + x# (0)4
s2 - s1

e s 2t

L-1b (s + 2zvn )x(0) + x# (0)

s2
+ 2zvns + v2

n

r
=

3(s1 + 2zvn )x (0) + x# (0)4
s1 - s2

L-1b 1
s - s1

r
      +

3(s2 + 2zvn )x (0) + x# (0)4
s2 - s1

L-1b 1
s - s2

r

s1 = -vn(z - 2z2
- 1)

EXAMPLE 5 . 9
A 200-kg machine is to be mounted on an elastic surface of equivalent stiffness 2 � 105

N/m with no damping. During operation, the machine is subject to a constant force of
2000 N for 3 s. Can vibrations be eliminated without adding damping? If so, what is the
maximum deflection of the machine?

SO LU T I ON
The differential equation governing motion of the machine is

(a)

where F0 � 2000 N and �n � 31.63 rad/s. The Laplace transform of F(t) is obtained by
using the second shifting theorem

(b)

Then from Equation (5.43) with x(0) � 0 and ,

(c)

Partial fraction decomposition yields

(d)X (s ) =

F0

mv2
n

a1
s

-

s
s2

+ v2
n

b (1 - e -3s )

X (s ) =

F0

m
 L- 1b 1 - e -3s

s (s2
+ v2

n )
r x# (0) = 0

L{F03u (t ) - u (t - 3)4} =

F0

s
 (1 - e -3s )

x
$

+ v2
nx = F03u (t ) - u (t - 3)4
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The second shifting theorem is used to help invert the transform

(e)

The solution for t � 3 s is

(f)

For no steady-state motion,

(g)

which is satisfied if 3�n � 2n� for any positive integer n. Thus steady-state vibrations are
eliminated by requiring

(h)

For n � 15, vn � 31.35 rad/s, which is attained if m � 203.5 kg. Thus steady-state vibra-
tions are eliminated if 3.5 kg is rigidly added to the machine.

The machine undergoes 15 cycles while the force is applied, and motion ceases when
the force is removed. The maximum displacement during operation is

(i)x
 max 

=

2F0

mv2
n

=

2F0

k
= 0.02  m

vn =

2np
3

= 2.09n rad/s

 cos vnt =  cosvn(t - 3)

x (t ) =

F0

mv2
n

 3cosvn(t - 3) -  cosvnt4  t 7 3  s

x (t ) =

F0

mv2
n

 31 -  cos  vnt - u (t - 3)(1 -  cosvn(t - 3))4

EXAMPLE 5 . 1 0
Use the Laplace transform method to determine the response of an underdamped SDOF
system to the rectangular velocity pulse of Figure 5.8.

SO LU T I ON
From the analysis in Example 5.8, the differential equation governing displacement of the
mass relative to its base when the base is subject to a rectangular velocity pulse is

Using transform pair B1, and assuming z(0) � 0 and , Equation (5.42) becomes

The transform is inverted by completing the square in the denominator and using both the
first shifting theorem and the second shifting theorem to obtain

z (t ) =

-v
vn

 3e -zvnt sin vdt - e -zvn(t - t0) sin vd (t - t0)u (t - t0)4

Z (s) =

-v (1 - e -st0)

s2
+ 2zvns + v2

n

z# (0) = 0

z
$

+ 2zvnz + v2
nz = -v3d(t ) - d(t - t0)4
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5.7 TRANSFER FUNCTIONS
Taking the Laplace transform of Equation (5.1), assuming x(0) � 0 and , leads
to an equation of the form

(5.55)

where X (s) is the Laplace transform of x (t), F (s) is the Laplace transform of F (t), and G (s)
is called the transfer function. The transfer function is always defined assuming the initial
conditions are zero. Since

(5.56)

the transfer function is independent of the input to the system. It is a function of only the
system and its parameters. For a SDOF system, the transfer function is dependent upon
the mass, damping ratio, and natural frequency.

G (s) =

X (s)

F (s)

X (s ) = F (s)G ( s )

x# (0) = 0

EXAMPLE 5 . 1 1
(a) Determine the transfer function for a SDOF system of natural frequency 10 rad/s and
a damping ratio of 1.5 due to a force input. The mass of the system is 2 kg. 
(b) Find the response of the system due to a force 

SO LU T I ON
(a) The differential equation governing the motion of the system is

(a)

Taking the Laplace transform of Equation (a) and setting both initial conditions to zero
leads to

(b)

Rearranging Equation (b) leads to

(c)

(b) The Laplace transform of is From Equation (5.49),

(d)

The system is overdamped, so the denominator of its transfer function is factorable with
real factors as

(e)

Performing a partial fraction decomposition on the right-hand side of Equation (e), we have

(f)

Inverting Equation (f ) leads to

(g)x (t) = 0.234e -3t
+ 9.69 * 10- 3e -26.18t

- 0.244e -3.82t

X (s) =

-0.244
s + 3.82

+

9.69 * 10- 3

s + 26.18
+

0.234
s + 3

X (s) =

5
(s + 3.82)(s + 26.18)(s + 3)

X (s) = F (s)G (s) =

10
2(s2

+ 30s + 100)(s + 3)

F (s) =

10
s + 3

.F (t) = 10e - 3t

G (s) =

X ( s)

F (s )
=

1

2(s2
+ 30s + 100)

(s2
+ 30s + 100)X (s) =

1
2

F (s)

x$ + 30x# + 100x =

1

2
F (t )

F (t) = 10e - 3t.
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EXAMPLE 5 . 1 2
Determine the transfer function for the system of Figure 5.9, which has motion input.

FIGURE 5.9
Mechanical system with
motion input. m

ck

x(t)

y(t)

SO LU T I ON
The differential equation is derived in Section 4.5 as

(a)

The transfer function for this system is defined as

(b)

where X(s) � L{x (t)} and Y(s) � L{y(t)}. Taking the Laplace transform of Equation (a), we
have

(c)

Using the properties of linearity of the transform and the transform of derivatives with the
initial conditions taken to be zero leads to

(d)

Rearranging Equation (d) and solving for the transfer function leads to

(e)G (s) =

2zvns + v2
n

s2
+ 2zvns + v2

n

s2X (s) + 2zvnsX (s) + v2
nX (s) = 2zvnsY (s) + v2

nY (s)

L{x$ + 2zvnx
#

+ v2
nx } = L{2zvn y# + v2

n y }

G (s) =

X (s)

Y (s)

x
$

+ 2zvnx
#

+ v2
nx = 2zvn y# + v2

n y

The transfer function for SDOF systems are as follows:

• System with force input

(5.57)

• System with motion input

(5.58)

The impulsive response of a system xI (t) is the response due to a unit impulse function:

(5.59)x$ I + 2zvnx
#

I + v2
nx I =

1
m

 d(t )

G (s) =

2zvns + v2
n

s2
+ 2zvns + v2

n

G (s) =

1
m

s2
+ 2zvns + v2

n
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Noting that , the Laplace transform of the impulsive response H(s) obtained
from Equation (5.55) is

(5.60)

Thus, the transfer function is the transform of the system’s impulsive response. Using the
notation of previous sections, we have

(5.61)

Use of the convolution theorem on Equation (5.55) and noting Equation (5.61) yields

(5.62)

The response of a system due to a unit step function is given by

(5.63)

Noting that the Laplace transform of the step response is

(5.64)

Taking the inverse of Equation (5.64) and using the property of transforms of integrals
yields

(5.65)

Changing the variable of integration in Equation (5.58) by letting v � t � t leads to

(5.66)

Writing Equation (5.66) as

(5.67)

leads to a convolution integral solution of

(5.68)x (t ) =

L

t

0
3F#

(t) + F (0)4x s (t - t)d t

X (s) = 3sF (s )4c 1
s
G (s ) d

x s (t ) =

L

t

0
h (v)dv

x s (t ) =

L

t

0
u (t)h (t - t)d t =

L

t

0
h (t - t)d t

Xs (s) =

1
s
G (s)

L{u(t )} = 1/s,

x$ s + 2zvnx# s + v2
nx s =

1
m

 u (t )

x (t ) =

L

t

0
F (t)h (t - t)d t

h (t) = L-1G {(s)}

H (s ) = G (s )

L{d (t )} = 1

EXAMPLE 5 . 1 3
Find the step response of a critically damped SDOF system.

SO LU T I ON
The impulsive response of a critically damped SDOF system is

(a)h (t ) =

1
m

 te -vnt
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Use of Equation (5.66) gives

(b)x s(t ) =

1
mL

t

0
ve -vnvdv

               =

1
mv2

n

 (1 - e -vnt - vnte
-vnt )

5.8 NUMERICAL METHODS
The convolution integral and Laplace transform methods are easy methods of solving
Equation (5.1) for any excitation. However, closed-form solutions using these methods
are limited to cases where the forcing function has an explicit mathematical formulation
and closed-form evaluation of the convolution integral is possible. In addition, there are
explicitly defined forcing functions such as those proportional to non-integral powers of
time where a closed-form evaluation of the convolution integral or evaluation of the
inverse Laplace transform is very difficult. When these situations occur, numerical meth-
ods must be used to obtain an approximate solution to the differential equation at discrete
values of time.

Numerical solutions of forced SDOF vibrations problems are of two classes: numerical
evaluation of the convolution integral and direct numerical evaluation of Equation (5.1).

5.8.1 NUMERICAL EVALUATION OF CONVOLUTION
INTEGRAL
Many numerical integration techniques are available for evaluation of integrals. Most
numerical integration techniques use piecewise defined functions to interpolate the
integrand. A closed-form integration of the interpolated integrand is performed. The
method described here uses an interpolation for from which an approximation to
the convolution integral is obtained. The discretization of a time interval and possible
interpolations to are shown in Figure 5.10.

Let t1, t2, . . . be values of time at which an approximate solution is to be obtained. Let F1(t),
F2(t), . . . be the interpolating functions such that Fk(t) interpolates on the interval
tk�1 � t � tk. Let xk be the numerical approximation for x (tk). Also define

The convolution integral is used to obtain the response of an underamped SDOF
system as

(5.69)

x (t ) = x (0)e -zvnt cos vd t +

x# (0) + zvnx (0)

vd

e -zvnt sin vd t

              +

L

t

0

Feq(t)

meqvd

 e -zvn(t - t) sin vd (t - t)d t

� j = tj - tj - 1

F eq(t)

F eq(t)

F eq(t)
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F(t)

(a)

(b)

t1
∗ t1 t2 t3 t4 tkt2

∗ t4
∗t3

∗ tk+1

t1 t2 t3 t4 tk tk+1

∗

(c)

(d)
FIGURE 5.10
(a) Discretization of time for numerical integration of convolution integral. (b) Interpolation of F(t)
by a series of impulses. (c) Interpolation of F(t) by piecewise constants. (d) Piecewise linear
interpolation for F(t).
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The trigonometric identity for the sine of the difference of angles is used to rewrite
Equation (5.69) as

(5.70)

Define

(5.71)

and

(5.72)

Using the definitions in Equations (5.71) and (5.72) in Equation (5.69) leads to

(5.73)

Interpolating functions are chosen for Feq(t) such that Equations (5.71) and (5.72) 
have closed-form evaluations when the interpolating function is used in place of Feq(t).
Then Equation (5.73) is used to calculate approximations to the solution at discrete times.

First, consider the case where Feq(t) is interpolated by a series of impulses, as illustrated
in Figure 5.10(b). During the interval between tj�1 and tj, application of Feq(t) results in
an impulse of magnitude

(5.74)

The mean value theorem of integral calculus implies that there exists a 
such that

(5.75)

For the sake of interpolation, approximate t*
j by

(5.76)

Thus, on the interval tj –1 � t � tj , F(t ) is interpolated by an impulse of magnitude Ij
applied at the midpoint of the interval. With this choice of interpolation, Equations (5.71)
and (5.72) are evaluated as

(5.77)

(5.78)G2j = Feq(t
*
j )�j e

zvnt
*
j  sin  vd t

*
j

G1j = Feq(t
*
j )�j e

zvnt
*
j  cos  vd t

*
j

t *
j L

tj + tj -1

2

Ij = Feq(t
*
j )�j

t *
j , tj -1 6 t *

j 6 tj ,

Ij =

L

tj

tj -  1

Feq(t)d t

xk = e -zvn tk cx (0) cos vd tk +

zvnx (0) + x# (0)

vd

 sin vd tk d
       +

1
meqvd

 e -zvn tk c  sin vd tka
k

j =  1
G1j -  cos vd tka

k

j =  1
G2j d

G2j =

L

tj

tj -1

Feq(t)e
zvn t cos vd td t

G1j =

L

tj

tj - 1

Feq(t)e
zvn t cos vd td t

x (t ) = e -zvnt cx (0) cos vd t +

x# (0) + zvnx (0)

vd

 sin vd t d
   +

1
meqvd

 e -zvn t c  sin vd tL

t

0
Feq(t)e

zvn tcos vd t

       -  cos vd tL

t

0
Feq(t)e

zvn tcos vd td t d



Transient Vibrations of SDOF Systems 343

It is also possible to interpolate Feq(t) with piecewise constants. Over the interval from
tj�1 to tj, the interpolate for Feq(t) assumes the value of Feq(t) at the interval’s midpoint, as
illustrated in Figure 5.10(c). Call the value of the interpolate fj. Then

(5.79)

(5.80)

where

(5.81)

(5.82)

Finally, consider the case where Feq(t) is interpolated linearly between tj �1 and tj , as illus-
trated in Figure 5.10(d). Then if gj � f (tj),

(5.83)

(5.84)

where Cj and Dj are given by Equations (5.81) and (5.82), respectively, and

(5.85)

(5.86)

Other choices for interpolating functions for Feq(t) are possible. Higher-order piece-
wise polynomials may be used, as well as interpolates which require more smoothness at
each tj , such as splines. Any form of interpolating function can be chosen as long as
Equations (5.71) and (5.72) have closed-form evaluations. However, the more complicated
the interpolating function, the more algebra is involved in the evaluation of G1 j and G2 j.
The numerical evaluation of the convolution integral also requires more computations for
more complicated interpolating functions.

If Feq(t) is known empirically, any of the methods presented may be used to evaluate the
convolution integral. If piecewise impulses or piecewise constants are used, the times where

Bj =

1 - z2

vd

 B tj e
zvntj a zvn

vd

 sin vd tj -  cos vd tj b
               - tj -1e

zvntj - 1 a zvn

vd

 sin vd tj -1 -  cos vd tj -1b + aCj -

zvn

vd

Dj b R

Aj =

1 - z2

vd

 B tj e
zvntj a  sin vd tj +

zvn

vd

  cos vd tj b
               - tj -1e

zvntj - 1a  sin vd tj -1 +

zvn

vd

  cos vd tj -1b - aDj +

zvn

vd

Cj b R

G2j =

1
�j

 3( gj - gj -1)Bj + ( gj -1tj - gj tj -1)Dj4

G1j =

1

�j

 3( gj - gj -1)Aj + ( gj -1tj - gj tj -1)Cj4

Dj =

1 - z2

vd

 ce zvntj a - cos vd tj +

zvn

vd

 sin vd tj b
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zvn
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 sin  vd tj -1b d
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vd

 ce zvntj a sin vd tj +

zvn
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                - e zvn tj - 1a  sin vd tj -1 +

zvn
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 cos vd tj -1b d

G2j = f jDj

G1j = f jCj
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Feq(t) is known are taken as midpoints of the intervals. If piecewise linear interpolates are
used, the times where Feq(t) is known are taken as the tj’s.

Error analysis of the preceding methods is beyond the scope of this text. Better accu-
racy for the response is, of course, obtained with better accuracy of the interpolate. Error
analysis usually involves comparing the interpolation with a Taylor series expansion to esti-
mate the error in the interpolation. The error is usually expressed as being the order of
some power of � j. Bounds on the error in using the convolution integral are obtained.
Integration tends to smooth errors.

Determination of the response using these methods requires evaluation of the convo-
lution integral at discrete values of time. Since errors are introduced in the evaluation of
G1 j and G2 j, the more of these terms used in the evaluation, the larger is the error. Hence
the error in approximation grows with increasing t. Reduction of error can be achieved by
using smaller time intervals, if possible, or by using more accurate interpolates.

5.8.2 NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS
An alternative to numerical evaluation of the convolution integral is to approximate the
solution of Equation (5.1) by direct numerical integration. Many methods are available for
numerical solution of ordinary differential equations.

Since vibrations of discrete systems are governed by initial value problems, it is best to
use a numerical method that is self-starting. That is, previous knowledge of the solution at
only one time is required to start the procedure.

Best application of self-starting methods required the rewriting of an nth-order differen-
tial equation as n first-order differential equations. This is done for Equation (5.1) by defining

(5.87a)

(5.87b)

Thus,

(5.88a)

and from Equation (5.1)

(5.88b)

Equations (5.88a) and (5.88b) are two simultaneous linear first-order ordinary differential equa-
tions whose numerical solution yields the values of displacement and velocity at discrete times.

In the following let ti , i � 1, 2, . . . , be the discrete times at which the solution is
obtained and let y1,i and y2,i be the displacements and velocities at these times and define

(5.89)

The recurrence relations for the simplest self-starting method, called the Euler method,
are obtained from truncating Taylor series expansions for yk, i+1 about yk,i after the linear
terms. These recurrence relations are

(5.90a)

(5.90b)y2,i + 1 = y2,i + (ti + 1 - ti )BFeq(ti )

meq
- 2zvn y2,i - v2

n y1,iR
y1,i + 1 = y1,i + (ti + 1 - ti )y2,i

�j = tj + 1 - tj

y#2(t ) =

Feq

meq
- 2zvn y2(t ) - v2

n y1(t )

y#1(t ) = y2(t )

y2(t ) = x# (t )

y1(t ) = x (t )
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Given initial values of y1 and y2, Equations (5.90a) and (5.90b) are used to calculate recur-
sively the displacement and velocity at increasing times. The Euler method is first-order
accurate meaning that the error is of the order of �j.

Runge-Kutta methods are more popular than the Euler method because of their better
accuracy, while still being easy to use. A Runge-Kutta formula for the solution of the first-
order differential equation

(5.91)

is of the form

(5.92)

where

and the a, q, and p coefficients are chosen by using Taylor series expansions to approximate
the differential equation to the desired accuracy.

The error for a fourth-order Runge-Kutta formula is proportional to �4
j . A fourth-

order Runge-Kutta formula is

(5.94)

where 

Equation (5.94) can be used for higher-order differential equations by rewriting it as a system
of first-order equations as has been done in Equation (5.90) for a SDOF system. The result is

(5.96a)

(5.96b)

where 
(5.97a)
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(5.97c)

(5.97d)

(5.97e)

(5.97f)

(5.97g)

(5.97h)

The Runge-Kutta method is often used because it is easy to program for a digital computer.
Its most restrictive limitation is that extension of the approximation between two discrete times
requires evaluation of the excitation at an intermediate time. If the forcing function is known
only at discrete times, evaluation at the appropriate intermediate times is often impossible. In
addition, a large number of function evaluations can lead to large computer times.

Adams’ formulas provide more accurate approximations of ordinary differential equa-
tions. An open Adams formula requires knowledge of the functions at the two previous time
steps to calculate the approximation at the desired time. A closed Adams formula requires
knowledge of the function at only the previous time step, but the formula involves the eval-
uation of the function at the time step of interest. Thus a closed Adams formula requires an
iterative solution at each time step. The closed Adams formula is much more accurate than
an open formula of the same order. The closed formula is self-starting, whereas the open for-
mula is not self-starting.

A predictor-corrector method is a compromise that uses the closed formula for
increased accuracy, but uses the open formula to reduce computation time. The open for-
mula is used to “predict” the solution at the desired time, then the closed formula is used
to “correct” by using the predicted value as an initial guess. Iterations are not necessary as
the first correction is very accurate. Since the open Adams formulas are not self-starting, a
self-starting method such as the Runge-Kutta method of the same order is used to calcu-
late the solution at the first time. The predictor-corrector method is used for the remain-
der of the calculations.
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EXAMPLE 5 . 1 4

200 N 200 (1 – cos2

0.3 t (s)

F(t)

π t
0.2 )

FIGURE 5.11
Versed sine pulse of
Examples 5.14 and 5.15.

A 200-kg milling machine is subject to the versed sine pulse of Figure 5.11 during opera-
tion. The machine is mounted on an elastic foundation of stiffness 1 � 106 N/m and
damping ratio of 0.2. Write a MATLAB script that uses piecewise constants as interpolating
functions to numerically integrate the convolution integral to obtain the response of the
machine up to t � 0.5 s.

SO LU T I ON
The MATLAB script and the resulting plot of displacement are illustrated in Figure 5.12.
The MATLAB script is written in a general form. When the script is run by MATLAB, the
user will be prompted for input. The form of the excitation is provided in a separate
MATLAB m file.

% Example 5.14
% Numerical integration of convolution integral using
% piecewise constants to interpolate excitation
m=200; % Mass of system
k=l.*10^6; % Stiffness
zeta=0.06; % Damping ratio
omega_n=sgrt (k/m); % Natural frequency
omega_d=omega_n*sqrt (l-zeta^2); % Damped natural frequency
F0=200; % Magnitude of pulse
t0=0.2; % Duration of pulse
x0=0; % Initial displacement
xdot0=0; % Initial velocity
t=linspace(0, .5, 1001); % Discretization of time scale
suml=0; % Initialization of sum for Gl
sum2=0; % Initialization of sum for G2
x(l)=x0; % Initialization of x
Cl=(l-zeta^2)/omega_d;
C2=zeta*omega_n;
C3=C2/omega_d;
for k=2: 1001

% Calculating F(t)
if t(k) < = t0

F=F0*(l-(cos(pi*t(k)/t0)^2)); % F(t)
else

F=0
end

FIGURE 5.12
(a) MATLAB script for Example 5.14, numerical integration of convolution integral using piecewise
constants for interpolation of excitation force. (b) Plot of displacement versus time obtained by
running the script.

(Continued )
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% Numerical integration formula Eqs. (5.79) – (5.82)
EK=exp (C2*t(k));
EK1=exp(C2*t(k-1));
SK=sin(omega_d*t(k));
SK1=sin(omega_d*t(k-1));
CK=cos(omega_d*t(k));
CK1=cos(omega_d*t(k-1));
G1=F*C1*(EK*(SK+C3*CK)-EK1*(SK1+C3*CK1));
G2=F*C1*(EK*(-CK+C3*SK)–EK1*(-CK1+C3*SK1));
sum1=sum1+G1;
sum2=sum2+G2;
% Eq.(5.73)
xK=(x0*CK+(C2*x0+xdot0)/omega_d/*SK)/EK;
x(k)=xK+(SK*sum1-CK*sum2)/(EK*m*omega_d);

end
plot(t,x)
xlabel(‘t (sec)’)
ylabel(‘x(t)(m)’)

0
t (sec)

(b)

0.7

×10–4

3

2.5

2

1.5

1

0.5

0

x(
t)

 (
m

)

–0.5
0.60.50.40.30.20.1

(a)

FIGURE 5.12

(Continued)

EXAMPLE 5 . 1 5
Write a MATLAB script using the program ODE45 to determine the response of the
system of Example 5.14.

SO LU T I ON
The MATLAB script for the development of the response is given in Figure 5.13(a). The
script uses the MATLAB function ODE45, which uses a Runge-Kutta-Fehlberg method to
numerically approximate the response.
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FIGURE 5.13
(a) MATLAB script for solving differential equation for Example 5.15 using ODE45, a Runge-Kutta
solution. (b) User provided function for Example 5.15.

(b)

% Runge-Kutta solution to Example 5.15 using 
MATLAB program ODE45

% Initial conditions

x0=0;

xdot0=0;

% y(1)=x; y(2)=xdot

y0(1)=x0;

y0(2)=xdot0;

y0=[y0(1);y0(2)];

TSPAN=[0 0.5];

[T,Y]=ode45(‘fun412’,TSPAN,y0);

plot(T,Y(:,1))

xlabel(‘time (s)’)

ylabel(‘x(t) (m)’)

(a)

% Defining file for function of Example 5.15 
function F=fun412 (T,Y)

m=200; % Mass of system

k=1.*10^6; % Stiffness

zeta=0.06; % Damping ratio

omega_n=sqrt(k/m); % Natural frequency

F0=200; % Magnitude of pulse

t0=0.2; % Duration of pulse

F(1)=Y(2);

% Calculating F(T)

if T<=t0

f1=F0/m*(1-(cos(pi*T/t0))^2);

else

f1=0;

end

% xdot=F(1), xddot=F(2)

F(2)-2*zeta*Y(2)-omega_n^2*Y(1)+f1;

F=[F(1); F(2)];

The resulting response generated from MATLAB is shown in Figure 5.13(b). The
response is very close to that generated in Example 5.14 by numerical integration of the
convolution integral.
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5.9 SHOCK SPECTRUM
Design problems often require the determination of system parameters such that con-
straints are satisfied. In many problems, the design criteria involve limiting maximum 
displacements and/or maximum stresses for a given type of excitation. For example, if it is
determined that all earthquakes in a given area have similar forms of excitations, only with
different levels of severity, then knowledge of the maximum displacement as a function of
system parameters is useful in the design of a structure to withstand a certain level of earth-
quake. The structure’s ability to withstand the earthquake depends on the maximum dis-
placement developed in the structure during the earthquake and the maximum stresses
developed. A structure in California along the San Andreas fault will usually be designed
to withstand a more severe earthquake than a structure in Ohio. This, of course, depends
on the use of the structure.

Thus it is useful for the designer to know the maximum response of a structure as a
function of system parameters. The transmissibility curves presented in Chapter 4 actually
do this for the steady-state response due to harmonic excitations. For a given value of the
damping ratio, the transmissibility curve plots the nondimensional ratio of the amplitude
of the transmitted force to the maximum amplitude of the excitation force against the
nondimensional frequency ratio.

Similar curves are useful for analysis and design of systems that are subject to shock
excitations. A shock is a large force applied over a short interval resulting in transient
vibration. The maximum response is a function of the type of shock and system
parameters.

A shock spectrum (response spectrum) is a nondimensional plot of the maximum response
of a SDOF system for a specified excitation as a function of a nondimensional time ratio.
The vertical axis of the plot is the maximum value of the force developed in the spring
divided by the maximum of the excitation force. The horizontal axis is the ratio of a char-
acteristic time for the excitation divided by the natural period. For a shock excitation, the
characteristic time is usually taken as the duration of the shock.

Shock spectra are often plotted only for undamped systems as damping tends to act
favorably to reduce the maximum response. Also, a shock spectrum is very tedious to cal-
culate and plot. Inclusion of damping in the development of a shock spectrum greatly
increases the amount of algebra performed. The resulting complexity may obscure the use-
fulness of the results.

EXAMPLE 5 . 1 6
A one-story frame structure is to be built to house a chemical laboratory. The experiments
performed in the laboratory involve highly volatile chemicals and the possibility of explo-
sion is great. It is estimated that the worst explosion will generate a force of 5 � 106 N last-
ing 0.5 s. The structure is to be designed such that the maximum displacement due to such
an explosion is 10 mm. The equivalent mass of the structure is 500,000 kg. Draw the shock
spectrum for the structure subject to a rectangular pulse and determine the minimum
allowable stiffness for the structure.
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SO LU T I ON
The laboratory frame structure of Figure 5.14 is modeled as an undamped SDOF system
with x(t) representing the displacement at the rigid girder. The excitation is modeled as a
rectangular pulse of magnitude F0 � 5 � 106 N and duration t0 � 0.5 s. The response of
an undamped SDOF system to a rectangular pulse with zero initial conditions is calculated
using superposition and Table 5.1 as

(a)

For t � t0, the nondimensional force ratio is

(b)

The preceding function increases until t � p/vn when it reaches a maximum value of 2. If
t0 � p/vn, the maximum nondimensional force ratio in this interval is

(c)

However, since the response is continuous, the maximum response for t � p/vn must be
at least this large. For t � t0, the nondimensional force ratio is

(d)
kx
F0

=  cos vn(t - t0) -  cos vnt

kx
 max 

F0

= 1 -  cos vnt0

kx
F0

= 1 -  cos vnt

x (t) =

F0

k
 {1 -  cos vnt - u (t - t0 )[1 -  cos vn(t - t0)]}

k

x(t)

m

Girder

(a)

(b)

Columns

FIGURE 5.14
(a) The one-story chemical
laboratory of Example 5.16 is
modeled as a frame structure.
(b) The frame structure is
modeled as a SDOF
mass-spring system, assuming
the girder is very rigid com-
pared to the columns.
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Trigonometric identities are used on the above equation to obtain

(e)

where

(f)

Thus,

(g)

In summary,

(h)

The shock spectrum is plotted in Figure 5.15.
Returning to the specific problem, t0 � 0.5 s, F0 � 5 � 106 N, xmax � 0.01 m, and

m � 500,000 kg. The natural frequency is , and the problem is to determine
appropriate values of k. The natural period is . First assume which
is equivalent to

(i)

or

(j)vn 6 2p  rad/s

vnt0

2p
6 0.5

t0 >T 6 0.5,T = 2p/vn

vn = 2k /m

e 2sin 
vnt0

2
  t0 6

p

vn

 a t0

t
…

1
2
b

      2     t0 7

p

vn

 a t0

t
7

1
2
b

kxmax
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=

kx
 max 

F0

= 2 sin 
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2
  t0 6
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= 2 sin 
vnt0

2
  sin (vnt - a)

2.5

1.0

0.5

1.5

0.0

t0/τ
1/2

2 sin (πt0/τ)

2.0

kx
m

ax
/F

0

FIGURE 5.15
Shock spectrum of an
undamped SDOF system for
a rectangular pulse.
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The equation to solve for k is

(k)

Equation (k) becomes

(l)

Equation (l) is a transcendental equation to solve for k with the smallest positive solution
being k � 5.33 � 107 N/m. The natural frequency with this value of k is

(m)

Thus, there is no solution for . Hence, vn � 2p rad/s and which
leads to

(n)

which is solved yielding

(o)

If k � 1 � 109 N/m, the maximum displacement will be less than 0.01 m.

k = 1 * 109
  N/m

k (0.01  m)

5 * 106
  N

= 2

kx
 
max

 F0
= 2,vnt0

2p 6 0.5

vn = A
5.33 * 107

  N/m
500,000  kg

= 10.32  rad/s 7 2p rad/s

1 * 10-8
  k =  sin a3.54 * 10-42kb

k(0.01  m)

5 * 106
  N

= 2 sin aA
k

500,000  kg
 
0.5 s

2
b

The important question in Example 5.16 is whether the duration of the pulse is long
enough so that the maximum response occurs when the excitation is occurring. If the pulse
is too short, the maximum displacement occurs after the pulse is removed. The rectangular
pulse is the simplest pulse for analysis of the response of a SDOF system. Its response spec-
trum is also the simplest to draw.

Shock spectra are often calculated only for undamped systems. Algebraic complexity usu-
ally prevents analytical determination of shock spectra for damped systems. The maximum
response is obtained either by numerical evaluation of the exact expression for the displace-
ment or by numerical solution of the differential equation. Damping does not have as much
effect on the transient response due to a pulse of longer duration as it does on the steady-state
response due to a harmonic excitation or on the response due to a short-duration pulse.

Since shock isolation often involves minimizing the force transmitted between a system
and its support, a plot similar to the shock spectrum, but involving the maximum value of
the transmitted force, is useful. The vertical coordinate of the force spectrum is the ratio of
the maximum value of the transmitted force to the maximum value of the excitation force.
When the system is undamped, the force spectrum is the same as the shock spectrum.

Figures 5.16 through 5.21 present displacement spectra and force (acceleration) spectra
for common pulse shapes. These spectra were obtained by using a Runge-Kutta solution of
the governing differential equation. A system with vn � 1 and m � 1 was arbitrarily used.
A time increment of the smaller of t0/50 and T/50 was used. The Runge-Kutta solution
was carried out until the larger of 4t0 or 4T. The displacement and transmitted force were
calculated at each time step and compared to maxima from the previous times. The spec-
tra were developed for several values of �.



354 CHAPTER 5

FIGURE 5.16
(a) Force spectrum for a triangular pulse. (b) Response spectrum for a triangular pulse.

FIGURE 5.17
(a) Force spectrum for a rectangular pulse. (b) Response spectrum for a rectangular pulse.
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FIGURE 5.18
(a) Force spectrum for a sinusoidal pulse. (b) Response spectrum for a sinusoidal pulse.

0

(a)

3

2.0

1.5

1.0

0.5

F
T

/F
0

t0/T

0.0
21

t0

F0 F0 sin π t
t0

[1 – u(t – t0)]

ζ = 0.0 ζ = 0.1 ζ = 0.2

ζ = 0.3 ζ = 0.5

0

(b)

3

2.0

1.5

1.0

0.5

kx
m

ax
/F

0

t0/T

0.0
21

ζ = 0.0 ζ = 0.1 ζ = 0.2

ζ = 0.3 ζ = 0.5

FIGURE 5.19
(a) Force spectrum for a versed sine pulse. (b) Response spectrum for a versed sine pulse.
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FIGURE 5.20
(a) Force spectrum for a negative slope pulse. (b) Response spectrum for a negative slope pulse.

0

(a)

3

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

F
T
/F

0

t0/T

0.00
21

t0

F0

ζ = 0.0 ζ = 0.1 ζ = 0.2

ζ = 0.3 ζ = 0.5

0

(b)

3

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

kx
m

ax
/F

0

t0/T

0.00
21

ζ = 0.0 ζ = 0.1 ζ = 0.2

ζ = 0.3 ζ = 0.5

FIGURE 5.21
(a) Force spectrum for a reversed loading pulse. (b) Response spectrum for a reversed loading pulse.
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The force spectra for the rectangular pulse, the triangular pulse, the sinusoidal pulse, the
versed sine pulse, the negative-slope ramp pulse, and the reversed loading pulse show that shock
isolation is achieved only for small natural frequencies. The shock spectra for these excitations
show that the nondimensional displacement is small for small natural frequencies. However, the
dimensional displacement is calculated by using the nondimensional displacement from

(5.98)

Thus, a small natural frequency leads to a large displacement.

x
 max 

=

F0

mv2
n

 amv2
nx

 max 

F0

b

T A B L E 5 . 2

xmax, cm

10 0.08 0.25 5.0
15 0.12 0.38 3.4
18 0.14 0.42 2.6
17 0.135 0.40 2.8

mv2
n xmax

F0

vnt0
2p

vn , rad/s

EXAMPLE 5 . 1 7
A 1000-kg machine is subject to a triangular pulse of duration 0.05 s and peak of 20,000 N.
What is the range of isolator stiffness for an undamped isolator such that the maximum
transmitted force is less than 8000 N and the maximum displacement is less than 2.8 cm?

SO LU T I ON
The force spectrum for the triangular pulse shows that for � 0.4, vnt0 �(2p) � 0.16,
which gives

The lower bound on the natural frequency is obtained by trial and error, using the dis-
placement spectrum for the triangular pulse. For a guessed value of vn, vnt0/(2p) is calcu-
lated and the corresponding value of the maximum nondimensional displacement is found
from the displacement spectrum. The maximum dimensional displacement is calculated
from Equation (5.98). If the displacement is greater than the allowable displacement, the
guess for the lower bound must be increased. The calculations for this example are given in
Table 5.2. The lower bound is calculated as 17 rad/s. Thus the allowable stiffness range is

2.89 * 105
  N/m 6 k 6 4.04 * 105

  N/m

vn 6

2p(0.16)

0.05  s
= 20.1  rad/s

FT >F0

5.10 VIBRATION ISOLATION FOR SHORT
DURATION PULSES
If the forge hammer of Figure 5.22 is rigidly mounted to the foundation, the foundation
is subject to a large impulsive force when the hammer impacts the anvil. An isolation
system modeled as a spring and viscous damper in parallel can be designed to reduce the
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magnitude of the force to which the foundation is subject. The principles used in the
design of a shock isolation system are similar to the principles used to design an isolation
system to protect against harmonic excitation, but the equations are different.

If the duration t0 of a transient excitation F(t) is small, say t0 � T/5 where T is the nat-
ural period of the system, then the system response can be adequately approximated by the
response due to an impulse of magnitude

(5.99)

If the system is at rest in equilibrium when a pulse of short duration is applied, 
the principle of impulse-momentum is used to calculate the velocity imparted to the mass as

(5.100)

The impulse provides external energy to initiate vibrations. Time is measured beginning
immediately after the excitation is removed. The ensuing response is the free-vibration
response due to an impulse providing the mass with an initial velocity n.

(5.101)

The maximum displacement occurs at a time

(5.102)

and is equal to

(5.103)

Equation 5.101 and trigonometric identities are used to calculate the force transmit-
ted to the foundation through the isolator as

(5.104)FT (t ) = F
'

e -zvnt sin (vd t - b)

x
 max 

=

v
vn

 expB -

z

21 - z2
 tan -1a21 - z2

z
b R

tm =  tan -1a21 - z2

z
b

x (t ) =

v
vd

e -zvnt sin vd t

v =

I
m

I =

L

t0

0
F (t )dt

FIGURE 5.22
Schematic of a forge
hammer. When the tup
impacts the anvil, an
impulsive force is developed.

Tup

Anvil

Foundation block

Frame
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where

(5.105)

and

(5.106)

The maximum value of the transmitted force is obtained by differentiating
Equation (5.104) with respect to time, solving for the smallest time for which the deriv-
ative is zero, and finding the transmitted force at this time. The time for which the max-
imum transmitted force occurs is

(5.107)

The corresponding maximum transmitted force is

(5.108)

Equation (5.107) shows that the maximum transmitted force occurs at t � 0 for z� 0.5.
For z � 0.5, the first time where dF/dt � 0 corresponds to a minimum. Thus, for z 	 0.5,
the maximum transmitted force occurs at t � 0 and is given by

(5.109)

Equations (5.108) and (5.109) are combined to develop a nondimensional function
Q(z ) that is a measure of the maximum transmitted force, which is defined by

(5.110)

Figure 5.23 shows that Q(z ) is flat and approximately equal to 0.81 for 0.23 � z� 0.30.
If minimization of the transmitted force is the sole criterion for the isolator design, the isolator
should have a damping ratio near 0.25.

Equation (5.110) shows that, for a given z, the transmitted force is proportional to the
natural frequency. Thus a low natural frequency and large natural period is necessary and
the short-duration assumption is often valid.

Equation (5.103) shows that the maximum displacement varies inversely with the nat-
ural frequency. Thus, requiring a small transmitted force leads to a large displacement. The
natural frequency is eliminated between Equations (5.103) and (5.110), yielding

(5.111)
FT

 max 

x
 max 

1
2mv2

= S(z)

expa -

z

21 - z2
 tan -1B21 - z2(1 - 4z2)

z(3 - 4z2)
R b z 6 0.5

2z                                                                             0.5 … z 6 1
= d

Q(z) =

FT
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mvvn

FT (0) = cv = 2zmvnv

FT
 max 

= mv vnexp a -
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tmF
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1
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R

b = -  tan -1a2z21 - z2

1 - 2z2 b

F
'

=

mvnv

21 - z2
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where

(5.112)

The denominator of the nondimensional ratio of Equation (5.111) is the initial kinetic
energy of the system. The numerator is a measure of the work done by the transmitted
force. The inverse of this ratio is the fraction of energy absorbed by the isolator, the isola-
tor efficiency. Figure 5.24 shows that the maximum isolator efficiency occurs for z � 0.40
where S � 1.04.

If the idea of an isolator design is to set the maximum transmitted force to a given value
while minimizing the maximum displacement, the damping ratio should be set at z� 0.4,
and the natural frequency should be calculated using Q(z) with Q(0.4) � 0.886. The max-
imum displacement is calculated from S(z). This maximizes the isolator efficiency.

In calculating Q(z) from Equation (5.111) and S(z) from Equation (5.112), the expo-
nent must be negative. Therefore, the argument of the inverse tangent functions must be
positive. That is, the range of evaluation of the inverse tangent functions must be between
0 and p rad. If evaluation leads to a negative argument, recall that the tangent function
repeats every p rad, so simply add p rad to the evaluation.

2 expa-

z
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 tan -1B z21 - z2(4 - 8z2)
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- 8z4

- 1
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FIGURE 5.23
Q(z) has a minimum of 0.81
for z 0.25.L
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5.11 BENCHMARK EXAMPLES

5.11.1 MACHINE ON FLOOR OF INDUSTRIAL PLANT
The machine is subject to a sinusoidal pulse with a magnitude of 20,000 lb and a duration
of 0.1 s, as shown in Figure 5.25(a). It is desired to design an isolator to protect the beam
from the large force that is transmitted to the foundation. The specifications are that the
transmitted force is limited to 10,000 lb, and the maximum displacement is 0.1 ft.

The ratio of the maximum value of the allowable transmitted force to the magnitude
of the excitation force is

(a)
FT

F0

=

10,000  lb

20,000  lb
= 0.5

EXAMPLE 5 . 1 8
The 200 kg hammer of a 1000-kg forge hammer is dropped from a height of 1 m. Design
an isolator to minimize the maximum displacement when the maximum force transmitted
to the foundation is 20,000 N. What is the maximum displacement of the hammer when
placed on this isolator?

SO LU T I ON
The excitation is a result of the impact of the hammer with the anvil and, thus, is of short
duration. The velocity of the anvil at the time of impact is

The velocity of the machine after impact is determined by using the principle of impulse
and momentum

The product of the maximum transmitted force and the maximum displacement is mini-
mized by selecting z � 0.4. Then if the transmitted force is limited to 20,000 N, the
maximum displacement is obtained by using Equation (5.111)

The natural frequency of the isolator is calculated by using Equation (5.110)

and the maximum isolator stiffness is calculated as

k = mv2
n = (1000  kg)(25.65 rad/s)2

= 6.58 * 105
  N/m

vn =

FT
 max 

mvQ (0.4)
=

20,000  N
(1000  kg)(0.886  m/s)(0.88)

= 25.65  rad/s

x
 max 

=

1

2
mv2

FT
 max 

 S(0.4) =

1

2
 (1000  kg)(0.886  m/s)2

20,000  N
 1.04 = 0.02  m

v =

(200  kg)(4.43  m/s)

1000  kg
= 0.886  m/s

v = 22(9.81  m/s2)(1  m) = 4.43  m/s
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The response spectrum for a sinusoidal pulse is given in Figure 5.18. For , the
value of is read as 0.2, so

(b)

The natural frequency is calculated from Equation (b) as

(c)

For the value of xmax is read as 0.5, which implies

(d)

The maximum displacement is too large. The only way to reduce the maximum dis-
placement to an acceptable value is to add mass to the machine. The added mass must be
sufficient to reduce the maximum displacement to 0.1 ft:

(e)

Mount the machine on a concrete block of weight:

(f)

The stiffness of the mounting is

(g)

The SDOF model of the machine with this isolation system is illustrated in Figure 5.25(b).

5.11.2 SIMPLIFIED SUSPENSION SYSTEM
The vehicle encounters a bump in the road that is modeled as a versed sine pulse, as shown
in Figure 5.26. The height of the pulse is 0.02 m and the length of the pulse is 0.6 m. Thus,
the equation for the versed sine pulse is

(a)y (j) = 0.02B1 -  cos 2 a10p
6

 jb R [1 - u (j - 0.6)]

k =

W
g
v2

n = a 2.04 * 104
  lb

32.2  ft/s2
b (12.6  rad/s)2

= 1.00 * 105
  lb>ft = 8.33 * 103

  lb/in.

Wc = W - Wm = 2.04 * 104
  lb - 1 * 103

  lb =  1.94 lb * 104

W =

0.5gF0

x
 max 
v2

n

=

(0.5)(32.2  ft/s2)(20,000  lb)

(0.1  ft)(12.6  rad/s)2 = 2.04 * 104
  lb

x
 max 

=

0.5gF0

Wv2
n

=

(0.5)(32.2  ft/s2)(20,000  lb)

(1000  lb)(12.6  rad/s)2 = 2.02  ft

mv2
n

F0
t0 >T = 0.2,

vn =

(0.2)(2p)

0.1 s = 12.6  rad/s

t0

T
=

vnt0

2p
= 0.2

t0 >T
FT >F0 = 0.5

1000 lb

19,40020,000

keq = 8330

0.1

(a) (b)

t (s)

F(lb)
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FIGURE 5.25
(a) Sinusoidal pulse excitation
for machine of benchmark
problem. (b) Isolation system
for machine consists of the
mass attached to a 19,400 lb
concrete block and an elastic
pad with an equivalent
stiffness of 8330 lb/in.
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FIGURE 5.26
(a) Bump in road is modeled as a versed sine pulse. (b) xmax versus m. (c) amax versus m.

The vehicle traverses the bump at a constant horizontal speed v, which leads to j � vt.
The differential equation modeling the system is

(b)+ 12,000b0.02B1 -  cos 2a10pv
6

tb R r R B1 - ua t -

0.6
v
b R

= B1200a10pv
6
b [0.02] sin a 20pv

6
tb

mx
$

+ 1200x# + 12,000x = 1200y# + 12,000y

(a) (b)

(c)

300 350 400 450 500 550 600
0.019

0.02

0.021

0.022

0.023

0.024

0.025

0.026

m (kg)

x m
ax

 (m
)



364 CHAPTER 5

Let z � x – y be the relative displacement of the vehicle with respect to the wheel. The dif-
ferential equation for the relative displacement is

(c)

Equation (c) can be solved using the Laplace transform method.
Equation (c) is rearranged to

(d)

The Laplace transform method or the convolution integral can be applied to solve
Equation (d) for a specific value of m. For a fully loaded vehicle (m � 600 kg), Equation (d)
becomes

(e)

The natural frequency for a fully loaded vehicle is vn � 4.47 rad/s and the system has a
damping ratio of z� 0.224. The damped natural frequency is vd � 4.36 rad/s. Application
of the convolution integral leads to

(f)

Application of the Laplace transform method leads to

(g)

The response spectrum for a versed sine pulse is given in Figure 5.19. For an empty vehi-
cle, m � 300 kg, the natural frequency is 6.32 rad/s, the damping ratio is 0.316, and the
period is 1.0 s. The speed of the vehicle is important in this problem, as it defines t0, which
is the duration of the pulse. The driver, of course, slows down when he sees the bump. For
a speed of 15 m/s, the vehicle is traversed in 0.6 m, 15 m/s, or 0.04 s. For an empty vehicle,

. Thus, the pulse is truly a short-duration pulse. The total impulse provided 
by the bump is

(h)

The maximum displacement due to this impulse is given by Equation (5.103).
Application of Equation (5.103) leads to

(i)x
 max 
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0.6
v
b R

mz
$

+ 1200z# + 12,000z = -1.10mv2 cos (10.48vt )B1 - u a t -

0.6
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The maximum acceleration is given by Equation (5.110) with amax � FTmax /m

(j)

The maximum displacement and the maximum acceleration plotted against the mass are
plotted in Figure 5.26(b) and Figure 5.26(c), respectively.

5.12 FURTHER EXAMPLES

a
 max 

=

72vn

mv
exp a- z

21 - z2
 tan -1 

[1 - 4z221 - z2

z[3 - 4z2]
b

EXAMPLE 5 . 1 9
A one-story frame structure serves as a laboratory. The structure is composed of two beams
and a rigid girder. The structure is modeled as a SDOF system with m � 1000 kg and 
k � 9 � 106 N/m (vn � 94.9 rad/s). The force from an explosion is modeled by the pulse
shown in Figure 5.27(a). Unfortunately, an explosion occurs, and that explosion triggers a
second explosion at t � 0.07 s, later, which lasts twice as long. The force is approximately
that of Figure 5.27(b). What is the maximum displacement of the structure?

SO LU T I ON
The mathematical model for the dual explosions is

(a)

The response of the system can be obtained using the convolution integral or Table 5.1 and
the superposition formula

(b)

where F0 � 50,000 N and xa(t ) is the response due to (1 � 20t)u(t) or the response due
to a delayed ramp function with A � �20, B � 1, and t0 � 0.

(c)

• xb(t ) is the response due to (1 � 20t)u(t � 0.05) or the response due to a delayed ramp
function with A � �20, B � 1, and t0 � 0.05.

(d)

• xc(t ) is the response due to (1.7 � 10t)u(t � 0.07) or due to a delayed ramp function
with A � �10, B � 1.7, and t0 � 0.07:

(e)

-

1
vn

 sin vn(t - 0.07) du(t - 0.07)

x c(t ) =

-10
mv2

n

c t -

1.7
10

- (0.07 - 0.17) cos vn(t - 0.07)

xb(t ) =

-20
mv2

n

c t -

1
20

-

1
vn

 sin vn(t - 0.05) du (t - 0.05)

xa(t ) =

-20

mv2
n

a t -

1

20
+

1
20

 cos vnt -

1
vn

 sin vntb

x (t ) = F0[xa(t ) - xb(t ) + x c(t ) - xd (t )]

+ 50,000(1.7 - 10t )[u (t - 0.07) - u (t - 0.17)]

F (t ) = 50,000(1 - 20t)[u (t) - u (t - 0.05)]
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• xd(t) is the response due to (1.7 � 10t)u (t � 0.17) or the response due to a delayed
ramp function with A � �10, B � 1.7, and t0 � 0.17:

(f)

Thus,

(g)

The maximum of the absolute value of the displacement is determined as 16.0 mm, as
shown in Figure 5.27(c).

- [t - 0.17 - 0.0105 sin (94.9t - 16.133)]u (t - 0.17)}

- 0.0105 sin (94.9t - 6.643)]u (t - 0.07) 

+ [t - 0.17 + 0.1 cos (94.9t - 6.643)

- 2[t - 0.05 - 0.0105 sin (94.9t - 4.745)]

x (t ) = -  0.0555{2(t - 0.05 + 0.05 cos 94.9t - 0.0105 sin 94.9t )u (t )

xd (t ) =

-10

mv2
n

c t -

1.7

10
-

1
vn

 sin vn(t - 0.17) du (t - 0.17)

FIGURE 5.27
(a) Model of force provided to a chemical laboratory during an explosion. (b) First explosion triggers a
second explosion, resulting in the excitation applied to system of Example 5.19. (c) Response of struc-
ture as a function of time.
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EXAMPLE 5 . 2 0
Determine the response of a SDOF system with a mass of 10 kg and natural frequency of

n � 10 rad/s to the excitation of Figure 5.28(a).

SO LU T I ON
The excitation of Figure 5.28(a) can be broken down as shown in Figure 5.28(b).
Mathematically, the function can be written as

(a)

which is simplified to

(b)

The solution is a superposition of four functions, each of which is represented in Table 5.1,

(c)

• xa(t): Ramp function, A � 100, B � 0, and t0 � 0:

(d)

• xb(t): Delayed ramp function, A � �100, B � 10, and t0 � 0.1:

(e)

• xc(t): Delayed ramp function, A � �50, B � 25, and t0 � 0.5:

(f)

• xd(t): Delayed ramp function, A � �50, B � 35, and t0 � 0.7:

(g)

The response is plotted in Figure 5.28(c). The maximum of the response is 1.96 cm.

= -0.05 [t - 0.7 - 0.1  sin  (10t - 7)]u (t - 0.7)

-

1
10

  sin  10(t - 0.7) du (t - 0.7)

xd (t ) = a -50 N
1000  N/m

b c t -

35
50

- a0.7 -

35
50
b  cos  10(t - 0.7)

= -0.05[t - 0.5 - 0.1  sin (10t - 5)]u (t - 0.5)

-

1
10

  sin  10(t - 0.5) du (t - 0.5)

x c(t ) = a -50 N
1000  N/m

b c t -

25
50

- a0.5 -

25
50
b  cos 10(t - 0.5)

= -0.1[t - 0.1 - 0.1  sin  (10t - 1)]u (t - 0.1)

-

1
10

  sin  10(t - 0.1) du (t - 0.1) 

xb(t ) = a -100 N
1000  N/m

b c t -

10
100

- a0.1 -

10
100
b  cos  10(t - 0.1)

xa(t ) = a 100 N
1000  N/m

b a t -

1
10

 sin 10tb = 0.1(t - 0.1 sin 10t)

x (t ) = xa(t ) + xb(t ) + x c(t ) + xd (t )

+ 25(1 - 2t)u (t - 0.5) + 5(7 - 10t)u (t - 0.7)

F (t ) = 100tu(t ) + 10(1 - 10t)u (t - 0.1)

+ (35 - 50t )u (t - 0.5) - (35 - 50t)u(t - 0.7)

F(t ) = 100tu (t ) - 100tu (t - 0.1) + 10u(t - 0.1) - 10u (t - 0.5)
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10

0.1 0.5

(a)

0.7

F(N)

t(s)

(b)

10
100 tu(t)

0.1

10
100u(t – 0.5)

0.5

10

– +

100 tu(t – 0.1) 100u(t – 0.1)

0.1

10

0.1

+–

(35 – 50t)u(t – 0.5)
10

0.5 0.7

–

(35 – 50t)u(t – 0.7)

10

0.7

0 1.210.80.60.40.2
t (s)

1.4 1.8 2

0.02

0.015

0.01

0.005

x 
(m

)

0

–0.005

–0.01
1.6

FIGURE 5.28
(a) Excitation applied to Example 5.20. (b) Graphical breakdown of excitation. (c) Response of the system.

(c)
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EXAMPLE 5 . 2 1
During operation, a 200 kg machine is subject to a 1000 N reversed loading, as shown in
Figure 5.29.

(a) If the machine is mounted on an elastic pad with a stiffness of 3 � 105 N/m and
damping ratio of 0.1, what is the maximum displacement of the machine? What
is its maximum transmitted force?

(b) It is desired to hold the amplitude of vibration of the machine to 1.5 cm and limit
the transmitted force to 5000 N. Design an isolation system with a damping ratio
of 0.1 to achieve these goals.

SO LU T I ON
(a) The loading is a reversed rectangular pulse with F0 � 2000 N and t0 � 0.2 s. The response
spectrum for this force is given in Figure 5.21. The natural period of the machine is

(a)

The value of the nondimensional parameter on the horizontal scale of the response 
spectrum is

(b)

The corresponding value of read off the vertical scale of Figure 5.21(b) is 2.95. Thus,

(c)

The corresponding value of read off the vertical scale of Figure 5.21(a) is also 2.95.
Thus,

(b) The upper bound on the natural frequency is determined from

(d)

which from Figure 5.21(a) occurs for

(e)

(f)

For this value of , . Thus, it is not 
possible to design an isolator such that the maximum force is less than 5000 N and the
maximum displacement is less than 0.040 m. However, the mass of the machine can be
increased without changing the natural frequency. Setting xmax � 0.015 leads to

(g)m =

2.5(2000  N)

(25.1  rad/s)2(0.015  m)
= 527.7  kg

kx
 
max 

F0
= 2.5 Q x

 max 
=

2.5(2000  N)
1.26 * 105

  N/m = 0.040  mt0 /T

k = mv2
n Q k 6 (200  kg)(2.51  rad/s)2

= 1.26 * 105
  N/m

t0

T
=

vnt0

2p
6 0.8 Q vn 6

2p(0.8)

(0.2  s)
= 25.1  rad/s

FT, max 

F0

6

5000  N
2000  N

= 2.5

FT, max 
= 2.95F0 = 2.95(2000  N) = 5900  N

FT, max
 F0

x
 max 

= 2.95 
F0

k
= 2.95 

2000  N

3 * 105
  N/m

= 0.020  m

kx
 
max 

F0

t0

T
=

0.2  s
0.162  s

= 1.23

T = 2pA
m
k

= 2pC
200  kg

3 * 105
  N/m

= 0.162  s
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1000

–1000

F(N)

t (s)0.2 0.4

FIGURE 5.29
Pulse loading for
Example 5.19.

Thus, to achieve a maximum displacement of 1.5 cm and a maximum transmitted force of
5000 N, mount the machine on a concrete block with a mass of 327.7 kg and an elastic
pad with a stiffness of 3.33 � 105 N/m.

5.13 CHAPTER SUMMARY

5.13.1 IMPORTANT CONCEPTS
• The response of a system due to a unit impulse can be determined as the free response

with zero initial displacement and an initial velocity equal to velocity imparted by the
impulse.

• The convolution integral solution is derived using the principle of linear superposition
and the response due to an impulse applied at a previous time.

• The convolution integral provides the response of a linear, SDOF system due to any
form of excitation.

• The use of the unit step function allows excitations whose mathematical form changes
at discrete values of time to be represented by a unified mathematical function.

• The principle of linear superposition and the representation of excitations that have
changes at discrete values of time by unit step functions allow a unified mathematical
response for all systems.

• Arbitrary base motion can be handled by the convolution integral.
• The Laplace transform method can be used to determine the response of a linear, SDOF

system due to an arbitrary input.
• The transfer function for a system is the Laplace transform of its output divided by the

Laplace transform of its input. The transfer function is dependent on the inertia, damp-
ing, and stiffness properties of a system.

• The transfer function for a system is the Laplace transform of the system’s impulsive
response.

• Numerical solutions for the response of a SDOF system are developed through numer-
ical integration of the convolution integral or direct numerical simulation of the gov-
erning differential equation.
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• Numerical integration of the convolution integral is obtained by interpolation of the
excitation force and then integrating exactly the interpolation times the trigonometric
function. Interpolating functions are piecewise impulses, piecewise constants or piece-
wise linear functions.

• Numerical simulation of the governing differential equation is best carried out using a
self-starting method, such as Runge-Kutta.

• The response spectrum (shock spectrum) for the shape of a transient excitation is a
nondimensional plot of the ratio of the maximum force in the spring to the maximum
displacement versus the ratio of the duration of the force (or a characteristic time for the
excitation) to the natural undamped period of the system. Numerical simulation of the
governing equation is used to develop the response spectrum for different damping
ratios.

• Vibration isolation protects foundations from large transient forces generated during
operation of a machine is analyzed using the response spectrum for the form of the 
excitation.

• Vibration isolation for short-duration pulses [t0/T � 0.2] is analyzed using Q(z) and
S(z). To minimize the maximum transmitted force, use a damping ratio of 0.23 � z �
0.3. To minimize the maximum displacement for a specified transmitted force use a
damping ratio, z � 0.4.

5.13.2 IMPORTANT EQUATIONS
Impulse delivered by a force

(5.2)

Impulsive response of an underdamped system

(5.10)

Convolution integral solution for differential equation

(5.24)

Convolution integral response for an underdamped system

(5.25)

Convolution integral for relative displacement in base motion problems

(5.34)

Laplace transform of a function

(5.40)X(s ) =

L

�

0
x (t)e -stdt

z (t ) = -m eqL

t

0
y
$

(t)h(t - t)d t

x (t ) =

1
m eqvdL

t

0
F (t)e -zvn(t - t)

  sin vd (t - t)dt

x (t ) =

L

t

0
F (t) h(t - t)dt

h(t ) =

1
m eqvd

e -zvnt sin vd t

I =

L

t2

t1

F (t)d t
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Laplace transform solution to differential equation

(5.43)

Transfer function

(5.56)

Impulsive response

(5.61)

Convolution integral for step response

(5.68)

Numerical evaluation of convolution integral

(5.73)

Maximum transmitted force for short-duration pulse

(5.110)

Reciprocal of isolator efficiency for short-duration pulses

(5.111)

PROBLEMS

SHORT ANSWER PROBLEMS
For Problems 5.1 through 5.10, indicate whether the statement presented is true or false.
If true, state why. If false, rewrite the statement to make it true.

5.1 The convolution integral is the solution to the differential equation governing
the motion of a SDOF system with initial conditions equal to zero.

5.2 The convolution integral can be derived using Laplace transforms or variation
of parameters.

5.3 The effect of an impulse applied to a SDOF system is to cause a discrete change
in displacement.

FT
 max 

x
 max 

1
2

mv2

= S(z)

Q(z) =

FT
 max 

mvvn

xk = e -zvntkBx (0) cos vd tk +

zvnx (0) + x# (0)

vd

 sin vd tkR
     +

1

m e qvd

 B  sin vd tka
n

j = 1

G1j -  cos vd tka
n

j = 1

G2jR

(t) + F(0)]x s(t - t)d t[F
#

 x (t ) =

L

t

0

h (t ) = L-1{G (s)}

G(s) =

X(s)

F (s)

x (t ) =

1
meq
L-1b F (s)

s2
+ 2zvns + v2

n

r + L-1b (s + 2zvn)x (0) + x# (0)

s2
+ 2zvns + v2

n

r
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5.4 The Laplace transform method derives a solution in terms of constants of
integration and the determination of the constants is obtained through
application of initial conditions.

5.5 Numerical integration of the convolution integral can be obtained by
interpolating the forcing function and exactly integrating the interpolation
times h(t � t).

5.6 Self-starting methods are best for numerical integration of the equation of motion.

5.7 The transfer function for a SDOF system is the ratio of the Laplace transform
of the input to the Laplace transform of the output.

5.8 The transfer function is the Laplace transform of the step response of a system.

5.9 The maximum displacement of a machine mounted on an isolator due to an
impulsive force is minimized by selecting the damping ratio of the system to be
0.25.

5.10 The maximum transmitted force of a machine mounted on an isolator due to
an impulsive force is minimized by selecting the damping ratio of the system to
be 0.25.

Problems 5.11 through 5.17 require a short answer.

5.11 What is the physical meaning of the function h(t)?

5.12 What pre-integrated form of Newton’s second law is used in the derivation of h(t)?

5.13 What does the convolution integral represent?

5.14 Explain the meaning of

5.15 What is meant by the approximation of a pulse being short duration?

5.16 What is the response spectrum of a pulse?

5.17 Why is the impulsive response of a system with motion input not defined?

Problems 5.18 through 5.23 require a short calculation.

5.18 A mass-spring system with m � 2 kg and k � 1000 N/m is subject to an
impulse of magnitude 12 N s. What is the velocity imparted to the system?

5.19 A mass-spring and viscous-damper system is shown in Figure SP5.19. What is
the transfer function for the system?

#

x (1) =

L

1

0
F (t)h (1 - t)d t

x(t)

F(t)
5 kg

100 N/m

30 N.s/m

FIGURE SP5.19
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5.20 A mass-spring and viscous-damper system with motion input is shown in 
Figure SP5.20. What is the transfer function for the system?

5.21 A mass-spring and viscous-damper system is shown in Figure SP5.21. What is
the Laplace transform of the system’s impulsive response?

5.22 Determine the impulsive response of an undamped mass-spring system with a
mass of 5 kg and stiffness of 1000 N/m.

5.23 An impulse with a magnitude of 15 N s is applied to a mass-spring system and
removed. The mass of the system is 0.5 kg, and the stiffness is 200 N/m.
Determine the response of the system.

5.24 Match the quantity with the appropriate units (units may used more than once,
some units may not be used).
(a) Impulse, I (i) N m
(b) Maximum displacement, xmax (ii) rad/s
(c) Initial kinetic energy, (iii) m
(d) Energy absorbed by isolator, FT, max xmax (iv) kg/s
(e) Impulsive response, h(t) (v) s/kg
(f ) Damped natural frequency, vd (vi) N s

CHAPTER PROBLEMS
5.1 A SDOF system with m � 20 kg, k � 10,000 N/m, and c � 540 N s/m is at

rest in equilibrium when a 50 N s impulse is applied. Determine the response
of the system.

5.2 A SDOF system with m � 10 kg, k � 40,000 N/m, and c � 300 N s/m is at
rest in equilibrium when a 80 N s impulse is applied. This is followed by a 
40 N s impulse 0.02 s later. Determine the response of the system.#

#

#

#

#

#

1/2mv2

#

#

FIGURE SP5.20

FIGURE SP5.21

x(t)

10 kg

1000 N/m

y(t)

100 N.s/m

250 N/m

x(t)

5 kg

10 N.s/m
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5.3 A SDOF system with m � 1.3 kg, k � 12,000 N/m, and c � 400 N s/m is at
rest in equilibrium when a 100 N s impulse is applied. This is followed by a
150 N s impulse 0.12 s later. Determine the response of the system.

5.4 Use the method of variation of parameters to obtain the general solution of
Equation (5.1) and show that it can be written in the form of the convolution
integral, Equation (5.25).

5.5 Use the convolution integral to determine the response of an underdamped
SDOF system of mass m and natural frequency vn when the excitation is the
unit step function, u(t).

5.6 Let g(t) be the response of an underdamped system to a unit step function and
h(t) the response of an underdamped system to a unit impulse function. Show

5.7 Use the convolution integral and the notation and results of Chapter Problem
5.6 to derive the following alternative expression for the response of a system
subject to an excitation, F(t):

5.8 A SDOF undamped system is initially at rest in equilibrium and subject to a force
F(t) � F0te

–t/2. Use the convolution integral to determine the response of the
system.

5.9 The mass of Figure P5.9 has a velocity v when it engages the spring-dashpot
mechanism. Let x (t) be the displacement of the mass from the position where
the mechanism is engaged. Use the convolution integral to determine x(t).
Assume the system is underdamped.

x (t ) = F (0)g (t ) +

L

t

0

dF (t)

d t
g (t - t)d t

h (t ) =

dg

dt

#

#

#

k

m

c

�

θ

FIGURE P5.9

5.10 Use the convolution integral to determine the response of the system of 
Figure P5.10.

k

M0e–t/5

2k
L
3

L
3

L
3

FIGURE P5.10
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5.11 Use the convolution integral to determine the response of an underdamped
SDOF system of natural frequency vn and damping ratio z when subject to a
harmonic excitation F (t) � F0 sin vt.

5.12– A machine tool with a mass of 30 kg is mounted on an undamped foundation
of stiffness 1500 N/m. During operation, it is subject to one of the machining
force shown in Figures P5.12 through P5.18. Use the principle of superposition
and the convolution integral to determine the response of the system to each
force.

FIGURE P5.12

FIGURE P5.14

FIGURE P5.13

F(N)

t (s)0.5

3000

2

F(N)

t (s)1

1000
1000 sin pt

32

F(N)

t (s)1

500

21.5

5.18

F(N)

t (s)0.1

1000

0.50.40.3 0.6 0.7

FIGURE P5.15

F(N)

t (s)

500

10.5 1.5

–500

FIGURE P5.16
FIGURE P5.17

F(N)

t (s)

600

2

Exponential decay
with a = 0.2 s–1
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5.19 The force applied to the 120 kg anvil of a forge hammer during operation is
approximated as a rectangular pulse of magnitude 2000 N for a duration of 
0.3 s. The anvil is mounted on a foundation of stiffness 2000 N/m and
damping ratio 0.4. What is the maximum displacement of the anvil?

5.20 A one-story frame structure houses a chemical laboratory. Figure P5.20 shows
the results of a model test to predict the transient force to which the structure
would be subject if an explosion would occur. The equivalent mass of the
structure is 2000 kg and its equivalent stiffness is 5 � 106 N/m. Approximate
the maximum displacement of the structure due to this blast.

FIGURE P5.18

F(N)

t (s)

100

1

Impulse of
magnitude 450 N . s

4 6

F(N)

t (s)

5000

1.0.2 1.2

FIGURE P5.20

5.21 A 20 kg radio set is mounted in a ship on an undamped foundation of stiffness
1000 N/m. The ship is loosely tied to a dock. During a storm, the ship
experiences the displacement of Figure P5.21. Determine the maximum
acceleration of the radio.

FIGURE P5.21

0.6 s 0.1 s

15 cm

5.22 A personal computer of mass m is packed inside a box such that the stiffness
and damping coefficient of the packing material are k and c, respectively. The
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package is accidentally dropped from a height h and lands on a hard surface
without rebound. Set up the convolution integral whose evaluation leads to the
displacement of the computer relative to the package.

5.23 Use the Laplace transform method to determine the response of a system at rest
in equilibrium when subject to

for (a) z � 0, (b) 0 � z � 1, (c) z � 1, (d) z � 1.
5.24 Use the Laplace transform method to determine the response of an undamped

SDOF system initially at rest in equilibrium when subject to a symmetric
triangular pulse of magnitude F0 and total duration t0.

5.25 Use the Laplace transform method to determine the response of an
underdamped SDOF system to a rectangular pulse of magnitude F0 and 
time t0.

5.26 Use the Laplace transform method to derive the response of a SDOF system
initially at rest in equilibrium when subject to a harmonic force F0 sin vt, when
(a) v vn, and (b) v � vn.

5.27 Determine the transfer function for the relative displacement of a SDOF system
with base motion defined as where Z(s) is the Laplace transform of
the relative displacement and Y(s) is the Laplace transform of the motion of the
base.

5.28 Determine the transfer function for the force transmitted to the foundation for
a SDOF system. The transfer function is defined as where Ft(s) is
the Laplace transform of the transmitted force and F(s) is the Laplace transform
of the applied force.

5.29 Use the transfer function to determine the response of a SDOF system excited
by motion of its base with m � 3 kg and k � 18,000 N/m where the base
motion is shown in Figure P5.29.

G (s) =
Ft (s )
F (s )

G (s) =
Z (s)
Y (s)

Z

F (t ) = F0 cos vt [1 - u(t - t0)]

y(m)

t (s)

0.01

0.50.40.2

–0.005

FIGURE P5.29

5.30 Use the transfer function to determine the response of a SDOF system with 
m � 1 kg, k � 100 N/m, and c � 6 N s/m when the system is subject to
motion of its base shown in Figure P5.30.

#
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5.31 Repeat Chapter Problem 5.30 if the system parameters are m � 1 kg, 
k � 200 N/m, and c � 30 N s/m.

5.32 For the system of Figure P5.32(a), complete the following.
(a) Determine its transfer function defined as .
(b) Use the transfer function to find the response of the system due to y(t) as
shown in Figure P5.32(b). Use m � 1 kg, k � 100 N/m, and c � 30 N s/m.#

G(s) =
X (s)
Y (s)

#

FIGURE P5.30

y(m)

t (s)

0.1

1

x(t)

m

k

2k

(a) (b)

c

y(t)

y(m)

t (s)

0.001

0.05

FIGURE P5.32

5.33 For the system of Figure P5.33(a), complete the following.

θ

20 cm

2000 N/m

1000 N/m

80 cm

Slender bar of
mass 12 kg

C

(a) (b)

y(t)
t (s)

0.001

0.2

y(m)

FIGURE P5.33
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(a) Determine its transfer function defined as where (s) is the
Laplace transform of the angular displacement of the bar.

(b) Use the transfer function to determine u(t) due to y(t), as shown in 
Figure P5.33(b).

5.34 During its normal, operation, a 144-kg machine tool is subject to a 15,000 
N s impulse. Design an efficient isolator such that the maximum force
transmitted through the isolator is 2500 N and the maximum displacement is
minimized.

5.35 A 110 kg pump is mounted on an isolator of stiffness 4 �105 N/m and a
damping ratio of 0.15. The pump is given a sudden velocity of 30 m/s. What is
the maximum force transmitted through the isolator and what is the maximum
displacement of the pump?

5.36 During operation, a 50-kg machine tool is subject to the short-duration pulse
of Figure P5.36. Design an isolator that minimizes the maximum displacement
and reduces the maximum transmitted force to 5000 N. What is the maximum
displacement of the machine tool when this isolator is used?

#

uG(s) =
u(s)
Y (s)

t (s)

30,000 N

0.005 0.01

FIGURE P5.36

5.37 Repeat Chapter Problem 5.36 for the short-duration pulse of Figure P5.37.

FIGURE P5.37

t (s)

20,000 N

0.01

5.38 A ship is moored at a dock in rough seas and frequently impacts the dock. The
maximum velocity change caused by the impact is 15 m/s. Design an isolator to
protect a sensitive 80-kg navigational control system such that its maximum
acceleration is 30 m/s2.
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5.39 A one-story frame structure with an equivalent mass of 12,000 kg and stiffness
of 1.8 � 106 N/m is subject to a blast whose force is given in Figure P5.39.
What is the maximum deflection of the structure?

t (s)

35,000 N

0.3 0.6

FIGURE P5.39

5.40 A 20 kg machine tool is on a foundation that is subject to an acceleration that
is modeled as a versed sine pulse with a magnitude of 20 m/s2 and duration of
0.4 s. Design an undamped isolator such that the maximum acceleration felt by
the machine is 15 m/s2. What is the maximum displacement of the machine
tool relative to its foundation when this isolator is used?

5.41 During operation, a 100 kg machine tool is exposed to a force that is modeled
as a sinusoidal pulse with a magnitude of 3100 N and duration of 0.05 s.
Design an isolator with a damping ratio 0.1 such that the maximum force
transmitted through the isolator is 2000 N and the maximum displacement of
the machine tool is 3 cm.

5.42 During operation a 80 kg machine tool is subject to a triangular pulse with a
magnitude of 30,000 N and duration of 0.15 s. What is the range of undamped
isolator stiffness such that the maximum transmitted force is 15,000 N and the
maximum displacement is 5 cm?



This page intentionally left blank 



C h a p t e r 6

TWO DEGREE-OF-
FREEDOM SYSTEMS

6.1 INTRODUCTION
Two degree-of-freedom systems require two generalized coordinates to describe the motion
of every particle in the system. The system requires two (in general) coupled differential
equations governing the motion of the system. The general form of the differential equa-
tions for a linear system with viscous damping is

(6.1)

or

(6.2)

The matrix M is a 2�2 mass matrix, C is a 2�2 damping matrix, K is a 2�2 stiffness
matrix, F is a 2�1 force vector and x is a 2�1 vector of generalized coordinates. The forms
of the matrix are determined by deriving the differential equations of motion.

Two degree-of-freedom systems are considered before n degree-of-freedom systems because

• Many systems only require two degrees of freedom when modeling.
• While the equations are formulated in a matrix form, matrix algebra is not required to

formulate a solution.
• Physical insight is gained by studying two degree-of-freedom systems.
• Viscous damping can be more easily handled.

cm1,1 m1,2

m2,1 m2,2

d c x
$

1

x$2

d + c c1,1 c1,2

c2,1 c2,2

d cx
#

1

x# 2
d + ck1,1 k1,2

k2,1 k2,2

d cx1

x2

d = cF1

F2

d

Mx$ + Cx# + Kx = F
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The differential equations governing two degree-of-freedom systems are derived. A
normal-mode solution for the free response for undamped systems is assumed in which both
generalized coordinates are assumed to vibrate synchronously with different amplitudes. The
normal-mode solution is used to obtain the natural frequencies and mode shapes, which are
the relative amplitudes of vibration, for the two degree-of-freedom system. The two mode
shapes are combined to formulate the free response for undamped systems. The solution is in
terms of four constants of integration, which are determined through application of initial
conditions.

An exponential solution is assumed for systems with viscous damping. This leads to a
fourth-order algebraic equation for a parameter. The fourth-order equation includes odd
powers, so it cannot be reduced to a quadratic and must be solved numerically. The modes
of vibration can be underdamped, critically damped, or overdamped. The free response is
obtained in terms of constants of integration. Initial conditions are applied to determine
the constants.

When the differential equations are written using principal coordinates as the dependent
variables, they are uncoupled. However, the principal coordinates are not obvious; sometimes
a principal coordinate does not represent the displacement of a particle in the system.

The forced response of systems with harmonic excitations is developed. Both
undamped systems and damped systems are considered. The sinusoidal transfer functions
are developed as a means of determining the harmonic response. The concept of frequency
response is considered.

An application of harmonic response of two degree-of-freedom systems is the vibration
absorber. A vibration absorber is an auxiliary mass-spring system that is attached to a
machine that is experiencing large amplitude vibrations due to near-resonance conditions.
The addition of a vibration absorber changes a SDOF system to a two degree-of-freedom
system. When the vibration absorber is properly “tuned,” the steady-state vibrations of the
machine are eliminated. One problem with vibration absorbers is that the lower natural
frequency of the two degree-of-freedom system is lower than the tuned speed. Thus, the
lower natural frequency is passed through during start-up, which leads to large amplitude
vibrations. When damping is added to the vibration absorber to control the vibrations
during start-up, the ability to eliminate steady-state vibrations of the machine is lost. An
optimum damped vibration absorber is determined.

6.2 DERIVATION OF THE EQUATIONS OF MOTION
The equations of motion for a two degree-of-freedom system are derived using the free-
body diagram method or an energy method. However, the energy method is delayed until
Chapter 7. The free-body diagram method is the same as for SDOF systems, except that
multiple free-body diagrams or equations may be used. Newton’s law (∑F � ma) is applied
to the free-body diagram of a particle. The equations ∑F � and ∑M0 � I0� are applied
to a free-body diagram of a rigid body undergoing planar motion with rotation about a
fixed axis through 0. For a rigid body undergoing planar motion, D’Alembert’s principle
can be applied as ∑Fext � ∑Feff and (∑MA)ext � (∑MA)eff where A is any point. The system
of effective forces is a force equal to applied at the mass center and a moment equal
to .Ia

ma

ma
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k

c

c

k

2k

(a) (b)

2c
F(t)

m

2m
x2

x1

kx1cẋ1

c(ẋ2 – ẋ1)

2cẋ2 2kx2

k (x2 – x1)

F(t)

Derive the differential equations governing the motion of the two degree-of-freedom system
of Figure 6.1 using x1 and x2 as generalized coordinates. Both are measured from the
system’s equilibrium position.

SOLUT ION
The free-body diagrams of the blocks drawn at an arbitrary instant are shown in Figure 6.1(b).
The forces from gravity of the blocks cancel with the static spring forces, as in single degree-
of-freedom systems. The bottom end of the spring connecting the two blocks has a dis-
placement of x2 from equilibrium, while the upper end of the spring has a displacement of
x1. Therefore, the change in length of the spring is x2 � x1, and the force developed in the
spring is k(x2 � x1). If x2 � x1, the spring is stretched, and the spring force is drawn acting
away from the blocks.

Applying Newton’s second law (∑F � ma) to the first block yields
(a)

or

(b)

Application of Newton’s second law to the lower block leads to

(c)

or

(d)

Rewriting Equations (b) and (d) in a matrix form gives

(e)cm 0
0 2m

d c x
$

1

x$2

d + c 2c - c
- c 3c

d cx
#

1

x# 2

d + c 2k -k
-k 3k

d cx1

x2

d = c 0
F (t )
d

2mx$2 + 3cx# 2 + 3k x2 - cx# 1 - kx1 = F (t )

-2kx2 - 2cx# 2 - k (x2 - x1) - c (x# 2 - x# 1) + F (t) = 2m x$2

m x$1 + 2c x#1 + 2k x1 - c x#2 - k x2 = 0

-kx1 - cx# 1 + k (x2 - x1) + c (x# 2 - x# 1) = mx
$

1

EXAMPLE 6 . 1

FIGURE 6.1
(a) System of Example 6.1 showing
the chosen generalized coordinates.
(b) FBDs at an arbitrary instant. Static
spring forces cancel with gravity.
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EXAMPLE 6 . 2
Consider the system shown in Figure 6.2 in which the slender bar of mass m and moment
of inertia is attached to springs of stiffness k at its left end and three-quarters of
the way across the bar. Derive the differential equations for the system of Figure 6.2 using
the following.
(a) x is as generalized coordinates: the displacement of the mass center of the bar from

equilibrium, and � is the clockwise angular displacement of the bar.

(b) x1 and x2 are the vertical displacements of particles where the springs are attached and
measured from equilibrium. Assume small �.

1>12(mL2)

Equilibrium position

L
2

A
B

x

kk

L
4

L
4

θ
x2

x1

L
2

k(x –     θ)
L
4

k(x +     θ)

kx1

kx2

x1 x2

a

x

1
12

mL2 θ̈

θ

mẍ

1
12

4
3L

mL2         (ẍ2 – ẍ1)

m
3

(2ẍ2 + ẍ1)

θ3L
4

sin θ =
3L
4

(a)

(b)

=

=

(c)

(d)

3L /4

x2 – x1

FIGURE 6.2
(a) System of Example 6.2. One choice of generalized coordinates is the displacement of the mass
center x and the angular rotation of the bar �. Another choice is x1 and x2, which are the points where
the springs are attached. (b) FBDs of the system at an arbitrary instant using x and � as generalized
coordinates. (c) FBDs of the system at an arbitrary instant using x1 and x2 as generalized coordinates.
(d) Geometry used to determine x and � in terms of x1 and x2.
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SO LU T I ON
(a) A free-body diagram of the bar drawn at an arbitrary instant using x and � as generalized

coordinates is shown in Figure 6.2(b). Rotation does not occur about a fixed axis; thus,
the effective force method is used. Application of ∑Fext � ∑Feff leads to

(a)

Application of the moment equation (∑MG)ext � (∑MG )eff leads to

(b)

Rearranging Equations (a) and (b) and writing them in a matrix form leads to

(c)

(b) Free-body diagrams drawn at an arbitrary instant when x1 and x2 are used as gen-
eralized coordinates, as shown in Figure 6.2(c). The geometry used to calculate the
displacement of the mass center and the angular rotation of the bar, as illustrated
in Figure 6.2(d), is consistent with the small angle assumption. The angular rota-
tion of the bar is

(d)

(e)

Summation of moments about an axis through B, (∑MB )ext � (∑ MB )eff , leads to

(f)

Summation of moments about an axis through A, (∑ MA)ext � (∑ MA)eff , yields

(g)

Rewriting Equations (f ) and (g) and writing them in matrix form leads to

(h)c 7
36mL 1

18mL
1
18

mL 4
9
mL
d c x

$

1

x$2

d + c3L
4 k 0
0 3L

4 k
d cx1

x2

d = c0
0
d

-kx2a3L
4
b =

1
12

mL2a 4
3L
b (x$2 - x$ 1) + m a2x$2 + x$1

3
b aL

2
b

(kx1)a3L
4
b =

1
12

mL2a 4
3L
b (x$2 - x$1) - m a2 x$ 2 + x$1

3
b aL

4
b

x = x1 + a = x1 +

L
2
u = x1 + aL

2
b4(x2 - x1)

3L
=

2x2 + x1

3

u =

x2 - x1

3L
4

=

4(x2 - x1)

3L

cm 0
0 1

12
mL2 d c x

#

u
# d + c 2k -k L

4

-k L
4 k 5L2

16
d c x
u
d = c0

0
d

k ax -

L
2
ubL

2
- k ax +

L
4
ubL

4
=

1
12

m L2 u
$

-k ax -

L
2
ub - k ax +

L
4
ub = mx

$
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6.3 NATURAL FREQUENCIES AND MODE SHAPES
Natural frequencies for two degree-of-freedom systems are the frequencies at which
undamped vibrations naturally occur. They are determined by assuming that the free
response is periodic with a specified frequency. Recalling that e i�t � cos (�t) � i sin (�t),
the free response of a two degree-of-freedom system with C � 0 is assumed as

(6.3)

where X � [�1 �2]
T is the mode shape vector. Equation (6.3) is called the normal mode

solution. The normal mode solution assumes the generalized coordinates are synchronous;
that is, they vibrate at the same frequency. Substituting Equation (6.3) into Equation (6.2)
with C � 0 leads to

(6.4)

which can be written as

(6.5)

Equation (6.5) represents a system of equations for X, but it is homogeneous. Using
Cramer’s rule to determine the components of the solution vector leads to

(6.6)

(6.7)

The determinant of a matrix with a column of zeroes is zero. Thus, the solution to
Equation (6.5) is the trivial solution �1 � 0 and �2 � 0, unless the denominator is zero.
Thus, to obtain a non-trivial solution,

(6.8)
Equation (6.8) leads to a quadratic equation with two possible natural frequencies; both
real and non-negative. The natural frequencies are ordered such that �1 � �2.

The mode shape vector corresponding to a natural frequency � is the non-trivial solution
of Equation (6.4) with that value of �, as

(6.9)

If � satisfies Equation (6.8), then ��2M � K is singular, and the equations in Equation (6.9)
are multiples of one another. A solution exists, but it not unique. Using the first of Equation (6.9),
the solution has

(6.10)x2 =

v2m1,1 - k1,1

-v2m1,2 + k1,2

x1

c -v2m1,1 + k1,1 -v2m1,2 + k1,2

-v2m2,1 + k2,1 -v2m2,2 + k2,2

d cx1

x2

d = c0
0
d

det(-v2M + K ) = 0

x2 =

` -v2m1,1 + k1,1 0
-v2m2,1 + k2,1 0

`
 det (-v2M + K )

x1 =

` 0 -v2m1,2 + k1,2

0 -v2m2,2 + k2,2

`
 det(-v2M + K )

-v2MX + KX = 0

-v2 cm1,1 m1,2

m2,1 m2,2

d cx1

x2

d + ck1,1 k1,2

k2,1 k2,2

d cx1

x2

d = c0
0
d

cx1

x2

d = Xe ivt
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Traditionally, �1 � 1 for determining �2, and Equation (6.8) becomes

(6.11)

The value of �2, calculated by Equation (6.11), is called the modal fraction for the frequency.
There are two modal fractions, one for the first mode shape, which we will label �1, and
one for the second mode shape, which we will label �2. We will refer to the mode shape in
general as [1 �]T.

The nodes are the particles in a system which has zero displacement when the system
is vibrating at one of the natural frequencies. These can be determined from the mode
shapes. For a two degree-of-freedom system, there are no nodes associated with the lowest
natural frequency and one node associated with the higher natural frequency.

x2 =

v2m1,1 - k1,1

-v2m1,2 + k1,2

EXAMPLE 6 . 3
Consider the two degree-of-freedom system shown in Figure 6.3(a). Determine (a) the
natural frequencies, (b) the modes shapes, and (c) the nodes for the system.

k k

x1 x2

m 3m

(a)

(b)

Initial position of masses

1.85
X

(c)

Initial position of masses

X

1

1

1

–0.181
L – l

Node
l

0.181

FIGURE 6.3
(a) System of Example 6.3. (b) Mode shape corresponding to first mode. (c) Mode shape corresponding
to second mode.



390 CHAPTER 6

SO LU T I ON
The differential equations governing the system are

(a)

(a) The natural frequencies and mode shapes are determined using by Equation (6.7),

(b)

Setting det(��2M � K) � 0 as in Equation (6.6) leads to

(c)

Evaluation of Equation (c) leads to

(d)

When expanded, Equation (d) becomes

(e)

Dividing Equation (e) by m and defining � � k/m and � � �2, Equation (e) becomes

(f)

Using the quadratic formula to solve Equation (f ) leads to 

(g)

or

(h)

Realizing that the natural frequencies are

(i)

and

(j)

(b) The mode shapes are determined using Equation (6.9). For , substitution
in Equation (6.9) leads to a modal fraction of

(k)x1 =

-0.153
k
m

(m) + 2k

k
= 1.85

v2
1 = 0.153 k

m

v
 2 = Ca

7 + 237

6
bf = 1.47A

k
m

v
 1 = Ca

7 - 237
6

bf = 0.391A
k
m

v = 2l  and  f = k>m,

l1 = a7 - 237
6

bf  l2 = a7 + 237
6

bf

l =

7f � 2(7f)2
- 4(3)(f)2

2(3)

l =
- b � 1b 2

- 4ac
2a

3l2
- 7fl + f2

= 0

(3m)v4
- (7mk)v2

+ (k 2) = 0

(-v2m + 2k)(-v23m + k) - (-k)(-k) = 0

c -v2m + 2k -k
-k -v23m + k

d = 0

-v2 cm 0
0 3m

d c 1
x
d + c 2k -k

-k k
d c 1
x
d = c0

0
d

cm 0
0 3m

d c x
$

1

x$2

d + c 2k -k
-k k

d cx1

x2

d = c0
0
d
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Application of Equation (6.9) for the second mode leads to the modal fraction of

(l)

The mode shapes for the first mode and second mode are

(m)

(c) The mode shape diagrams, which are plots of relative displacements for each mode
drawn horizontally, are given in Figure 6.3(b) and Figure 6.3(c). The mode shape
diagram for the first mode shows no point where the displacement is negative. Thus,
the mode shape for the first mode has no nodes. The mode shape diagram for the
second mode has one node. Assuming the spring is linear, similar triangles applied
to the mode shape shown in Figure 6.3(c) leads to

(n)

or

(o)

where L is the length of the spring.

/ = 0.153L

/

0.181
=

L - /

1

X1 = c 1
1.85
d  X2 = c 1

-0.181
d

x2 =

-2.16
k
m

(m) + 2k

k
= -0.181

EXAMPLE 6 . 4
Determine the natural frequencies and mode shapes for the bar of Figure 6.2. Identify any
nodes.

SO LU T I ON
The differential equation of the system is derived in Example 6.2. The natural frequencies
do not depend on the choice of generalized coordinates, but the mode shape vectors are
specific to the choice of generalized coordinates. The nodes are not dependent on the
choice of generalized coordinates. Using x and � as generalized coordinates, the natural
frequencies are determined through application of Equation (6.7).

(a)

Evaluation of the determinant leads to

(b)(-v2m + 2k)a-v2 1
12

mL2
+ k

5L2

16
b - a-k

L
4
b a-k

L
4
b = 0

†
-v2m + 2k -k

L
4

-k
L
4

-v2 1

12
mL2

+ k
5L2

16

† = 0
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Expansion of the above gives

(c)

Multiplying Equation (c) by 12/(m2L2) and defining � � and � � �2 leads to

(d)

Using the quadratic formula to solve Equation (d) gives

(e)

Recalling that yields

(f)

The mode shapes are calculated using Equation (6.9). For this yields

(g)

For Equation (6.9) gives

(h)

The mode shape vectors are

(i)

The mode shapes are illustrated in Figure 6.4. The first mode has no nodes on the bar,
but it represents rigid-body motion about an axis through point O, which is not on the bar.
Point O is a distance 0.19L from the end of the bar. The second mode has one node and
represents a rigid-body motion about an axis through point P, which is a distance of 0.118
to the right of the mass center.

X1 = J 1
1.42

L
K  X2 = J 1

-8.42
L
K

x2 =

a4.11
k
m
bm - 2k

-k L
4

= -

8.42
L

v2 = 2.072f,
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a1.64
k
m
bm - 2k

-k L
4
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L

v1 = 1.282f,

v1 = 1.28A
k
m
  v2 = 2.02A

k
m

v = 2l  and  f = k>m

l = P
23
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23
4
b2

- 4a27
4
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2 Qf = 1.64f, 4.11f
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4
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27

4
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12

m2L2v4
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96
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16
k 2L2
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6.4 FREE RESPONSE OF UNDAMPED SYSTEMS
The most general solution of a linear homogeneous problem is a linear combination of all
possible solutions. The free response of a linear, undamped two degree-of-freedom system
has two natural frequencies and two mode shapes. However, each natural frequency satis-
fies a fourth-order equation which only contains even powers of �. It can be converted to
a quadratic equation in �2. Thus, �� and �� are both solutions of the fourth-order
equation. However, �� has the same mode shape as ��. Thus, there are four solutions
of the homogeneous equation: ei�itX1, e

�i�itX1, e
i �2tX2, and e�i �2 tX2 where �1 and �2 are 

the natural frequencies and X1 and X2 are their corresponding mode shape vectors. The 
general solution is

(6.12)

Euler’s identity is used in the above to replace the exponentials with complex exponents by
trigonometric functions

(6.13)

The system has four initial conditions to satisfy
and Their application yields

(6.14a)

(6.14b)

(6.14c)

(6.14d)x# 2,0 = v1C2x1 + v2C4x2

x# 1,0 = v1C2 + v2C4

x2,0 = C1x1 + C3x2

x1,0 = C1 + C3

x# 2(0) = x# 2,0.
x1(0) = x1,0, x2(0) = x2,0, x

#

1(0) = x# 1,0,

x (t ) = [C1 cos(v1t ) + C2 sin(v1t )]X1 + [C3 cos(v2t ) + C4 sin(v2t )]X2

x (t) = C1e
iv1tX1 + C2e

- iv1tX1 + C3e
iv2tX2 + C4e

- iv2tX2

Equilibrium position

Equilibrium position

1.42/L

8.42/L

0.118L

1

1

(a)

(b)

0.19L FIGURE 6.4
Mode shapes of Example 6.4.
(a) First mode is a rigid-body
rotation about point O, which is a
point a distance 0.19L from the left
end of the bar. (b) Second mode is
a rigid-body rotation about point P,
which is a distance of 0.118L to the
right of the mass center.
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The equations are two sets of two simultaneous equations whose solutions are

(6.15a)

(6.15b)

(6.15c)

(6.15d)

Trigonometric identities can be used to write Equation (6.13) as

(6.16)

where

(6.17a)

(6.17b)

(6.17c)

(6.17d)f2 = tan - 1(C4OC3)

f1 = tan - 1(C2OC1)

A2 = (C 2
3 + C 2

4 )1>2
A1 = (C 2

1 + C 2
2 )1>2

x(t) = A1X1 sin(v1t + f1) + A2X2 sin(v2t + f2)

C4 =

x# 2,0v1 - x# 1,0v2x2

v1v2(x2 - x1)

C3 =

x2,0 - x1,0x2

x2 - x1

C2 =

x# 1,0v2x2 - x# 2, 0v1

v1v2(x2 - x1)

C1 =

x1,0x2 - x2,0

x2 - x1

EXAMPLE 6 . 5
The system of Example 6.3 is given initial displacements of x1(0) � � and x2(0) � �� and
is released from rest. Determine the resulting response of the system.

SO LU T I ON

The natural frequencies are determined in the solution of Example 6.3 as 

and . The mode shapes are and The general

form of the response is given by Equation (6.16) as

(a)

Application of initial conditions leads to

(b)

(c)x2(0) = -d = 1.85A1 sin f1 - 0.181A2 sin f2

x1(0) = d = A1 sin f1 + A2 sin f2

x(t) = A1 c 1
1.85
d  sin a0.391A

k
m

t + f1b + A 2 c 1
-0.181

d  sin a1.47A
k
m

t + f2b

X2 = C 1
- 0.181 D .X1 = C 1

1.85 Dv2 = 1.472 k
m

v1 = 0.3912 k
m
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(d)

(e)

Equations (d) and (e) are satisfied if cos �1 � cos �2 � 0, which implies 
Then equations (b) and (c) become

(f)

(g)

Equations (f ) and (g) are solved to yield A1 � �0.4038 and A2 � 1.4038, leading to a
response of

(h)x(t) = -d c0.403
0.746

d  sin a0.391A
k
m

t +

p

2
b + d c 1.403

-0.254
d  sin a1.47A

k
m

t +

p

2
b

1.85A1 - 0.181A2 = -d

A1 + A2 = d

f1 = f2 =
p
2 .

x# 2(0) = 0 = (1.85)(0.391)A1 cos f1 + (-0.181)(1.47)A2 cos f2

x# 1(0) = 0 = 0.391A1 cos f1 + 1.47A2 cos f2

EXAMPLE 6 . 6
For what initial conditions will the system of Example 6.4 vibrate as if it were a rigid-body
rotation about point P, which is a distance 0.118L to the right of the mass center?

SO LU T I ON
The point P is determined to be a node for the second mode. Thus, only the first mode is
represented in the solution

(a)

Application of initial conditions leads to

(b)

(c)

(d)

(e)

Dividing Equation (a) by Equation (b) yields

(f)

Dividing Equation (d) by Equation (e) yields

(g)

Any boundary conditions satisfying Equation (f ) and Equation (g) will eliminate the
second mode from the response.

x# 1,0

x# 2,0

= 0.694L

x1,0

x2,0
= 0.694L

x# 2,0 = (1.28)a1.42
L
bC2

x# 1,0 = 1.28C2

x2,0 =

1.42
L

C1

x1,0 = C1

cx1(t)
x2(t)
d = c 1

1.42
L
d bC1 cos a1.28A

k
m

tb + C2 sin a1.28A
k
m

tb r
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6.5 FREE VIBRATIONS OF A SYSTEM WITH
VISCOUS DAMPING
Free vibrations of a system with viscous damping cannot be qualitatively defined as for
SDOF systems. Assuming a normal-mode solution of x � Xei�t leads to an algebraic
equation with complex coefficients to determine �. Instead, a solution of the form

(6.18)

is assumed. Substitution of Equation (6.18) into Equation (6.1) leads to

(6.19)

Equation (6.19) is viewed as a system of simultaneous algebraic equations to solve for �.
Equation (6.19) has a non-trivial solution if and only if

(6.20)

Expansion of the determinant leads to a fourth-order polynomial equation for �. The four
roots for � can be all real, two real, and one pair of complex conjugates or two pairs of complex
conjugates. The real roots correspond to overdamped modes of vibration. The complex
roots correspond to underdamped modes of vibration. The real roots can be repeated, in
which case they correspond to vibrations that are critically damped.

For specific real values of �, substitution into Equation (6.20) leads to real-mode shape
vectors. Hence, the solution for four real values of � is

(6.21)

For complex conjugate values of �, Equation (6.20) leads to complex conjugate mode shapes.
The solution corresponding to a pair of complex conjugate values of � is

(6.22)

Writing � � �r � i�i and X � Xr � iXi and using Euler’s identity on the exponentials with
complex exponents leads to

(6.23)

where A1 � C1 � C2 and A2 � i(C1 � C2) are redefined constants of integration.

= e lrt[A1(Xrcoslit -  Xi sinlit ) +  A2(Xr sinlit +  Xi cosli t )]

x(t) = e lrt [C1(Xr + Xi)(coslit + i sinli t) + C2(Xr - iXi)(cosli t - i sinli t )]

x(t) = C1Xe lt + C2Xe lt

x(t) = C1X1e
l1t + C2X2e

l2t + C3X3e
l3t + C4X4e

l4t

det(l2MX + lCX + KX ) = 0

l2MX + lCX + KX = 0

cx1(t)
x2(t)
d = c 1

x
de lt

EXAMPLE 6 . 7
Determine the response of the system of Figure 6.5 when using x1 and x2 as generalized
coordinates when and all other initial conditions are zero.x# 2(0) = 2

m
s
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SO LU T I ON
The differential equations of motion for the system are

(a)

Assume a solution of

(b)

The values of � which lead to a non-trivial solution of Equation (b) are the roots of

(c)

Evaluation of the determinant leads to

(d)

The roots of the fourth-order equation are � � �0.5122 � 1.7436i, �1.2378 � 2.2648i.
The system vibrates at frequencies �1 � 1.7436 and �2 � 2.2468. The complex modal
fraction is determined from

(e)

The two equations represented by Equation (e) for the values of � obtained previously are
dependent. Thus, only the first equation is used, as

(f)

or

(g)

For � � �0.5122 � 1.7436i, the evaluation of Equation (g) becomes

(h)

For � � �0.5122 � 1.7436i, the evaluation leads to � � (1.817 � 0.248i). For �1.2378 �
2.2648i, the evaluation of Equation (g) leads to � � (�0.435 	 0.115i ).

= (1.817 + 0.248i )

x =

(-0.5122 - 1.7436i )2
+ 2(-0.5122 - 1.7436i ) + 6

2 - 0.5122 - 1.7436i

x =

l2
+ 2l + 6

l + 2

(l2
+ 2l + 6) - (l + 2)x = 0

cl2
+ 2l + 6 -l - 2
-l - 2 2l2

+ 3l + 8
d c 1
x
d = c0

0
d

(l2
+ 2l + 6)(2l2

+ 3l + 8) - (l + 2)2
= 0

` l2
+ 2l + 6 -l - 2
-l - 2 2l2

+ 3l + 8
` = 0

cx1(t)
x2(t)
d = c 1

x
d e lt

c1 0
0 2

d c x
$

1

x$2

d + c 2 -1
-1 3

d cx
#

1

x# 2
d + c 6 -2

-2 8
d cx1

x2

d = c0
0
d

4 N/m

1 N · s/m 1 N · s/m 2 N · s/m

6 N/m2 N/m
x1 x2

1 kg 2 kg

FIGURE 6.5
System of Example 6.7. Motion is
initiated by giving the second
mass an initial velocity of 2 m/s.
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Using Equation (6.21), the response can be written as

(i)

or

(j)

Applying the initial conditions leads to

(k)

Solution of Equation (k) leads to A1 � 4.49, A2 � �1.95, A3 � �2.12 and A4 � 3.29.
Substitution of these results into Equation (j) leads to

(l)+ e -1.237t ¢ c -2.13
0.54
d  cos 2.25t + c 3.29

-1.67
d  sin 2.25t≤

cx1(t)
x2(t)
d = e -0.512t ¢ c4.49

7.68
d cos 1.74t + c -1.95

-4.66
d sin 1.74t≤

≥
x1(0)
x2(0)
x# 1(0)
x# 2(0)

¥ = ≥
0
0
0
2

¥ = ≥
   1 0    1    0
   1.817 0.248 -0.435 -0.115
-0.5122 1.744 -1.238    2.247
-1.390 3.295     0.871 -0.258

¥ ≥
A1

A2

A3

A4

¥

+ A4 ¢ c 1
-0.435

d  sin 2.247t + c 0
-0.115

d  cos 2.247t≤v
+ e -1.2378t uA3 ¢ c 1

-0.435
d  cos 2.247t - c 0

-0.115
d sin 2.247t≤

+ A2a c 1
1.817

d  sin 1.744t + c 0
0.248

d cos 1.744tbv

cx1(t)
x2(t)
d = e -0.5122tuA1a c 1

1.817
d  cos 1.744t - c 0

0.248
d  sin 1.744tb

+ e -1.2378t ¢C3 c 1
-0.435 - 0.115i

de i 2.2468C4 c 1
-0.435 + 0.115i

de -i 2.2468≤
cx1(t)
x2(t)
d = e-0.5122t

 ¢C1 c 1
1.817 - 0.248i

de i1.7436t
+ C2 c 1

1.817 + 0.248i
de -i1.7436t≤

6.6 PRINCIPAL COORDINATES
It would be easier to solve uncoupled differential equations, but the coupling between coor-
dinates is inevitable in most systems. The choice of generalized coordinates to derive the dif-
ferential equations affects the coupling. If the coupling is through the stiffness matrix as in
Example 6.1, the system is said to be statically coupled. If the coupling is through the mass
matrix as in Example 6.2(b), the system is said to be dynamically coupled. Using the 
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coordinates x and �, the system of Example 6.2 is statically coupled and is not dynamically
coupled. Using the coordinates x1 and x2, the differential equations are dynamically coupled
but not statically coupled. A system can be statically coupled, dynamically coupled, statically
coupled and dynamically coupled, or neither statically or dynamically coupled, depending
on the choice of generalized coordinates. The choice of generalized coordinates does not
affect the natural frequencies.

Suppose the differential equations are neither statically coupled nor dynamically cou-
pled using a set of coordinates p1 and p2, called the principal coordinates. Then the differ-
ential equations are written as

(6.24)

(6.25)
The solutions of Equation (6.24) and (6.25) are simply

(6.26)

(6.27)

The decoupled system behaves as two SDOF systems. Since the choice of generalized coor-
dinates does not affect the natural frequencies of the system, �1 and �2 are properties of
the system. When written using coordinates x1 and x2,

(6.28)

Taking , Equation (6.28) becomes

(6.29)

or

(6.30)

Equation (6.30) is solved for the principal coordinates in terms of the original generalized
coordinates yielding

(6.31)

(6.32)

Without loss of generality, since the generalized coordinates can represent points that have
zero displacement for z, given mode �2 � �1 can be ignored and

(6.33)

(6.34)p2 = x2 - x1x1

p1 = x2x1 - x2

p2 =

1
x2 - x1

(x2 - x1x1)

p1 =

1
x2 - x1

(x2x1 - x2)

cx1

x2

d = c 1
x1

dp1 + c 1
x2

dp2

x(t) = X1p1(t) + X2 p2(t)

A1
P1

=

A1
P2

= 1

=

A1

P1

X1p1(t ) +

A1

P2

X2 p2(t )

x(t) = A1X1 sin(v1t + f1) + A2X2 sin(v2t + f2)

p2(t) = P2 sin (v2t + f2)

p1(t) = P1 sin (v1t + f1)

p
$

2 + v2
2 p2 = 0

p
$

1 + v2
1p1 = 0
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The principal coordinates for a two degree-of-freedom system can be examined by
looking at the nodes for a system. The second mode shape has a node which is in the
system. This is a point of zero displacement for that node, and the response of that point
only includes the first mode. This point can be taken to be a principal coordinate repre-
senting the first mode. The first mode does not have a node that is a particle on the system.
Thus, the second mode does not represent the motion of a particle in the system.

EXAMPLE 6 . 8
Describe the principal coordinates for the system of Example 6.4. Write the differential
equations for the principal coordinates.

SO LU T I ON

Recall that the natural frequency and modal fraction for the first mode using x and � as

generalized coordinates are and . The natural frequency and

modal fraction for the second mode are and . Using 

Equations (6.33) and (6.34), the principal coordinates are

(a)

(b)

Equation (a) is the negative of the displacement of the node for the second mode, which
as noted in Example 6.4 represents a rigid-body rotation about a point 0.118L to the right
of the midspan of the bar. Equation (b) represents the negative of the rigid-body rotation
0.19L from the left end of the bar.

The differential equations the principal coordinates satisfy are

(c)

(d)p
$

2 + 4.28  

k
m

  p2 = 0

p
$

1 + 1.64  

k
m

  p1 = 0

p2(t) = u(t) -

1.42
L

x (t)

p1(t) = -

8.44
L

x (t) - u(t)

x2 = -
8.44

Lv2 = 2.072 k
m

x1 =
1.42

Lv1 = 1.282 k
m

It is not possible to find principal coordinates for a system with a general form of viscous
damping. However, if the damping matrix is proportional to a linear combination of the
stiffness matrix and the damping matrix, the principal coordinates for the undamped
system uncouple the system. The differential equations governing the principal coordinates
become

(6.35)

(6.36)

where �1 and �2 are called modal damping ratios. This is covered in more detail in Chapter 8.

p
$

2 + 2z2v2 p# 2 + v2
2 p2 = 0

p
$

1 + 2z1v1p
#

1 + v2
1 p1 = 0
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6.7 HARMONIC RESPONSE OF TWO
DEGREE-OF-FREEDOM SYSTEMS
The harmonic response of two degree-of-freedom systems is determined using the method of
undetermined coefficients. First, consider undamped systems whose differential equations are

(6.37)

where is a vector of constants.
The method of undetermined coefficients can be used to find the steady-state solution.

Assume a steady-state response of

(6.38)

where . Substitution of Equation (6.38) into Equation (6.37) leads to

(6.39)
from which the equation to solve for the components of U is

(6.40)
The component equations represented by Equation (6.40) are

(6.41)

(6.42)

The solution of Equation (6.41) and Equation (6.42) provide the values of u1 and u2.
The steady-state amplitudes are chosen to be positive. If a negative value is obtained

(say u2 
 0), the response of the system is written as |u2| sin(�t �	).

(-v2m2,1 + k2,1)u1 + (-v2m2,2 + k2,2)u2 = f2

(-v2m1,1 + k1,1)u1 + (-v2m1,2 + k1,2)u2 = f1

( -v2M + K)U = F

-v2MU sin(vt) + KU sin(vt) = F sin(vt)

U = 3u1  u24T
x = U sin(vt)

F = 3 f1  f24T
Mx

$

+ Kx = F sin(vt)

EXAMPLE 6 . 9
Consider the two degree-of-freedom system of Figure 6.6. Determine the steady-state
response of the system.

SO LU T I ON
The differential equations governing the motion of the system are

(a)

(b)2x
$

2 - x1 + 3x2 = 10 sin(2t )

x
$

1 + 2x1 - x2 = 0

1 N/m 1 N/m

2 N/m

10 sin2t

x1 x2

1 kg 2 kg

FIGURE 6.6
System of Example 6.9.



402 CHAPTER 6

The steady-state response is determined by assuming

(c)

(d)

Substituting the solution into the differential equations leads to

(e)

(f)

or

(g)

(h)

The solution to Equation (g) and Equation (h) is and . The steady-state
responses of the two masses are

(i)

(j)u2(t) =

20

9
sin(2t - p)

u1(t) =

10

9
sin(2t )

u2 = -
20
9u1 =

10
9  

-u1 - 5u2 = 10

-2u1 - u2 = 0

-8u2 - u1 + 3u2 = 10

-4u1 + 2u1 - u2 = 0

x2 = u2 sin(2t)

x1 = u1 sin(2t)

Now consider the steady-state responses for systems with viscous damping. The general
form of the equation for systems that are viscously damped is

(6.43)

or

(6.44)

A steady-state response of

(6.45)

(6.46)

is assumed. Substituting into Equation (6.43) leads to four equations for four unknowns.
The steady-state responses for x1 and x2 are written as

(6.47)

and
(6.48)

where
(6.49)

and

(6.50)fi =  tan -1a vi

ui
b

Xi = 2u2
i + v2

i

x2 = X2 sin(vt - f2)

x1 = X1 sin(vt - f1)

x2 = u2 sin (vt) + v2 cos (vt)

x1 = u1 sin (vt) + v1 cos (vt)

cm1,1 m1,2

m2,1 m2,2

d c x
$

1

x$2

d + cc1,1 c1, 2

c2,1 c2, 2

d cx
#

1

x# 2
d + ck1,1 k1, 2

k2,1 k2, 2

d cx1

x2

d = c f1

f2

d sin(vt)

Mx
$

+ Cx# + Kx = F sin(vt)
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EXAMPLE 6 . 1 0
Find the steady-state response for the system of Figure 6.7.

SO LU T I ON
The differential equations governing the motion of the two degree-of-freedom system
shown are

(a)

Assume a steady-state response of

(b)

Substitution of Equation (b) into Equation (a) gives

(c)

Collecting coefficients of sin 5t and cos 5t from each equation leads to

(d)

The solution to Equation (c) is u1 � 0.0212, u2 � 0.0203, v1 � �0.0077, and v2 � �0.0039.
Substitution into Equation (b) gives

(e)

or

(f)

(g)x2(t ) = 0.0207 sin(5t + 0.188)

x1(t ) = 0.0225 sin(5t + 0.348)

cx1

x2

d = c0.0212
0.0203

d  sin 5t + c -0.0077
-0.0039

d  cos 5t

≥
250 -200 -150 100

-200 375 100 -100
150 -100 250 -200

-100 100 -200 375

¥ ≥
u1

u2

v1

v2

¥ = ≥
2
3
0
0

¥

= c2
3
d  sin 5t

+ c 300 -200
-200 400

d cu1

u2

d sin 5t + c 300 -200
-200 400

d cv1

v2

d cos 5t

+ c 150 -100
-100 100

d cu1

u2

d cos 5t + c -150 100
100 -100

d cv1

v2

d sin 5t

c -50 0
0 -25

d cu1

u2

d sin 5t + c -50 0
0 -25

d cv1

v2

d cos 5t

cx1

x2

d = cu1

u2

d sin 5t + cv1

v2

d cos 5t

c2 0
0 1

d c x
$

1

x$2

d + c 30 -20
-20 20

d cx
#

1

x# 2
d + c 300 -200

-200 400
d cx1

x2

d = c2
3
d sin 5t

200 N/m

10 N · s/m 20 N · s/m

300 N/m

3 sin5t
100 N/m

x1 x2

2 kg 1 kg

2 sin5t

FIGURE 6.7
System of Example 6.10.
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6.8 TRANSFER FUNCTIONS
Transfer functions are the ratio of the Laplace transform of a system output to the Laplace
transform of a system input. When the system has multiple input and multiple outputs, a
matrix of transfer functions is defined. A two degree-of-freedom system has two outputs
and possibly two inputs, as illustrated in Figure 6.8. The transfer function matrix for this
system is

(6.51)

where Gi,j(s) is the transfer function for xi due to a force applied at x j . Recalling the physical
meaning of the transfer function from Chapter 5, it also represents the transform of the
response due to a unit impulse. Thus, Gi,j(s) also is the Laplace transform of the response
of xi due to an unit impulse applied at the location which is described by xj .

G(s ) = cG1,1(s) G1,2(s)
G2,1(s) G2,2(s)

d

k1

k2

F1 (t)

F2 (t)

x1 x2

m1 m2

FIGURE 6.8
A two degree-of-freedom system
with two inputs.

EXAMPLE 6 . 1 1
The system of Figure 6.9 is at rest in equilibrium when a unit impulse is applied to the 2 kg
block. Determine the resulting response of the 1 kg block.

SO LU T I ON
The differential equations governing the motion of the system are

(a)

(b)

Taking the Laplace transform of Equations (a) and (b) and using the principle of linearity
leads to

(c)

(d)2L{x$2} - 500L{x1} + 1000L{x2} = L{F (t )}

L{x$1} + 1000L{x1} - 500L{x2} = 0

2x$2 - 500x1 + 1000x2 = F (t )

x$1 + 1000x1 - 500x2 = 0

500 N/m1000 N/m
500 N/m

F(t)

x1 x2

1 kg 2 kg

FIGURE 6.9
System of Example 6.11.



Two Degree-of-Freedom Systems 405

Letting X1(s) � L{x1(t)}, X2(s) � L{x2(t)}, and F(s) � L{F(t)} and using the property of
transform of derivatives leads to

(e)

(f)

Writing Equations (e) and (f ) in matrix form, we have

(g)

Cramer’s rule is used to solve for X1(s), leading to

(h)

Evaluation of the determinants leads to

(i)

The appropriate transfer function is

(j)

The impulsive response is obtained by inverting the transfer function. To this end, the
transfer function is factored as

(k)

A partial fraction decomposition of Equation (k) leads to

(l)

Inversion of the transform leads to

(m)x i1,2
= 0.0162 sin 17.8t - 0.0084 sin 34.4t

G1,2(s) =

0.2887
s 2

+ 317
-

0.2887
s 2

+ 1183

G1,2(s) =

250
(s2

+ 1183)(s2
+ 317)

G1,2(s) =

X1(s)

F (s )
=

250

s4
+ 1500s 2

+ 375,000

X1(s) =

500F (s )

2s4
+ 3000s 2

+ 750,000

X1(s) =

` 0 -500
F (s ) 2s2

+ 1000
`

` s2
+ 1000 -500
-500 2s2

+ 1000
`

c s 2
+ 1000 -500
-500 2s 2

+ 1000
d cX1(s)

X2(s)
d = c 0

F (s)
d

-500X1(s ) + (2 s 2
+ 1000)X2(s) = F (s)

(s 2
+ 1000)X1(s) - 500X2(s ) = 0

40,000 N/m
20,000 N/m

2000 N · s/m

F(t)

x1 x2

20 kg 40 kg

FIGURE 6.10
System of Example 6.12.

EXAMPLE 6 . 1 2
Determine the transfer function for the 20 kg block of the system in Figure 6.10 due to a
force applied to the 20 kg block.



SO LU T I ON
The differential equations governing the system are

(a)

(b)

Taking the Laplace transform of both equations and using the properties of the transform
of derivatives and linearity yields

(c)

(d)

Rewriting Equations (c) and (d) in matrix form

(e)

Cramer’s rule is used to solve for X2(s), leading to

(f)

Evaluation of the determinants leads to

(g)

The appropriate transfer function is

(h)G22(s ) =

20s 2
+ 2000s + 60,000

800s 4
+ 1.2 * 105s3

+ 2.8 * 106s2
+ 8 * 107s + 8 * 108

X2(s) =

(20s2
+ 2000s + 60,000)F (s)

800s4
+ 1.2 * 105s 3

+ 2.8 * 106s 2
+ 8 * 107s + 8 * 108

X1(s) =

` 20s2
+ 2000s + 60,000 0

-2000s + 20,000 F (s)
`

` 20s 2
+ 2000s + 60,000 -2000s - 20,000

-2000s - 20,000 40s2
+ 2000s + 20,000

`

c20s2
+ 2000s + 60,000 -2000s - 20,000

-2000s - 20,000 40s2
+ 2000s + 20,000

d cX1(s)
X2(s)
d = c 0

F (s)
d

- (2000s + 20,000)X1(s) + (40s2
+ 2000s + 20,000)X2(s) = F (s)

(20s2
+ 2000s + 60,000)X1(s) - (2000s + 20,000)X2(s) = 0

40x$2 - 2000x# 1 + 2000x# 2 - 20,000x1 + 20,000x2 = F (t )

20x$1 + 2000x# 1 - 2000x# 2 + 60,000x1 - 20,000x2 = 0
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The transfer function may be used to derive a convolution integral response for the
system. Note that

(6.52)

where Xi,j(s) is the response of the system for xi(t) due to a force Fj(t) applied at the location
specified by xj(t). Using property B7 (transform of convolution), we have

(6.53)

where hi,j(t) is the impulsive response 
Equation (6.53) is the convolution integral solution for the response of a two degree-

of-freedom system. It is similar to that of a SDOF system.

hi, j (t ) = L-1{Gi, j (s )}.

x i(s) =

L

t

0
Fj(t)hi,j(t - t)dt

Xi (s) = Fj (s)Gi, j (s )
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EXAMPLE 6 . 1 3
Determine the response of the 1 kg mass of Figure 6.9 when the time-dependent force of
Figure 6.11 is applied to the 2 kg block.

SO LU T I ON
The mathematical form of the force shown in Figure 6.11 is

(a)

The impulsive response of the 1 kg block due to a unit impulse applied to the 2 kg block
is calculated in Example 6.11. The convolution integral of Equation (6.53) is used to deter-
mine the response of the system of Figure 6.10 as

(b)

Equation (b) is written as

(c)

The integrals of Equation (c) are evaluated using the entries of Table 5.1. Use the table for
the delayed ramp excitation with A � �10 and B � 1 with �n � 17.8 for the first two
integrals. Use t0 � 0 for the first integral and t0 � 0.1 for the second. The third and fourth
integrals are evaluated using �n � 34.4. Use meq � 1 when evaluating the integrals. For
example, the second integral is evaluated as

(d)= 0.03153t - 0.1 - 0.0562 sin 17.8(t - 0.1)4u(t - 0.1)

-

1
17.8

sin 17.8(t - 0.1) du(t - 0.1)

=

-10
317
ct +

1
-10

- a0.1 +

1
-10
b cos 17.8(t - 0.1)

L

t

0
(1 - 10t) sin 17.8(t - t)u(t - 0.1)dt

-

L

t

0
(1 - 10t) sin 34.4(t - t)u (t - 0.1)d t dv

-  0.0084 c
L

t

0
(1 - 10t) sin 34.4(t - t)u(t)d t

-

L

t

0
(1 - 10t) sin 17.8( t - t)u (t - 0.1)dt d

x1(t) = 10u0.0162 c
L

t

0
(1 - 10t) sin 17.8(t - t)u(t)dt

x1(t) =

L

t

0
10(1 - 10t)3u(t) - u(t - 0.1)430.0162 sin17.8(t - t)

                                             - 0.0084 sin 34.4(t - t)4d t

F (t) = 10(1 - 10t)3u(t ) - u(t - 0.1)4



408 CHAPTER 6

The resulting solution is

(e)

Simplification results in

(f)+ 2.05 * 10-5 sin 34.8(t - 0.1)4u(t - 0.1)

- 30.0044t - 0.00044 - 2.87 * 10-4 sin 17.8(t - 0.1)

- 2.87 * 10-4 sin 17.8t + 2.05 * 10-5 sin 34.8t)u(t)

x1(t) = (0.0044t - 0.00044 - 0.0051 cos 17.8t + 7.14 * 10-4 cos 34.8t

+ (0.0084)(0.0085)3t - 0.1 - 0.0287 sin 34.88(t - 0.1)4u(t - 0.1)}

- (0.0084)(0.0085)3t - 0.1 - 0.1 cos 34.8t - 0.0287 sin 17.8t4u(t)

- (0.0162)(0.0315)3t - 0.1 - 0.0562 sin 17.8(t - 0.1)4u(t - 0.1)

x1(t) = 10{(0.0162)(0.0315)3t - 0.1 - 0.1 cos 17.8t - 0.0562 sin 17.8t4u(t)

F(N)

10

0.1 t (s)

FIGURE 6.11
Excitation of Example 6.13.

6.9 SINUSOIDAL TRANSFER FUNCTION
The use of the method of undetermined coefficients is fine for calculation of the steady-
state amplitudes for a specific frequency, but the determination of the frequency response
using this method leads to much unnecessary algebra. An alternate method is to use the
Laplace transform method.

Consider the Laplace transform of a system subject to a sinusoidal input of F(t) � F0sin �t :

(6.54)

where G(s) is the transfer function. For an nth order system, the denominator of G(s) is of
order n. Let s1, s2, . . . , sn where Re (sj) 
 0 for j � 1, 2, . . . , n is the zeros of the denomi-
nator of the transfer function. A partial fraction decomposition leads to

(6.55)X(s) =

A1

s + iv
+

A2

s - iv
+

B1

s - s1
+

B2

s - s2
+

Á
+

Bn

s - sn

X(s) = G (s)F (s) =

F0v

s2
+ v2G (s )
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The steady-state response is obtained by inverting the first two terms in X(s) as

(6.56)

The steady-state response is

(6.57)

where

(6.58)

and

(6.59)

The steady-state response becomes

(6.60)

Since G(i�) is a complex number, it can be expressed as

(6.61)

where

(6.62)

and

(6.63)

Substituting Equation (6.61) into Equation (6.60) and noting that 
yields

(6.64)

or

(6.65)

The steady-state amplitude of any system is the magnitude of the excitation times the
magnitude of the sinusoidal transfer function G(i�). This is the frequency response of the
system. The full power of the sinusoidal transfer function is not needed for SDOF systems
because there exists only one steady-state amplitude. The steady-state amplitude in
Equation (6.65) is non-dimensionalized by

(6.66)
k1X1

F0

= k1|G(iv)|

x (t ) = F0|G (iv)| sin(vt + f)

x (t ) = F0|G(iv)|
e i(vt + f)

- e -i(vt +f)

2i

|G(iv)|e -if
G(- iv) = G(iv) =

f = tan-1e Im3G(iv)4
Re3G(iv)4 f

|G(iv)| = 2Re3G (iv)42 + Im3G(iv)42

G(iv) = |G(iv)|e i f

=

F03G(- iv)e -ivt
- G(iv)e ivt4

-2i

x (t ) = A1e
-ivt

+ A2e ivt

A2 = lim
s : iv

F0vG (s )(s + iv)

s2
+ v2 =

F0

2 i
G (iv)

A1 = lim
s : - i v

F0vG(s )(s + iv)

s2
+ v2 =

F0

-2i
G (- i v)

x (t ) = L-1e A1

s + iv
+

A2

s - iv
f

= lim
t : q

(B1e
s1t + B2e

s2t +
Á Bne

snt ) = 0

lim
t : q

L-1e B1

s - s1
+

B2

s - s2
+

Á
+

Bn

s - sn
f



410 CHAPTER 6

40,000 N/m
20,000 N/m

2000 N · s/m

200 sin50t N

x1 x2

20 kg 40 kg

EXAMPLE 6 . 1 4
Determine the steady-state response of the 40 kg mass of Figure 6.12 when subject to a
sinusoidal force of magnitude 200 N at a frequency of 50 rad/s.

SO LU T I ON
The transfer function for the system is determined in Example 6.12 as

(a)

which becomes 

(b)

when the numerator and denominator are divided by 8 � 102. 
Use of the sinusoidal transfer function yields

(c)

where

(d)

Performing the calculations leads to

(e)

Thus the steady-state response of the system is

(f)= 0.0018 sin(50t - 3.13) m

x (t ) = 200(9.08 * 106) sin(50t - 3.13)

=

12.5 - 125i

- (1.5 + 1.375i )106
= - (9.08 + 0.00817i )106

= 9.08e -3.13i

G(50i ) =

0.025(50i )2
+ 2.5(50i ) + 75

(50i )4
+ 1.5 * 102(50i )3

+ 3500(50i )2
+ 1 * 105(50i ) + 1 * 106

f = tan -1a Im(50i )

Re(50i )
b

x(t ) = 200|G(50i )| sin(vt + f)

G(s) =

0.025s2
+ 2.5s + 75

s4
+ 1.5 * 102s3

+ 3500s2
+ 1 * 105s + 1 * 106

G(s) =

20s2
+ 2 * 103s + 6 * 104

8 * 102s4
+ 1.2 * 105s3

+ 2.8 * 106s2
+ 8 * 107s + 8 * 108

FIGURE 6.12
System of Example 6.14.
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6.10 FREQUENCY RESPONSE
The frequency response refers to the variation of steady-state amplitude with a frequency
of excitation. It is often described nondimensionally. A general two degree-of-freedom
system is illustrated in Figure 6.13. The steady-state amplitudes are functions of the eleven
parameters shown as

(6.67)

(6.68)

The Buckingham Pi theorem implies that a nondimensional formulation of the relationship
between a steady-state amplitude and all parameters involves twelve (11 independent �
1 dependent) parameters minus three dimensions for nine nondimensional parameters.
Many of the parameters would simply be mass, stiffness, and damping coefficient ratios.
Unlike a SDOF system where the nondimensional relationship can be summarized on one set
of coordinate axes (M versus r for different values of �), it is almost impossible to determine
the effect of every parameter independently. The system has two parameters: the natural
frequencies, which are determined from a quadratic equation. The modal fractions are
determined from the solution of the resulting equation when the normal mode solution is
assumed at a natural frequency.

Instead of having a general equation for the frequency response, each system configura-
tion is studied individually. Consider the system of Figure 6.14. The differential equations
governing the motion of this system are

(6.69)

(6.70)

The matrix of transfer functions is determined as

(6.71)

The sinusoidal transfer functions are determined by substituting s � i�,

(6.72)c -m2v
2

+ k2 k2

k2 -m1v
2

+ k1 + k2

d

G(iv) =

1

m1m2v
4

- (m1k2 + m2k1 + m2k2)v
2

+ k1k2

*

cm2s
2

+ k2 k2

k2 m1s
2

+ k1 + k2

d

G(s) =

1

m1m2s
4

+ (m1k2 + m2k1 + m2k2)s
2

+ k1k2

*

m2x$2 - k2x1 + k2x2 = F2(t)

m1x$1 + (k1 + k2)x1 - k2x2 = F1(t)

X2 = X2(m1, m2, k1, k2, k3, c1, c2, c3, F01, F02, v)

X1 = X1(m1, m2, k1, k2, k3, c1, c2, c3, F01, F02, v)

k1

c1 c2 c3

k3k2

x1 x2

m1 m2

F0 sinω1t F0 sinω2t

FIGURE 6.13
A general two degree-of-
freedom system.
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The steady-state amplitudes due to a harmonic force F1(t) � F0 sin �t is determined using
the sinusoidal transfer functions as

(6.73)

(6.74)

There are seven parameters, six independent parameters (m1, m2, k1, k2, F0, �) and one
dependent parameter (X1) in Equation (6.73) involving three independent dimensions
(M, L, T ). The Buckingham Pi theorem suggests there are 7 � 3 � 4 independent dimen-
sionless parameters involved in a nondimensional formulation. Equations (6.73) and
(6.74) are nondimensionalized by dividing by F0 and multiplying by something that has
dimensions of stiffness (say k1) as

(6.75)

Defining

(6.76)

(6.77)

as parameters that have dimensions of 1/T. Note that these are not the natural frequencies
of the two degree-of-freedom system, they are just defined for convenience. Factoring out
k2 from the numerator and denominator of Equation (6.75) and rewriting the resulting
equation in terms of �1,1 and �2,2 leads to

(6.78)
k1X1

F0

= 5 -

v2

v2
2,2

+ 1

v4

v2
1,1v

2
2,2

- a 1
v2

1,1

+

1
v2

2,2

+

m2

m1v
2
1,1

bv2
+ 1

5

v2,2 = A
k2

m2

v1,1 = A
k1

m1

k1X1

F0

= † -m2v
2

+ k2

m1

k1

m2v
4

- am1

k1

k2 + m2 +

m2k2

k1

bv2
+ k2

†

X2 = F0|G2,1(iv)| = ` F0k2

m1m2v
4

- (m1k2 + m2k1 + m2k2)v
2

+ k1k2

`

X1 = F0|G1,1(iv)| = ` F0(-m2v
2

+ k2)

m1m2v
4

- (m1k2 + m2k1 + m2k2)v
2

+ k1k2

`

k1
k2 F02 sinω2t

x1 x2

m1 m2

F0 sinω1t

FIGURE 6.14
Two degree-of-freedom
system with parameters
m1, m2, k1, k2, F01, F02, and �.
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Defining

(6.79)

(6.80)

(6.81)

the right-hand side of Equation (6.78) is written as

(6.82)

In a similar fashion, it is shown that

(6.83)

The frequency responses are plotted against r1 for r2 � 0.5 and 
 � 0.5. Both are shown
in Figure 6.15.

Frequency-response equations for the force applied to the mass m2 are

(6.84)

and

(6.85)

Equations (6.84) and (6.85) versus r1 for specific values of r2, 
, and v are plotted in Figure 6.16
on page 415.

The frequency response of an undamped two degree-of-freedom system has two asymptotes
corresponding to the natural frequencies of the system. These are the values of � for which the
denominator of the frequency response is zero. From Equation (6.73), this becomes

(6.86)

whose solutions are

(6.87)

Equation (6.87) is written as

(6.88)v =

v1,1

22B1 + av2,2

v1,1

b2

(1 + m) � A a
v2,2

v1,1

b4

(1 + m)2
+ 2av2,2

v1,1

b2

(m - 1) + 1

v =

¢m1k2 + m2k1 + m2k2 � 2(m1k2 + m2k1 + m2k2)
2

- 4m1m2k1k2

2
≤1>2

m1m2v
4

- (m1k2 + m2k1 + m2k2)v
2

+ k1k2 = 0

k1X2

F0

= M2,2(r1, r2, m) =

3 r 2
1 a1 +

m

r 2
2

b + 1

r 2
1r

2
2 - r 2

2 - (1 + m)r 2
1 + 1

3
k1X1

F0

= M1,2(r1, r2, m) = ` 1
r 2

1r
2
2 - r 2

2 - (1 + m)r 2
1 + 1

`

k1X2

F0

= M2,1(r1, r2, m) = ` 1
r 2

1r
2
2 - r 2

2 - (1 + m)r 2
1 + 1

`

M1,1(r1, r2, m) = ` 1 - r 2
2

r 2
1r

2
2 - r 2

2 - (1 + m)r 2
1 + 1

`

r2 =

v

v2,2

r1 =

v

v1,1

m =

m2

m1
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or in nondimensional form as

(6.89)r1 =

1

22B1 + a r1

r2
b2

(1 + m) � A a
r1

r2
b4

(1 + m)2
+ 2a r1

r2
b2

(m - 1) + 1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0
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8

9

10

(a)

r1

M
11

0.2 0.4 0.6 0.8 1 1.2 1.4
0

1

2

3

4

5

6

7

8

9

(b)

r1

M
21

FIGURE 6.15
Frequency response curves: (a) M1,1
versus r1 for r2 � 0.5 and 
 � 0.5.
(b) M2,1 versus r1 for r2 � 0.5 and

 � 0.5.

6.11 DYNAMIC VIBRATION ABSORBERS
When the machine of Figure 6.17 is subject to a harmonic excitation at a frequency near its
natural frequency, large amplitude steady-state vibrations are a result. One remedy is to
change the properties of the system such that the natural frequency is away from the excita-
tion frequency. An alternate remedy is to add an auxiliary mass-spring system such that the
system has two natural frequencies both of which are away from the excitation frequency.
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FIGURE 6.16
Frequency response curves when
a force is applied to mass m1:
(a) M1,2 versus r1 for r2 � 0.5 and

 � 0.75. (b) M2,2 versus r1 for
r2 � 0.5 and 
 � 0.75.
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(a)

r1

M
11

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0

5

10
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25
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35

(b)

r1

M
22

m1

k1

k1
m1

F0 sinωt

ω ≈

FIGURE 6.17
Large amplitude steady-state
vibrations occur when the
excitation frequency is close
to the natural frequency of
the machine.

m1

m2

k2

F0 sinωt

k1

2
k1

2

FIGURE 6.18
A vibration absorber is an aux-
iliary mass-spring system
which is added to the primary
system (the machine) to add
one degree of freedom to the
system and change its natural
frequencies.

A vibration absorber is the auxiliary system. The original machine is termed the pri-
mary system. The resulting two degree-of-freedom system is illustrated in Figure 6.18. This
is the configuration that was analyzed in Section 6.10, and its frequency response is

(6.90)

The parameter �1,1 is the natural frequency of the primary system, and the parameter �2,2
is the natural frequency of the absorber if it were grounded (that is, directly connected to
the ground). The system composed of the primary system attached to the auxiliary system
is a two degree-of-freedom system with natural frequencies given by Equation (6.88).

The steady-state amplitude of the absorber is given by

(6.91)
k1X2

F0

= ` 1
r 2

1r
2
2 - r 2

2 - (1 + m)r 2
1 + 1

`

k1X1

F0

= ` 1 - r 2
2

r 2
1r

2
2 - r 2

2 - (1 + m)r 2
1 + 1

`
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The steady-state amplitude of the primary system is zero when the absorber is tuned
such that r2 � 1 or that

(6.92)

When r2 � 1, the steady-state vibrations of the primary system are zero. Thus, the excitation
force is transmitted directly to the absorber system. Using the FBD of Figure 6.19, the
steady-state behavior of the auxiliary system is

(6.93)

Hence, the steady-state amplitude of the absorber mass when it is tuned such that
k2 � m2�

2 is

(6.94)

The frequency response for the primary system as a function of r2 for �2,2 � � is
illustrated in Figure 6.20. Note that one of the system’s two natural frequencies is less
than the tuned frequency while the other is greater.

If the excitation speed varies slightly from the tuned speed, the larger the separation in
natural frequencies the smaller the steady-state amplitude of the primary system. Defining

(6.95)

the separation in natural frequencies is a function of 
, as shown in Figure 6.21, and by
the equation

(6.96)

In situations where absorbers are employed, q ≈ 1. Setting q � 1 in Equation (6.96) leads to

(6.97)

The separation in natural frequencies is larger for larger 
. For , 
The denominator in Equation (6.90) is positive for � �1 and � �2. It is nega-

tive in the range �1 
 � 
 �2. The numerator is positive for � 
 �2,2 and negative other-
wise. When the ratio of the numerator to denominator is negative, the response of the
primary system is 180° out of phase with the excitation. When the denominator is negative,
the response of the auxiliary system is 180° with the excitation.

A dynamic vibration absorber is used to eliminate steady-state vibrations of a particle
where the absorber is attached if the natural frequency of the absorber is tuned to the
excitation frequency. The absorber has many applications in industrial processes. When
the absorber is used on a SDOF system, it converts the system to two degrees of freedom.
The following must be kept in mind when using an absorber:

• The steady-state amplitude of the primary system is zero when the auxiliary system
(the absorber) is tuned such that �2, 2 � �.

• One of the natural frequencies of the resulting two degree-of-freedom system is less
than the tuned frequency, and one is higher than the tuned frequency. The lower

76

v2
2 - v2

1 L v1,1
2 .m = 0.25

v2
2 - v2

1 = v1,1
2 2m(4 + m)

v2
2 - v2

1 = v1,1
2 2q 4(1 + m)2

+ 2(m - 1)q 2
+ 1

q =

v22

v11

X2 =

F0

k2

x2(t) = -

F0

k2

 sin vt

k2 = m2v
2

F0 sinωt

F0 sinωt

kx2(t)

FIGURE 6.19
FBD of the primary system
and the auxiliary system
when the absorber is tuned
to the excitation frequency.
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r2
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FIGURE 6.20
(a) Frequency response curve for
primary system with absorber
tuned to frequency of excitation
and 
 � 0.25. (b) Frequency
response of auxiliary system
under same conditions.
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FIGURE 6.21
Natural frequencies of
two degree-of-freedom
system as a function of
the mass ratio 
.
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natural frequency must be passed during start-up and stopping, leading to large-
amplitude vibrations during these transient periods.

• The steady-state vibrations of the primary system are eliminated only at a single
frequency. If the system operates over a wide range of frequencies, the steady-state
amplitudes at frequencies away from the tuned frequency may be large. An effective
operating range should be defined for each application by limiting the amplitude of
vibrations to an acceptable maximum.

• If the absorber is tuned to the excitation frequency and a given mass ratio 
 is not to
be exceeded, the maximum value of the absorber stiffness is

(6.98)

and the minimum steady-state amplitude of the absorber mass is

(6.99)

• The analysis is valid only for undamped systems. If damping is present either in the
primary system or in the absorber, it is not possible to eliminate steady-state vibrations
of the primary system.

X2  min 
=

F0

mm1v
2

k2 max 
= mm1v

2

EXAMPLE 6 . 1 5

A machine of mass 150 kg with a rotating unbalance of 0.5 kg�m is paced at the midspan of
a 2-m-long simply supported beam. The machine operates at a speed of 1200 rpm. The
beam has an elastic modulus of 210 � 109 N/m2 and a cross-sectional moment of inertia
of 2.1�10�6 m4.
(a) What is the steady-state amplitude of the primary system without an absorber?
(b) Design the dynamic vibration absorber of minimum mass such that, when attached to

the midspan of the beam, the vibrations of the beam will cease and the steady-state
amplitude of the absorber will be less than 20 mm.

(c) What are the system’s natural frequencies when the absorber is in place?
(d) What is the effective operating range such that the midspan deflection does not exceed

5 mm when the absorber is in place?

SO LU T I ON
Modeling the vibrations of the machine on the beam using a SDOF system model and
ignoring the mass of the beam, the stiffness and natural frequency of the primary system
are calculated as

(a)

and

(b)

The operating speed is

(c)v = (1200  rpm)a2p rad
rev
b a 1  min

60  s
b = 125.7  rad/s

v11 = A
k1

m1
= A

2.65 * 106
  N/m

150  kg
= 132.9  rad/s

k1 =

48EI
L3 =

48(210 * 109
  N/m2)(2.1 * 10-6

  m4)

(2  m)3 = 2.65 * 106
  N/m
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(a) Since the excitation speed is near the natural frequency of the primary system, it will
have large amplitude vibrations without an absorber. The frequency ratio is

(d)

Steady-state amplitude of the machine is

(e)

(b) Steady-state vibrations of the primary system are eliminated when the absorber is tuned
to the excitation frequency using

(f)

Since the ratio of the absorber stiffness to absorber mass is fixed, the absorber with the
minimum mass is also the absorber with the minimum stiffness. The amplitude of the
absorber is to be limited to 20 mm, which from Equation (6.94) leads to

(g)

The minimum absorber stiffness is 3.95 � 105 N/m, leading to an absorber mass of

(h)

(c) The natural frequencies of the two degree-of-freedom system are calculated from
Equation (6.88) using as

(i)

(d) The effective operating range is obtained by setting F0 � 0.5�2 and using Equation (6.90).
The denominator is negative between the two natural frequencies, and the numerator is
positive for r2 
 1. Take away the absolute value symbol and set X1 � �0.005 m in this
case. Rearrange the equation to

(j)

which (when solved for �) leads to a lower bound on the operating range of 114.8 rad/s.
For r2 � 1, set X1 � 0.005 m, leading to

(k)

and a upper bound on the operating range of 138.5 rad/s. Thus, the effective operating
range is

(l)114.8  rad/s 6 v 6 138.5  rad/s

v4
- 2.79 * 104v2

+ 1.67 * 108
= 0

v4
- 7.63 * 104v2

+ 8.28 * 108
= 0

v1 = 105.8  rad/s  v2 = 157.6  rad/s

m =
25 kg
150 kg = 0.167 

m2 =

k2

v2
22

=

3.95 * 105
  N/m

(125.7  rad/s)2 = 25  kg

X2 =

F0

k2

Q k2 Ú

F0

X2

=

(0.5  kg # m)(125.7  rad/s)2

0.002  m
= 3.95 * 105

  N/m

v22 = A
k2

m2
= 125.7  rad/s

X1 =

m0e

m
¶(0.945, 0) = a0.5  kg # m

150  kg
b (0.945)2

1 - (0.945)2 = 0.285  m

r =

v

v11

=

125.7  rad/s
132.9  rad/s

= 0.945



6.12 DAMPED VIBRATION ABSORBERS
Two problems exist when a vibration absorber is used. The lowest natural frequency of the
two degree-of-freedom system must be passed through in order to build up to the operating
speed. If the absorber is slightly mistuned, the vibration amplitude of the primary system
can be large. Perhaps the addition of damping to the absorber can help with these issues.

Consider the configuration of the system of Figure 6.22 in which viscous damping is
added in parallel with the stiffness in the auxiliary system. This is known as a damped
vibration absorber. The steady-state amplitude of the primary system is given by

(6.100)

The steady-state amplitude of the auxiliary system is

(6.101)

where

(6.102)

is the damping ratio of the auxiliary system if it were grounded. The nondimensional
steady-state amplitude of the primary system, given by Equation (6.100), is illustrated in
Figure 6.23 for 
 � 0.25 and q � 1 for several values of �. The steady-state amplitude of
the primary system is not zero for any value of r1. A minimum amplitude is reached for r1
near one between the peaks. The absorber was successful in significantly reducing the peak
near the second natural frequency, but not very successful in reducing the peak amplitude
near the first natural frequency. An investigation of the parameters affecting the damped
vibration absorber is necessary. It is noted that each curve, for different �, passes through
the same two points. 

M1d is plotted in Figure 6.24 for 
 � 0.25 and q � 0.8. The peak at the lower reso-
nant frequency is smaller than the peak at the higher resonant frequency. However, the
higher peak occurs near r1 � 1, which is the region where an absorber is usually needed.
Also, the effective operating range is still small. It is noted again that there are two fixed
points through which each curve passes. These fixed points are different than those in
Figure 6.23.

Since it is not possible to eliminate steady-state motion of the original system when
damping is present, a damped vibration absorber must be designed to reduce the peak at the
lower resonant frequency and to widen the effective operating range. Absorbers using the
parameters used to generate Figure 6.23 and Figure 6.24 are not suitable for these purposes.

z =

c

22m2k2

= A
q 4

+ (2zq)2

{r 4
1 - [1 + (1 + m)q 2r 2

1] + q 2}2
+ (2zr1q)2[1 - r 2

1(1 + m)]2

k1X2

F0

= M2d (r1, q, m, z)

= A
(2zr1q)2

+ (r 2
1 - q 2)2

{r 41 - [1 + (1 + m)q 2r 2
1] + q 2 }2

+ (2zr1q)2[1 - r 2
1(1 + m)]2

k1X1

F0

= M1d (r1, q, m, z)
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m1

m2

k2 c

k1

2
k1

2

FIGURE 6.22
The auxiliary system of a
damped vibration absorber
consists of a mass attached
to a spring in parallel with a
viscous damper.
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Widening the operating range requires that the two peaks have approximately the
same magnitude. Since the locations of the fixed points are dependent on q, it should be
possible to tune the absorber such that the values of M1d at the fixed points are the same.
Since curves for all values of � pass through the fixed points, it should be possible to find
a value of � such that the fixed points are near the peaks.

For fixed values of 
 and q, there are two values of r1 which yield a value of M1d,
independent of �. The value of M1d at these points is written as

(6.103)

Since Equation (6.103) holds for all � and powers of � are linearly independent,

(6.104)

Using Equation (6.100) to determine the forms of A, B, C, and D, substituting into
Equation (6.104), and rearranging leads to

(6.105)r 4
1a1 +

m

2
b - 31 + q 2(1 + m)4r 2

1 + q 2
= 0

A
C

=

B
D

M1d = A
A(m, q)z2

+ B(m, q)

C (m, q)z2
+ D(m, q)

0
0

2

4

6

8

10

0.5

k 1
X

1/
F

0

1
r1

1.5 2

ζ = 0.1

ζ = 0.15
ζ = 0.2

0
0

2

4

6

0.5

k 1
X

1/
F

0

1
r1

1.5 2

ζ = 0.1
ζ = 0.2
ζ = 0.15

FIGURE 6.23
Response of primary system
when a damped vibration
absorber is used with

 � 0.25 and q � 1 for
several values of �.

FIGURE 6.24
Response of primary system
when an optimum damped
vibration absorber is used
with 
 � 0.25 and q � 0.8.



The solution of Equation (6.105) places the fixed points at

(6.106)

Since Equation (6.103) yields the same value of M1d, independent of � for r1 given by
Equation (6.106), letting gives

(6.107)

Requiring M1d to be the same at both fixed points leads to

(6.108)

An optimum absorber could be designed with an appropriate value of � such that the
smaller r1 given by Equation (6.106) corresponds to both a fixed point and a peak on the
frequency response curve. The appropriate value of � is obtained by setting dM1d /d� � 0,
using q from Equation (6.108). The same procedure can be followed to yield the value of
� such that the larger value of r1 given by Equation (6.106) corresponds to both a fixed
point and a peak. Since the values of � are not equal, their average is usually used to define
the optimum damping ratio

(6.109)

In summary, the optimum design of a damped vibration absorber requires that the
absorber be tuned to the frequency calculated from Equation (6.108) with the damping
ratio of Equation (6.109). For 
 � 0.25, Equation (6.109) gives an optimum damping
ratio of � � 0.2379 and an optimum q � 0.80. Figure 6.25 shows M1d for these values as
a function of r1. This figure also shows M1d for the same 
 and � but with values of q, one
on each side of the optimum. The curve corresponding to the optimum value of q has
smaller resonant peaks and the value of M1d does not vary much between the peaks.

zopt = A
3m

8(1 + m)

q =

1

1 + m

M1d = A
1

31 - r 2
1(1 + m)42
z: q

r1 = D
1 + (1 + m)q 2 � 21 - 2q 2

+ (1 + m)2q 4

2 + m
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F
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r
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q = 0.80
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FIGURE 6.25
Steady-state amplitude
of primary system for

 � 0.25, �opt � 0.2739,
and qopt � 0.80.
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EXAMPLE 6 . 1 6
A milling machine has a mass of 250 kg and a natural frequency of 120 rad/s and is subject
to a harmonic excitation of magnitude 10,000 N at speeds between 95 rad/s and 120 rad/s.
Design a damped vibration absorber of mass 50 kg such that the steady-state amplitude is
no greater than 15 mm at all operating speeds.

SO LU T I ON
The mass ratio is

(a)

Since a wide operating range is required, the optimum absorber design is tried. From
Equations (6.108) and (6.109),

(b)

The steady-state amplitude at any operating speed for this absorber design is calculated by
Equations (6.100) and (6.101). The results are used to generate the frequency response
curve of Figure 6.26. 

The fixed-points are calculated from Equation (6.106) as

(c)

which leads to 
Since the extremes of the operating range lie between the peaks and the steady-state

amplitudes at the extremes are

(d)X (v = 95   rad/s) = 10.1  mm  X (v = 120   rad/s) = 12.7 mm

v = 91.5   rad/s, 125.0   rad/s.

= 0.7629, 1.0414

r1 = D
1 + (1 + 0.2)(0.833)2 � 31 - 2(0.833)2

+ (1 + 0.2)2(0.833)4

2 + 0.2

q =

1
1.2

= 0.833  z = A
3(0.2)

8(1.2)
= 0.25

m =

50   kg

250   kg
= 0.2

FIGURE 6.26
Frequency response for
primary system of
Example 6.16 with
optimum damped absorber
with 
 � 0.25 attached.

2

1

3

4
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0.5

M
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No absorber
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and both are less than 15 mm, the optimum design is acceptable. The absorber stiffness
and damping ratio are calculated as

(e)

(f)c = 2z2k2m2 = 2500 N # s/m

k2 = m2v
2
22 = mq 2k1 = (0.2)(0.833)2(3.6 * 106 N/m) = 5.08 * 105 N/m

6.13 VIBRATION DAMPERS
A vibration damper is an auxiliary system composed of an inertia element and a viscous
damper that is connected to a primary system as a means of vibration control. Vibration
dampers are used in situations where vibration control is required over a range of frequencies.

The Houdaille damper of Figure 6.27 is an example of a vibration damper that is used
for vibration control of rotating devices such as engine crankshafts. The damper is inside a
casing that is attached to the end of the shaft. The casing contains a viscous fluid and a
mass that is free to rotate in the casing. The differential equations governing the motion of
the two degree-of-freedom torsional system are

(6.110)

The steady-state amplitude of the primary system is obtained by the methods of
Section 6.10 as

(6.111)

where (6.112)

The optimum damping ratio is defined as the damping ratio for which the maximum value
of is smallest. The peak amplitude, is the value of where rm is the value
of r that yields The optimum damping ratio is the value of � such that

Extensive algebra leads to

(6.113)zopt =

1

22(m + 1)(m + 2)

d ®1p>dz = 0.
d ®1>dr = 0.

®1(rm)®1p(z)®1

r =

v

A
k
J1

 z =

c

2J2A
k
J1

 m =

J2

J1

®1 =

M0

k A
4z2

+ r 2

4z2(r 2
+ mr 2

- 1)2
+ (r 2

- 1)2r 2

cJ1 0
0 J2

d c u
$

1

u
$

2

d + c c - c
- c c

d c u
#

1

u
#

2

d + ck 0
0 k

d cu1

u2

d = cM0 sinvt
0

d

θ2

J1, kt

Inertia element
rotates in damper.
Damping provided
by fluid.

ct

J2

θ1

FIGURE 6.27
Houdaille damper.
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If the optimum damping ratio is used in the design of a Houdaille damper then

(6.114)

and

(6.115)

6.14 BENCHMARK EXAMPLES

6.14.1 MACHINE ON FLOOR OF INDUSTRIAL PLANT
In Chapter 4, vibration isolation of the machine was considered by ignoring the mass and
flexibility of the beam. They are taken into account using the model of Figure 6.28. The
mass of the beam is lumped at the midspan using the equivalent mass of the beam. The
stiffness of the beam is the stiffness used in the SDOF model. The force transmitted
through the isolator to the beam is k(x2 � x1).

The differential equations governing the two degree-of-freedom system are

(a)

(b)

which are written in matrix form as

(c)

Consider the system with an isolator designed such that the transmitted force is 5000 N.
The stiffness of the isolator is , and the equations become

(d)c31.1 0
0 7.79

d c x
$

1

x
$

2

d + c 3.93 * 104
-3.93 * 104

-3.93 * 104 8.13 * 105 d cx1

x2

d = cF0 sinvt
0

d
3.93 * 104 lbf>ft

c31.1 0
0 7.79

d c x
$

1

x$2

d + c k -k
-k k + 7.74 * 105 d cx1

x2

d = cF0 sin vt
0

d

7.79x$2 - kx1 + (k + 7.74 * 105)x2 = 0

31.1x$1 + kx1 - kx2 = F0 sinvt

®1p =

M0

k
 
2 + m

m

rm = A
2

2 + m

(b)(a)

7.79 kg

31.1 kg

7.74 × 106 N/m

x2

xF0 sin ω t

F0 sin ω t

F0 sin ω t

x2

x1

FIGURE 6.28
(a) Machine attached by iso-
lator to beam. (b) Two
degree-of-freedom model
with inertia of beam
included.
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A normal-mode solution is used to calculate the natural frequencies and mode shapes
resulting in

(e)

which leads to

(f)

For comparison purposes, the natural frequency of the machine on a rigid beam is 35.6 rad/s,
and the natural frequency of the machine mounted directly to the flexible beam is 141.4 rad/s.

Since the force transmitted to the beam is k(x2 � x1), define a new variable z � x2 � x1.
The differential equations written using x1 and z as generalized coordinates become

(g)

The steady-state amplitude of z is determined using the sinusoidal transfer function. To this
end, determine the transfer function Taking the Laplace transform of the two
equations with an arbitrary F (t) in place of F0 sin �t, we have

(h)

Using Cramer’s rule to solve for Z(s), we have

(i)

The transfer function is

(j)

The sinusoidal transfer function G(80i) is

(k)

The magnitude of the sinusoidal transfer function is

(l)|G(80i ) | = 2 -7.24 * 105

5.26 * 105k - 1.4432 * 1011
2

G (80i ) =

- (7.79(80i )2
+ 7.74 * 105)

242.3(80i )4
+ (2.41 * 107

+ 38.8k)(80i )2
+ 7.74 * 105k

G (s) =

- (7.79s2
+ 7.74 * 105)

242.3s4
+ (2.41 * 107

+ 38.8k)s2
+ 7.74 * 105k

=

- (7.79s2
+ 7.74 * 105) F (s)

(31.1s2)(7.79s2
+ 7.74 * 105

+ k) - (-k)(7.79s2
+ 7.74 * 105)

Z(s) =

2 31.1s2 F (s )
7.79s2

+ 7.74 * 105 0
2

2 31.1s2
-k

7.79s2
+ (7.74 * 105) 7.79s2

+ (7.74 * 105) + k
2

c 31.1s2
-k

7.79s2
+ 7.74 * 105 7.79s2

+ 7.74 * 105
+ k
d cX1(s)

Z(s)
d = cF (s )

0
d

G(s) =
z(s)
F(s).

c31.1 0
7.79 7.79

d c x
$

1

z$
d + c 0 -k

7.74 * 105 7.74 * 105
+ k
d cx1

z
d = cF0 sinvt

0
d

v1 = 34.6  rad/s  v2 = 323.9  rad/s

2 -31.1v2
+ 3.93 * 104

-3.93 * 104

-3.93 * 104
-7.79v2

+ 8.13 * 105
2 = 0
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Thus, the amplitude of kz or the amplitude of the force transmitted between the machine
and the beam is so

(m)

Figure 6.29 shows the transmitted force as a function of k. A value of k � 1 � 105 lb/ft
leads to FT � 16,000 lb, which is slightly less than the value of 20,000 lb predicted by the
SDOF system with the rigid beam.

6.14.2 SIMPLIFIED SUSPENSION SYSTEM
The two degree-of-freedom model shown in Figure 6.30(a) is used for the vehicle suspen-
sion system. The “unsprung” mass represents the mass of the axle and wheel, and the addi-
tional stiffness represents the tire. The unsprung mass is 50 kg, which is much less than the
mass of the vehicle, while the stiffness of the tire is 200,000 N/m, which is much greater
than the stiffness of the suspension spring. A quick calculation reveals that lumping the
unsprung and sprung masses together and assuming the two spring are in series, as shown
in Figure 6.30(b), gives a natural frequency of

(a)

The differential equations governing the two degree-of-freedom model (assuming the
sprung mass can vary) is

(b)

(c)50 x$2 - 1200x#1 + 1200x#2 + 12,000x1 - 212,000x2 = 200,000y

ms x$1 + 1200x#1 - 1200x#2 + 12,000x1 - 12,000x2 = 0

vn./ = a

1

1
200,000   N/m

+

1
12,000 N/m

350  kg
= 5.69   rad/s

kZ = 2 1.44 * 1010k
5.26 * 105k - 1.4432 * 1011

2kF0|G(80i )|,

0
0

1

2

3.5

3

2.5

1.5

0.5

5

F
T

m
ax

 (N
)

k (N/m)
10 15

×104

×104 FIGURE 6.29
Amplitude of transmitted
force as function of
absorber stiffness.
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Consider free vibrations of an empty vehicle as ms � 300 kg. The differential equations are
summarized in matrix form as

(d)

The free response is assumed as

(e)

Substituting Equation (e) into Equation (d) leads to

(f)

Evaluation of the determinant leads to

(g)

whose roots are

(h)

The modal fractions are given by

(i)

from which

(j)x1 = 0.0481 � 0.0328i  x2 = -4.56 � 15.43i

x =

300l2
+ 1200l + 12,000

1200l + 12,000

l1,2 = -1.88 � 5.94i,  -12.2 � 63.28i

15,000l4
+ 4.2 * 105l3

+ 6.42 * 107l2
+ 2.40 * 108l + 2.4 * 109

= 0

2 300l2
+ 1200l + 12,000 -1200l - 12,000

-1200l - 12,000 50l2
+ 1200l + 212,000

2 = 0

cx1

x2

d = c 1
x
de lt

+ B 12,000 -12,000
-12,000 212,000

R Bx1

x2

R = B0
0
R

B300 0
0 50

R B x
$

1

x
$

2

R + B 1200 -1200
-1200 1200

R Bx# 1

x# 2

R

x1

x2

(a)

c

m
Mass of
vehicle

Suspension
parameters

Mass of axle

Tire stiffness
and damping

(b)

k5

kx

FIGURE 6.30
(a) Two degree-of-freedom model
of vehicle suspension system. The
mass of the axle is included in the
model. (b) The stiffness of the
wheel is imagined to be in series
with the stiffness of the suspen-
sion system.



Two Degree-of-Freedom Systems 429

The general solution of the differential equations is obtained using Equation (6.21) as

(k)

The initial conditions are assumed as

(l)

Substitution of the initial conditions into the solution yields

(m)

The constants of integration are obtained as A1 � 1.029h, A2 � �0.3579h, A3 � �0.029h
and A4 � 0.0584h. The solution obtained from substitution of the values of the constants
of integration into Equation (k) is

(n)

The time-dependent response of the system is plotted in Figure 6.31.
Now consider the response of the vehicle due to a sinusoidal road contour as

The vehicle travels with a constant horizontal speed v. The differential
equations expressing the motion of the vehicle are

(o)= C 0

200,000y(t ) sin a2pv
d

tb S
cms 0

0 50
d c x

$

1

x$2

d + c 1200 -1200
-1200 1200

d cx
#

1

x#2
d + c 12,000 -12,000

-12,000 212,000
d cx1

x2

d

y(j) = Y  sin (2pj
d ).

+  e -12.2t a c -0.029
   1.0378

d cos 63.28t + c0.0584
0.1942

d sin 63.28tb r
cx1(t)
x2(t)
d = hb e-1.88t a c    1.029

-0.0378
d cos 5.94t + c -0.3579

0.0510
d sin 5.94 t b

D    1    0    1       0
-0.0481 -0.0328     -4.56      15.43
-1.88     5.94   -12.2      63.28
   0.2853 -0.2241 -920.77 -476.81

T DA1

A2

A3

A4

T = Dh
h
0
0

T

x(0) = ch
h
d  and  x# (0) = c0

0
d

+ A4a c 1
-4.56

d sin 63.28t + c 0
-15.43

d cos 63.28tb r
+  e -12.2t bA3a c 1

-4.56
d cos 63.28t - c 0

-15.43
d sin 63.28tb

+ A2a c 1
-0.0481

d sin 5.94t + c 0
-0.0328

d cos 5.94tb r
cx1(t)
x2(t)
d = e -1.88t bA1a c 1

-0.0481
d cos 5.94t - c 0

-0.0328
d sin 5.94tb
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The frequency responses for x1 and x2 are derived using the sinusoidal transfer functions.
The determination for x2(t) is detailed, and the transfer function for x1(t) is simply presented.
Taking the Laplace transform of each of the differential equations with an arbitrary y (t) on
the right-hand side yields

(p)

The transfer function is determined from

(q)

from which the transfer function is calculated as

(r)

The sinusoidal transfer function is

(s)
Defining

(t)

(u)B = (2.4 * 108)v - (1200ms + 60,000)v3

A = 50msv
4

- (212,000ms + 60,000)v2
+ 2.4 * 109

G(iv) =

(12,000 - msv
2) + 1200vi

350msv
4

- (212,000ms + 600,000)v2
+ 2.4 * 1094 + 32.4 * 108v - (1200ms + 60,000)v34i

G(s) =

mss
2

+ 1200s + 12,000

50mss
4

+ (1200ms + 60,000)s3
+ (212,000ms + 600,000)s2

+ 2.4 * 108s + 2.4 * 109

X2(s) =

2mss
2

+ 1200s + 12,000 0
-1200s + 12,000 Y (s)

2
2mss

2
+ 1200s + 12,000 -1200s - 12,000

-1200s - 12,000 50s2
+ 1200s + 212,000

2
G2(s) =

X
2
(s)

Y (s)

cmss
2

+ 1200s + 12,000 -1200s - 12,000
-1200s - 12,000 50s2

+ 1200s + 212,000
d cX1(s)

X2(s)
d = c 0

200,000Y (s )
d
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FIGURE 6.31
Time dependent response
of the vehicle suspension
system when it is subject
to a bump in the road.
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The steady-state amplitude is

(v)
The amplitude for x1(t ) is

(w)X1 = 200,000Y  
2(1200)23(A + vB)2

+ (vA + B)24
A2

+ B2

= 200,000Y 
23(12,000 - msv

2)A - 1200vB42 + 3(12,000 - msv
2)B + 1200vA42

A2
+ B2

X2 = 200,000Y | G (i v) |

0
0
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FIGURE 6.32
(a) Steady-state amplitude
of vehicle and axle versus
vehicle speed for empty
vehicle (ms � 300 kg).
(b) Steady-state amplitude
of vehicle and axle versus
mass for v � 60 m/s.
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Equations (v) and (w) are illustrated in Figure 6.32(a) by plotting the steady-state amplitudes
versus vehicle speed for an empty vehicle (ms � 300 kg) and in Figure 6.32(b) by plotting
steady-state amplitude versus m for v � 60 m/s. The frequency is substituted as 
the vehicle speed is the horizontal axis, d is taken as 10 m, and Y is 0.002 m.

6.15 FURTHER EXAMPLES

v =
2pv

d ,

x1 x2

k 3k 2k
m 2m

(a)

1

1

–0.5

(b)

EXAMPLE 6 . 1 7
Determine the natural frequencies and mode shapes for the two degree-of-freedom system
shown in Figure 6.33.

SO LU T I ON
The differential equations governing the motion of this system are

(a)

Assuming a normal mode solution and substituting into the differential equations
leads to

(b)

A non-trivial solution to Equation (b) exists only if

(c)2 -v2m + 4k -3k
-3k -v22m + 5k

2 = 0

B -v2m + 4k -3k
-3k -v22m + 5k

R B 1
x
R = B0

0
R

x = Xe iv t

Bm 0
0 2m

R B x$1

x$2

R + B 4k -3k
-3k 5k

R Bx1

x2

R = B0
0
R

FIGURE 6.33
(a) System of Example
6.17. (b) Mode shapes
for system.
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Expansion of Equation (c) yields

(d)

which is simplified to

(e)

Dividing Equation (e) by m2 and letting leads to

(f)

The quadratic formula is used to determine the roots of the quadratic equation as �2 � �,
�5.5�, which leads to

(g)

The mode shapes vectors are the solutions of Equation (b) for each value of � as given in
Equation (f ). For �1, the equations become

(h)

The first of the equations in Equation (g) gives

(i)

Dividing Equation (h) by m and rearranging leads to . The second equation only
confirms the first equation and yields no new information. Thus, the mode shape vector
corresponding to the first mode is any vector proportional to

(j)

The second mode shape vector is determined by substituting �2 in Equation (b), leading to

(k)

The first equation represented by Equation (j) is divided by m and rearranged to 
The second mode shape vector is any vector proportional to

(l)

The mode shape vectors are illustrated graphically in Figure 6.33(b). There is a node for
the second mode located in the spring.

X2 = B 1
-0.5

R
x = -

1
2.

B -5.5fm + 4k -3k
-3k - (5.5f)2m + 5k

R B 1
x
R = B0

0
R

X1 = c1
1
d

x = 1

(-fm + 4k) - 3kx = 0

B -fm + 4k -3k
-3k -f2m + 5k

R B 1
x
R = B0

0
R

v1 = A
k
m
  v2 = 2.35A

k
m

2v4
- 13fv2

+ 11f2
= 0

f =
k
m

2m2v4
- 13kmv2

+ 11k 2
= 0

(-v2m + 4k)(-v22m + 5k) - (-3k)(-3k) = 0
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1 N/m
3 N/m 2 N/m

1 N · s/m 1 N · s/m

2sin2t
x1

x2

1 kg
2 kg

EXAMPLE 6 . 1 8
The two degree-of-freedom system shown in Figure 6.34 is subject to the periodic force
shown. Determine the steady-state response of the system.

SO LU T I ON
The differential equations of motion are

(a)

A solution to the differential equations is assumed as

(b)

Substituting Equation (b) into Equation (a) leads to

(c)

which is rearranged to

(d)

Equating coefficients of sin 2t and cos 2t, four equations for four unknowns are obtained

(e)D 0 -3 1 -1
-3 -3 -1 2
-1 1 0 -3
1 -2 -3 -3

T DU1

U2

V1

V2

T = D0
0
0
2

T
= c0

2
d  sin 2t

+ a c -1 1
1 -2

d cU1

U2

d + c 0 -3
-3 -3

d cV1

V2

d b sin 2t

a c 0 -3
-3 -3

d cU1

U2

d + c 1 -1
-1 2

d cV1

V2

d b cos 2t

+ B 4 -3
-3 5

R BU1

U2

R cos(2t ) + B 4 -3
-3 5

R BV1

V2

R sin(2t ) = B 0
2 sin2t

R
+ B -1 1

1 -2
R BU1

U2

R sin(2t ) + B 1 -1
-1 2

R BV1

V2

R cos(2t )

B -4 0
0 -8

R BU1

U2

R cos(2t ) + B -4 0
0 -8

R BV1

V2

R sin(2t )

Bx1(t)
x2(t)
R = BU1

U2

R cos(2t ) + BV1

V2

R sin(2t )

B1 0

0 2
R B x$1

x$2

R + B 1 -1

-1 2
R Bx# 1

x# 2

R + B 4 -3

-3 5
R Bx1

x2

R = B 0

2 sin 2t
R

FIGURE 6.34
System of Example 6.18.
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The solution to Equation (e) is U1 � 0.188, U2 � �0.110, V1 � �0.431, and V2 � �0.094.
Thus,

(f)

The steady-state responses can be converted to a form with an amplitude and a phase by
use of a trigonometric identity which leads to

(g)

(h)x2(t) = 0.149 sin(2t - 2.31)

x1(t) = 0.470 sin(2t + 2.70)

cx1(t)
x2(t)
d = c 0.188

-0.110
d  cos(2t ) + c -0.431

-0.094
d  sin(2t )

EXAMPLE 6 . 1 9
A two-story frame structure, shown in Figure 6.35(a), can be modeled as the two degree-
of-freedom system shown in Figure 6.35(b). The second story of the structure is subject
to an explosion that leads to a force of the form of Figure 6.35(c). What is the maximum
displacement of each story due to the explosion?

SO LU T I ON
The differential equations modeling the vibrations of each floor due to an explosion on
the second floor are

(a)

(b)mx$2 - kx1 + kx2 = F (t)

mx$1 + 2kx1 - kx2 = 0

k
2

k
2

k
2

k
2

x2

x1m

m

(a)

(b)

(c)

k
m

k
m

F0

t0

0
–6

–4

–2

0

2

4

6

8

10

0.03 0.04 0.05 0.060.01 0.02

x 
(m

)

0.07 0.08 0.09
t (s)

(d)

0.1

x1

x2

×10–3

FIGURE 6.35
(a) Two-story frame structure of Example 6.19. (b) Two degree-of-freedom model of frame structure.
(c) Force applied to second floor of structure. (d) Response of structure.
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Taking the Laplace transform of both equations and summarizing the results in matrix
form lead to

(c)

The transfer functions due to a force applied to the second story are obtained from

(d)

(e)

The impulsive responses are the inverses of the transfer functions, given here as

(f)=

0.447
m
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0.618A
k
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F (s)
d



Two Degree-of-Freedom Systems 437

(g)

The forced response is the convolution integral of the impulsive response and the forcing
function, given as

(h)

Table 5.1 can help with the convolution integral evaluation. Use the delayed ramp function with
A � �1/t0, B � 1, and t0 equal to either 0 or t0 to evaluate an integral. The result for x1(t) is

(i)+  1

2.618 
k
m

 D t - t0 -

1

1.618A
k
m

 sin ¢1.618A
k
m

(t - t0)≤ Ru(t - t0) t
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m

 D t - t0 + t0 cos ¢1.618A
k
m
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(t - t)R tdt
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The solution for x2(t) is

(j)

Using the same method to evaluate the convolution integral for x2(t), we have

(k)

Equations (j) and (k) are plotted in Figure 6.35(d) for m � 1000 kg, k � 1 � 106 N/m,
t0 � 0.05 s and F0 � 50,000 N.
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m
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EXAMPLE 6 . 2 0
A large machine has a mass of 200 kg and is mounted on an undamped elastic foundation
of stiffness 2.5 � 106 N/m as shown in Figure 6.36(a). During operation at 110 r/s, the
machine is subject to a harmonic force of magnitude 2200 N. 

(a) Determine the steady-state amplitude of the machine as it operates. 
(b) Determine the required stiffness of an undamped vibration absorber of mass 20 kg

such that steady-state vibrations of the machine are eliminated during operation. 
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(c) Determine the amplitude of the absorber mass when the vibration absorber of part (b)
is used. 

(d) What are the natural frequencies of the resulting two degree-of-freedom system?
(e) When this absorber is used, what is the frequency range such that the machine’s steady-

state amplitude is less than 1.2 mm?

SO LU T I ON
(a) The natural frequency of the machine mounted on the elastic foundation is

(a)

The frequency ratio is

(b)

The steady-state amplitude of the machine is

(c)X =

F0

mv2
n

M(0.984, 0) =

2200   N

2.5 * 106
  

 N/m
 1
1 - (0.984)2 = 2.75   cm

r =

v

vn

=

110   rad/s
111.8   rad/s

= 0.984

vn = A
k
m

= A
2.5 * 106

  

 N/m
200 kg

= 111.8   rad/s

keq = 2.5 × 106 N/m

keq = 2.5 × 106 N/m

200 kg

200 kg

20 kg

2200 sin(110t)

(a)

(b)

0

1

2

3

4

4.5

3.5

2.5

1.5

0.5

10050

x 1
(m

)

150 200
ω (rad/s)

(c)

×10–3

FIGURE 6.36
(a) Machine is mounted on an elastic foundation at an excitation frequency of 110 rad/s. (b) Vibration
absorber of mass 20 kg is designed to eliminate steady-state vibrations of the machine. (c) Frequency
response of machine with absorber in place.
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(b) To eliminate steady-state vibrations at the excitation speed, the absorber is tuned to
the excitation speed

(d)

Thus

(e)

(c) The steady-state amplitude of the absorber when the system operates at the frequency
to which the absorber is tuned is

(f)

The absorber attached to the machine is illustrated in Figure 6.36(b).
(d) The ratio of the absorber mass to the mass of the machine is  � (20 kg)/(200 kg) � 0.1.

The ratio of the tuned frequency to the natural frequency of the machine is the same as
the original frequency ratio q � 0.984. Natural frequencies of the two degree-of-freedom
system with the absorber in place are

(g)

(e) Let � be a varying frequency. Define and . The frequency
response of the machine is given by

(h)

The values of � for which the steady-state amplitude of the machine is less 1.2 mm are
obtained by setting X1 
 0.0012 m in Equation (h) and solving for �. There are two values
of � which satisfy X1 
 0.0012 m: one value less than �22 and one value greater than �22. In
performing the calculations, note that the numerator is positive for � 
 �22 and negative for
� � �22, but the denominator is always positive in the operating range. The equation can be
rearranged into a quadratic equation in �2, resulting in an operating range of

(i)
The frequency response of the pump is illustrated in Figure 6.36(c).

104.3 rad/s 6 v 6 117.0 rad/s

=

2200   N

2.5 * 106
  

 N/m
4 1 - a v

110   rad/s
b2

a v

111.8 rad/s
b2a v

110  rad/s
b2

- a v

110  rad/s
b2

- (1+ 0.1)a v
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b2
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4
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2

r 2
1r
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1 + 1
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r
s

22
 31 + (0.984)2 (1 + 0.1) � 2(0.984)4(1 + 0.1)2

+ 2(0.1 - 1)(0.984)2
+ 1

v1,2 =

v11

22
31 + q 2(1 + m) � 2q 4(1 + m2) + 2(m - 1)q 2

+ 1

X2 =

F0

k2

=

2200 N

2.42 * 105
  

 N/m
= 9.1 mm

k2 = m2v
2

= (20   kg)(110   rad/s)2
= 2.42 * 105 N/m

v22 = A
k2

m2

= v
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EXAMPLE 6 . 2 1
It is decided to place a damped vibration absorber on the machine of Example 6.21. In
addition to changing the frequency-response curve of the primary system, it can serve as an
energy harvester (see Section 4.15). Assume that an optimal damped vibration absorber of
mass 20 kg is used. What is the average power harvested by the absorber over one cycle?

SO LU T I ON
The mass ratio of the absorber is The optimum damping ratio of the
absorber is

(a)

The absorber is tuned such that

(b)

or

(c)

The average power harvested by the absorber is

(d)

where Z is the amplitude of the relative displacement between the absorber and the
primary system. If x1(t) � X1 sin (�t � �1) and x2(t) � X2 sin(�t � �2), then

(e)

where

(f)

Defining

(g)

and

(h)

analysis of the two degree-of-freedom system gives

(i)

(j)f1 =  tan -1 c 2zr2M - (1 - r 2
2)N

(1 - r 2
2)q

2mM + 2zNr22m
d = -1.784

X1 =

F0

k1 B
(2zr1q)2

+ (r 2
1 - q 2)2

{r 4
1 - [1 + (1 + m)q 2r 2

1] + q 2}2
+ (2zr1q)2[1 - r 2

1(1 + m)]2
= 0.0057  m

N = 2zr1q31 - r 2
1(1 + m)4

M = r 4
1 - 31 + (1 + m)q 2r 2

14 + q 2

Z = 2X 2
1 - 2X1X2 sin (f1 + f2) + X 2

2

z(t) = X2 sin(vt - f2) - X1 sin(vt - f1) = Z sin(vt - f3)

P =

cv2Z 2

2
= zm2v22

4 r 2
2Z 2

v22 = 0.909v11 = 0.909(110 rad/s) = 100.0   rad/s

q =

1

1 + m
= 0.909

zopt = A
3m

8(1 + m)
= A

3(0.1)

8(1.1)
= 0.184

m =

m2
m1

= 0.1.
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(k)

(l)

The value of Z using Equation (f ) is Z � 0.0039 m. Thus, from Equation (d), the average
power harvested over one cycle is

(m)P = (0.184)(10   kg)(100   rad/s)4(0.909)2(0.0039   m)2
= 4.64   kW

f2 =  tan -1 cM - 2zr2N

2zr2M + N
 d = -2.278

X2 =

F0

k1A
q 4

+ (2zq)2

{r 4
1 - [1 + (1 + m)q 2r 2

1] + q 2}2
+ (2zr1q)2[1 - r 2

1(1 + m)]2
= 0.0027 m

6.16 CHAPTER SUMMARY

6.16.1 IMPORTANT CONCEPTS
• Two degree-of-freedom systems are governed by two coupled differential equations.
• FBD method is used to derive differential equation governing the motion of two

degree-of-freedom systems.
• A normal mode solution in which synchronous motion occurs is assumed for the free

response of undamped systems.
• The natural frequencies are obtained by solution of a fourth-order algebraic equation

for � with only even powers of �.
• The modal fraction for each mode is the second element of the mode shape vector

when the first element is set equal to one.
• The mode shape vectors can be illustrated graphically.
• A node is a point of zero displacement for a mode.
• The general free response is a linear combination of the modes. The constants in the

linear combination are determined from application of the initial conditions.
• An exponential solution is assumed for the free response of system with viscous

damping. The exponents are obtained by solving a fourth order algebraic equation
with odd powers.

• Every undamped system has a set of principal coordinates which when the differential
equations are written in terms of the principal coordinates they are uncoupled.

• The harmonic response of two degree-of-freedom systems is obtained by the method
of undetermined coefficients or use of the sinusoidal transfer function.

• A transfer function matrix can be defined when its elements are Gi, j(s) where Gi, j(s) is
the transform of the response at xi due to a unit impulse applied at x j.

• A convolution integral solution provides the response of the system due to any forc-
ing function.

• The frequency response is the variation of steady-state amplitude with frequency.
• A vibration absorber, when tuned to the excitation frequency, can be used to eliminate

steady-state vibrations of the primary system.
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• The vibration absorber works by changing a SDOF system to a two degree-of-freedom
system. The natural frequencies of the resulting two degree-of-freedom system are
away from the excitation frequency.

• Damped absorbers are designed to reduce the amplitude during start-up and to widen
the operating range of the absorber.

6.16.2 IMPORTANT EQUATIONS
Matrix formulation of differential equations

(6.1)
Normal mode solution

(6.3)

Determination of natural frequencies for undamped system

(6.8)

Modal fraction

(6.11)

Free response of an undamped system

(6.13)

(6.16)

Solution for system with viscous damping

(6.18)

Determination of free response for damped system

(6.20)

Differential equations for the principal coordinates

(6.24)

(6.25)

Steady-state vibrations of an undamped system due to single frequency excitation

(6.38)

Steady-state response for system with viscous damping due to single frequency excitation

(6.45)

(6.46)x 2 = u2sin(vt) + v2cos(vt)

x1 = u1sin(vt) + v1cos(vt)

x = U sin(vt)

p$2 + v2
2 p2 = 0

p
$

1 + v2
1p1 = 0

 det(l2MX + lCX + KX ) = 0

cx1(t)
x2(t)
d = c 1

x
de lt

x(t) = A1X1 sin (v1t + f1) + A2X2 sin(v2t + f2)

x (t) = 3C1 cos(v1t) + C2 sin(v1t)4X1 + 3C3 cos(v2t ) + C4 sin(v2t )4X2

x2 =

-v2m1,1 - k1,1

-v2m1,2 + k1,2

 det(-v2M + K) = 0

cx1

x2

d = Xe iv t

Mx$ + Cx# + Kx = F
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Steady-state amplitudes and phases

(6.47)

(6.48)

(6.49)

(6.50)

Convolution integral solution for xi due to a force applied at xj

(6.53)

Forced response of system

(6.65)

Frequency response for primary system when vibration absorber is used

(6.90)

Tuning of absorber

(6.92)

Steady-state amplitude of tuned absorber

(6.94)

Optimally damped absorber

(6.108)

(6.109)

PROBLEMS

SHORT ANSWER PROBLEMS
For Problems 6.1 through 6.15 indicate whether the statement presented is true or false. If
true, state why. If false, rewrite the statement to make it true.

6.1 A two degree-of-freedom system has two natural frequencies.
6.2 The natural frequencies are determined by setting | �2K � M | � 0.
6.3 The natural frequencies of a two degree-of-freedom system depend upon the choice

of generalized coordinates used to model the system.

zopt = A
3m

8(1 + m)

q =

1
1 + m

X2 =

F0

k2

k2 = m2v
2

k1X1

F0

= 2 1 - r 2
2

r 2
1r

2
2 - r 2

2 - (1 + m)r 2
1 + 1

2
x(t) = F0|G(iv) | sin(vt + f)

x i (t) =

L

t

0
Fj(t)hi,j (t - t)dt

fi =  tan -1a vi

ui
b

Xi = 2u2
i + v 2

i

x2 = X2 sin(vt - f2)

x1 = X1 sin(vt - f1)
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6.4 The natural frequencies for an undamped two-degree-of-freedom system are
determined by solving for the roots of a fourth-order polynomial that only has
even powers of the frequency.

6.5 The modal fraction represents the damping of each mode.
6.6 The principal coordinates are the generalized coordinates for which the mass

matrix and the stiffness matrix are symmetric matrices.
6.7 The free response of a damped two degree-of-freedom system has two modes of

vibration, both of which are underdamped.
6.8 A displacement of a node for a mode of a two degree-of-freedom system can

serve as a principal coordinate.
6.9 The modal fractions for a two degree-of-freedom system depend upon the

choice of generalized coordinates used to model the system.
6.10 The sinusoidal transfer function can be used to determine the steady-state

response of a two degree-of-freedom system.
6.11 Addition of an undamped vibration absorber transforms a SDOF system into a

system with two degrees of freedom.
6.12 The undamped vibration absorber is tuned to the natural frequency of the

primary system to eliminate steady-state vibrations of the absorber.
6.13 An optimally tuned damped vibration absorber is tuned such that only the

amplitude of vibration during start-up is minimized.
6.14 Addition of a dynamic vibration absorber to a damped primary system will

eliminate the steady-state vibrations of the primary system if the absorber is
tuned to the excitation frequency.

6.15 A Houdaille damper is used for vibration control in engine crankshafts.

Problems 6.16 through 6.37 require a short answer.

6.16 Draw a FBD of the block whose displacement is x1 of Figure SP6.16 at an
arbitrary instant of time, appropriately labeling the forces.

6.17 Draw a FBD of the block whose displacement is x2 of Figure SP6.17 at an
arbitrary instant of time, appropriately labeling the forces.

k1 k2 k3

x1 x2

m1 m2

FIGURE SP6.16 FIGURE SP6.17

k

c

c

x1 x2

m m

6.18 What is the normal-mode solution and how is it used?
6.19 Discuss the difference in the assumed solution for free vibrations of an

undamped two degree-of-freedom system and one with viscous damping.
6.20 What does a real solution of the fourth-order equation for a system with viscous

damping to solve for � mean regarding the mode of vibration?
6.21 What does a complex solution of the fourth-order equation for a system with

viscous damping to solve for � mean regarding the mode of vibration?
6.22 What is the meaning of the transfer function G1,2(s)?
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6.23 Define the sinusoidal transfer function.
6.24 Write the differential equations for the principal coordinates of free undamped

vibrations of a two degree-of-freedom system with natural frequencies �1 and �2.
6.25 A two degree-of-freedom system has a mode with a modal fraction equal to

zero. What does this imply?
6.26 A two degree-of-freedom system has a mode with a modal fraction equal to one.

What does this imply?
6.27 How many nodes are there for the mode corresponding to the lowest natural

frequency of a two degree-of-freedom system?
6.28 If the differential equations governing a two degree-of-freedom system are

uncoupled when a certain set of generalized coordinates are used, the
coordinates must be ___________ coordinates of the system.

6.29 The general form of the transfer function is

The transfer functions G1,1(s) and G2,1(s), defined for a two degree-of-freedom
system, have which in common (choose one)? 

(a) The numerator N(s) 
(b) The denominator D(s)
(c) Neither the numerator or the denominator 
(d) Both the numerator and the denominator

6.30 State the convolution integral solution for the forced response of the generalized
coordinate x1(t) when due to a force F(t) applied at the location where the
second generalized coordinate x2(t) is defined.

6.31 How are the amplitudes and phases determined for free vibrations of a two
degree-of-freedom system?

6.32 How is G(i�) resolved into polar coordinates?
6.33 What is the vibration amplitude of the primary system when a dynamic

vibration absorber tuned to the excitation frequency is added to the system?
6.34 How does a dynamic vibration absorber work?
6.35 When is a vibration damper used?
6.36 What two problems does the addition of damping address when added to a

vibration absorber?
6.37 How is the optimum damping ratio of a Houdaille damper defined?

Problems 6.38 through 6.47 require short calculations.

6.38 The equation

is an equation developed to determine the natural frequencies of a system. Solve
the equation to determine the natural frequencies.

6.39 The equations for the natural frequencies and mode shape vectors of a two
degree-of-freedom system are

c -v2
+ 3 -2

-2 -v2
+ 2
d c 1
x
d = c0

0
d

6v4
- 27v2

+ 21 = 0

G (s ) =

N (s )

D (s )
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(a) Define a system that would yield this equation.
(b) Calculate the natural frequencies of the system.
(c) Calculate the mode shape corresponding to the lower natural frequency.
(d) Draw a diagram illustrating the mode shape vector.

6.40 A two degree-of-freedom system has a modal fraction for one of its mode shapes
of �1. (a) Draw the mode shape diagram corresponding to that mode. (b) Does
the mode shape correspond to the lower or higher natural frequency?

6.41 The transfer function for one generalized coordinate of a two degree-of-freedom
system is

(a) Calculate G (3i ).
(b) What are the natural frequencies of the system?
(c) If this system were excited by a force equal to 5 sin3t, what is the 

steady-state response of the generalized coordinate?
6.42 The transfer function for a generalized coordinate, x1, of a two degree-of-

freedom system, due to a force at the other generalized coordinate, x2, is

If x2 is subject to a force 2.5 sin 4t, what is the steady-state response of x1?
6.43 A machine vibrates at a frequency ratio of 1.05. A vibration absorber tuned to

the excitation frequency is added to the machine. What is the value of (a) r2,
(b) r1, (c) q?

6.44 If the mass ratio of the absorber of Short Problem 6.43 is 0.2 and the natural
frequency of the primary system is 100 rad/s, what are the natural frequencies
with the absorber in place?

6.45 A machine is excited at a frequency of 30 Hz by a force with an amplitude of
200 N. It is desired to eliminate steady-state vibrations of the machine by
addition of a vibration absorber.
(a) What frequency should the absorber be tuned?
(b) If the mass of the absorber is 3 kg, what is the stiffness of the absorber?
(c) When the machine is excited at 30 Hz, what is the amplitude of vibration

of the absorber?
(d) What is the frequency of the absorber vibrations?

6.46 An optimally damped vibration absorber is being designed for a primary system
of natural frequency 100 rad/s. The mass of the machine is 50 kg and the mass
of the absorber is to be 10 kg.
(a) What is the natural frequency of the absorber?
(b) What damping ratio is to be used for the absorber?

6.47 An optimally designed Houdaille damper is to be used to absorb the vibrations of
a rotational system. The moment of inertia of the primary system is 0.1 kg � m2 and
the moment of inertia of the damper is to be is 0.01 kg � m2.
(a) What is the optimum damping ratio?
(b) What is the steady-state amplitude of the primary system if ?M0

k = 0.002

G (s ) =

1

s 4
+ 2s 3

+ 4s 2
+ 10s + 25

G (s ) =

1

s 4
+ 3s 2

+ 2
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CHAPTER PROBLEMS

6.1 Derive the differential equation governing the two degree-of-freedom system
shown in Figure P6.1 using x1 and x2 as generalized coordinates.

k k 2k

x1 x2

m 2m

FIGURE P6.1

k

k

m

L
2

L
2

x

Slender bar of
mass m

M0 sinω t

θ

6.2 Derive the differential equation governing the two degree-of-freedom system
shown in Figure P6.2 using x and � as generalized coordinates.

6.3 Derive the differential equations governing the two degree-of-freedom system
shown in Figure P6.3 using �1 and �2 as generalized coordinates.

FIGURE P6.2

6.4 Derive the differential equations governing the two degree-of-freedom system
shown in Figure P6.4 using �1 and �2 as generalized coordinates.

2r
r

k
θ2

θ1

r
I2
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FIGURE P6.3
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FIGURE P6.4
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6.5 A two degree-of-freedom model of an airfoil shown in Figure P6.5 is used for
flutter analysis. Derive the governing differential equations using h and � as
generalized coordinates.

k
θ

e

h

G

kt

k

c

2k

2c

x1 x2

m2m F0 sinωt

FIGURE P6.5

FIGURE P6.6

6.6 Derive the differential equations governing the damped two degree-of-freedom
system shown in Figure P6.6 using x1 and x2 as generalized coordinates.

6.7 Derive the differential equations governing the damped two degree-of-freedom
system shown in Figure P6.7 using x1 and x2 as generalized coordinates.

6.8 A two degree-of-freedom model of a machine tool is illustrated in Figure P6.8.
Using x1 and x2 as generalized coordinates, derive the differential equations
governing the motion of the system.
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FIGURE P6.7

G

xm, I

b a

k
c

k
c

x2 x1

θ

FIGURE P6.8
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6.9 Derive the differential equation of the two degree-of-freedom model of the
machine tool of Chapter Problem 6.8 using x and � as generalized coordinates.

6.10 Determine the natural frequencies of the system of Figure P6.1 if m � 10 kg
and k � 1 � 105 N/m. Determine and graphically illustrate the mode shapes.
Identify any nodes.

6.11 Determine the natural frequencies of the system of Figure P6.2 if m � 2 kg, 
L � 1 m and k � 1000 N/m. Determine the modal fractions for each mode.

6.12 Determine the natural frequencies of the system of Figure P6.3 if m � 30 g, 
I1 � 8 � 10�6 kg � m2, I2 � 2 � 10�5 kg � m2, r � 5 mm, and k � 10 N/m.
Determine the modal fraction for each mode.

6.13 Determine the natural frequencies of the system of Figure P6.4 if I1 � 0.3 kg � m2,
I2 � 0.4 kg � m2, J1 � J2 � 1.6 � 10�8 m4, G1 � G2 � 80 � 109 N/m2, and
L � 30 cm. Determine the modal fractions for each mode. Identify any nodes.

6.14 An overhead crane is modeled as a two degree-of-freedom system as shown in
Figure P6.14. The crane is modeled as a mass of 1000 kg on a steel (E � 200 �
109 N/m2) fixed-fixed beam with a moment of inertia of 4.2 � 10�3 m4 and
length of 12 m. The crane has an elastic steel rope of diameter 20 cm. At a
specific instant, the length of the rope is 10 m and is carrying a 300 kg load.
What are the two natural frequencies of the system?

6.15 A seismometer of mass 30 g and stiffness 40 N/m is used to measure the
vibrations of a SDOF system of mass 60 g and natural frequency 150 rad/s. 
It is feared that the mass of the seismometer may affect the vibrations that are
to be measured. Check this out by calculating the natural frequencies of the 
two degree-of-freedom system with the seismometer attached.

6.16 Calculate the natural frequencies and modal fractions for the system of 
Figure P6.16.

12 m

1000 kg

300 kg

Steel wire
E = 200 × 109 N/m2

d = 20 cm

Steel beam
E = 200 × 109 N/m2

I = 4.2 × 10–3 m4

FIGURE P6.14

1000 N/m 1000 N/m

2000 N/m2000 N/m

4 kg

3 kg

FIGURE P6.16

6.17 Determine the forced response to the system of Figure P6.1 and Chapter Problems
6.1 and 6.10 if the left-hand mass is given an initial displacement of 0.001 m while
the right-hand mass is held in equilibrium and the system is released from rest.

6.18 Determine the response of the system of Figure P6.2 and Chapter Problems 6.2
and 6.11 if the particle is given an initial velocity of 2 m/s when the system is
in equilibrium.
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6.19 Determine the response of the system of Figure P6.4 and Chapter Problems 6.4
and 6.13 if the right-hand disk is given an angular displacement of 2° clockwise
from equilibrium and the left-hand disk is given an angular displacement of 2°
counterclockwise.

6.20 Determine the response of the system of Chapter Problem 6.14 if the crane is
disturbed resulting in an initial velocity of 10 m/s downward.

6.21 Determine the output from the seismometer of Chapter Problem 6.15 if the 
60 g mass is given an initial velocity of 15 m/s. Use a two degree-of-
freedom system, remembering that the seismometer records the relative
displacement between the seismic mass and the body whose vibrations are 
to be measured.

6.22 Determine the free response of the system of Figure P6.6 if the left-hand mass is
given an initial displacement of 0.001 m while the right-hand mass is held in
equilibrium and the system is released from rest. Use m � 1 kg, k � 10,000 N/m,
and c � 100 N � s/m.

6.23 Determine the response of the system of Figure P6.7 if the lower mass is given 
a displacement from equilibrium of 0.004 m and the upper mass is held in its
equilibrium position and the system is released. Use m � 5 kg, k � 4000 N/m,
and c � 30 N � s/m.

6.24 Determine the free response of the system of Figure P6.8 if the machine tool has
initial velocities of and . if I � 0.03 kg � m2,
c � 100 N � s/m, m � 3 kg, a � 0.3 m, b � 0.4 m and k � 3000 N/m.

6.25 Determine the principal coordinates for the system of Figure P6.1 and Chapter
Problem 6.10. Write the differential equations which the principal coordinates
satisfy.

6.26 Determine the principal coordinates for the system of Figure P6.2 and Chapter
Problem 6.11. Write the differential equations which the principal coordinates
satisfy.

6.27 Determine the principal coordinates for the system of Figure P6.3 and Chapter
Problem 6.12. Write the differential equations which the principal coordinates
satisfy.

6.28 Determine the principal coordinates for the system of Figure P6.4 and Chapter
Problem 6.13. Write the differential equations which the principal coordinates
satisfy.

6.29 Determine the principal coordinates for the system of Figure P6.8 if it had no
damping. Write the differential equations which the principal coordinates satisfy.
Use I � 0.03 kg � m2, m � 3 kg, a � 0.03 m, b � 0.3 m and k � 3000 N/m.

6.30 Determine the principal coordinates for the system of Chapter Problem 6.9.
Write the differential equations which the principal coordinates satisfy. 
if I � 0.03 kg � m2, c � 0 N � s/m, m � 3 kg, a � 0.3 m, b � 0.4 m 
and k � 3000 N/m.

6.31 Determine the response of the system of Figure P6.1 and Chapter Problem 6.10
due to a sinusoidal force 200 sin110t N applied to the block whose
displacement is x1 using the method of undetermined coefficients.

6.32 Determine the response of the system of Figure P6.1 and Chapter Problem 6.10
due to a sinusoidal force 200 sin 80t applied to the block whose displacement is
x2 using the Laplace transform method.

(0) =  5 rad/su
#

x# (0) = 0.8 m/s
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6.33 Determine the response of the system of Figure P6.2 and Chapter Problem 6.11
due to a sinusoidal force 100 sin 70t N applied to the particle using the method
of undetermined coefficients.

6.34 Determine the response of the system of Figure P6.2 and Chapter Problem 6.11
due to a sinusoidal moment 50 sin 90t N � m applied to the bar using the
method of undetermined coefficients.

6.35 Determine the response of the system of Figure P6.1 and Chapter Problem 6.10
due to (a) a unit impulse applied to the block whose displacement is x1, and 
(b) a unit impulse applied to the block whose displacement is x2.

6.36 Determine the response of the system of Figure P6.1 and Chapter Problem 6.10
due to the force of Figure P6.36 applied to the block whose displacement is x1.

F(N)

100

0.01 0.02
t (s)

FIGURE P6.36

6.37 Determine the response of the system of Figure P6.2 and Chapter Problem 6.11
due to a unit impulse applied to the particle.

6.38 Determine the response of the system of Figure P6.2 and Chapter Problem 6.11
due to a unit impulsive moment applied to the bar.

6.39 Derive the response of the system of Figure P6.2 and Chapter Problem 6.11
due to the force of Figure P6.39 applied downward to the end of the bar.

F(N)

t (s)

200

–100
0.3 0.5

FIGURE P6.39

6.40 Derive the response of the system of Figure P6.2 and Chapter Problem 6.11
due to a moment M(t) � 10e�2t N � m applied to the bar.

6.41 Determine the response of the system of Figure P6.6 due to a force 
F(t) � 20 sin20t N applied to the block whose displacement is x2 using 
the method of undetermined coefficients. Use m � 10 kg, k � 90,000 N/m, 
and c � 100 N � s/m.

6.42 Determine the response of the system of Figure 6.7 due to a force F(t) �
40 sin60t N applied to the block whose displacement is x1 using the method 
of undetermined coefficients. Use m � 20 kg, k � 200,000 N/m, and 
c � 400 N � s/m.
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6.43 Determine the response of the system of Figure P6.8 due to a unit impulse
applied at the mass center. Use m � 100 kg, I � 4.5 kg � m2, k � 200,000 N/m,
c � 500 N � s/m, b � 2 m, and a � 1 m.

6.44 Determine the response of the system of Figure P6.8 and Chapter Problem 6.43
to a unit impulse applied t to the right end or the machine tool using x and � as
generalized coordinates.

6.45 Determine the response of the system of Figure P6.8 and Chapter Problem 6.43 to
the force shown in Figure P6.45 applied at the right end of the machine tool.

F(N)

t (s)

100

0.05 0.10

FIGURE P6.45

6.46 A schematic of part of a power transmission system is shown in Figure P6.46. A
motor of moment of inertia I � 100 kg � m2 is mounted on a shaft of shear
modulus G � 80 � 109 N/m2, polar moment of inertia J � 2.3 � 10�4 m4, and
length 10 cm. Gear A, of moment of inertia 50 kg � m2 with 40 teeth is at the
end of the shaft which meshes with a gear, gear B, of moment of inertia 
25 kg � m2 with 20 teeth. Gear B is on a shaft of elastic modulus G � 80 �
109 N/m2, polar moment of inertia J � 1.2 � 10�5 m4, and length 60 cm. 
At the end of the shaft is a large industrial fan of moment of inertia 300 kg � m2.
Determine the natural frequencies of the system and the modal fractions.

6.47 Determine the natural frequencies and modal fractions for the two degree-of-
freedom system of Figure P6.47.

Gear A
40 teeth

Motor

Fan
Gear B

20 teeth

k

2k
2r

r

2m

m

FIGURE P6.46 FIGURE P6.47

6.48 Determine the frequency response of the system of Figure P6.1 and Chapter
Problem 6.10 due to a sinusoidal force F0 sin �t applied to the block whose
displacement is x1.

6.49 Determine the frequency response of the system of Figure P6.1 and Chapter
Problem 6.10 due to a sinusoidal force F0 sin �t applied to the block whose
displacement is x2.



454 CHAPTER 6

6.50 Determine the frequency response of the system of Figure P6.2 and Chapter
Problem 6.11 due to a sinusoidal force F0 sin �t applied to the particle.

6.51 Determine the frequency response of the system of Figure P6.7 and Chapter
Problem 6.42 due to a sinusoidal force F0 sin �t applied to the block whose
displacement is x1.

6.52 Determine the frequency response of the system of Figure P6.8 and Chapter
Problem 6.43 due to a sinusoidal force F0 sin �t applied to the mass center of
the machine tool.

6.53 Determine the frequency response of the system of Figure P6.8 and Chapter
Problem 6.43 due to a sinusoidal force F0 sin �t applied to the right end of the
machine tool.

6.54 A 50 kg lathe mounted on an elastic foundation of stiffness 4 � 105 N/m has a
vibration amplitude of 35 cm when the motor speed is 95 rad/s. Design an
undamped dynamic vibration absorber such that steady-state vibrations are
completely eliminated at 95 rad/s and the maximum displacement of the
absorber mass at this speed is 5 cm.

6.55 What is the required stiffness of an undamped dynamic vibration absorber
whose mass is 5 kg to eliminate vibrations of a 25 kg machine of natural
frequency 125 rad/s when the machine operates at 110 rad/s?

6.56 A 35 kg machine is attached to the end of a cantilever beam of length 2 m,
elastic modulus 210 � 109 N/m2, and moment of inertia 1.3 � 10�7 m4. The
machine operates at 180 rpm and has a rotating unbalance of 0.3 kg � m.

(a) What is the required stiffness of an undamped absorber of mass 5 kg such
that steady-state vibrations are eliminated at 180 rpm?

(b) With the absorber in place, what are the natural frequencies of the system?
(c) For what range of operating speeds will the steady-state amplitude of the

machine be less than 8 mm?

6.57 A 150 kg pump experiences large-amplitude vibrations when operating at
1500 rpm. Assuming this is the natural frequency of a SDOF system, design a
dynamic vibration absorber such that the lower natural frequency of the two
degree-of-freedom system is less than 1300 rpm and the higher natural
frequency is greater than 1700 rpm.

6.58 A solid disk of diameter 30 cm and mass 10 kg is attached to the end of a solid
3-cm-diameter, 1-m-long steel shaft (G � 80 � 109 N/m2). A torsional
vibration absorber consists of a disk attached to a shaft that is then attached to
the primary system. If the absorber disk has a mass of 3 kg and a diameter of 
10 cm, what is the required diameter of a 50-cm-long absorber shaft to eliminate
steady-state vibrations of the original system when excited at 500 rad/s?

6.59 A 200 kg machine is placed on a massless simply supported beam as shown in
Figure P6.59. The machine has a rotating unbalance of 1.41 kg � m and
operates at 3000 rpm. The steady-state vibrations of the machine are to be
absorbed by hanging a mass attached to a 40 cm steel cable from the location
on the beam where the machine is attached. What is the required diameter of
the cable such that machine vibrations are eliminated at 3000 rpm and the
amplitude of the absorber mass is less than 50 mm?
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6.60 The disk in Figure P6.60 rolls without slip and the pulley is massless. What is
the mass of the block that should be hung from the cable such that steady-state
vibrations of the cylinder are eliminated when � � 120 rad/s?

200 kg

m

2 m 1 m
E = 200 × 109 N/m2

I = 1.8 × 10–4 m4

FIGURE P6.59

40 cm 40 cm

20 cm

5 × 106 N/m

3 × 106 N/m

FIGURE P6.60

6.61 Vibration absorbers are used in boxcars to protect sensitive cargo from large
accelerations due to periodic excitations provided by rail joints. For a particular
railway, joints are spaced 5 m apart. The boxcar, when empty, has a mass of
25,000 kg. Two absorbers, each of mass 12,000 kg, are used. Absorbers for a
particular boxcar are designed to eliminate vibrations of the main mass when
the boxcar is loaded with a 12,000 kg cargo and travels at 100 m/s. The natural
frequency of the unloaded boxcar is 165 rad/s.

(a) At what speeds will resonance occur for the boxcar with a 12,000 kg cargo?
(b) What is the best speed for the boxcar when it is loaded with a 25,000 kg cargo?

6.62 A 500 kg reciprocating machine is mounted on a foundation of equivalent
stiffness 5 � 106 N/m. When operating at 800 rpm, the machine produces an
unbalanced harmonic force of magnitude 50,000 N. Two cantilever beams with
end masses are added to the machine to act as absorbers. The beams are made
of steel (E � 210 � 109 N/m2) and have a moment of inertia of 4 � 10�6 m4.
A 10 kg mass is attached to each beam. The absorbers are adjustable in that the
location of the mass on the absorber can be varied.

(a) How far away from the support should the masses be located when the
machine is operating at 800 rpm? What is the amplitude of the absorber mass?
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(b) If the machine operates at 1000 rpm and produces a harmonic force of
amplitude 100,000 N, where should the absorber masses be placed and
what is their vibration amplitude?

6.63 A 100 kg machine is placed at the midspan of a 2-m-long cantilever beam 
(E � 210 � 109 N/m2, I � 2.3 � 10�6 m4). The machine produces a harmonic
force of amplitude 60,000 N. Design a damped vibration absorber of mass 30 kg
such that when hung from the beam at midspan, the steady-state amplitude of
the machine is less than 8 mm at all speeds between 1300 and 2000 rpm.

6.64 Repeat Chapter Problem 6.63 if the excitation is due to a rotating unbalance of
magnitude 0.33 kg � m.

6.65 For the absorber designed in Chapter Problem 6.63, what is the minimum
steady-state amplitude of the machine and at what speed does it occur?

6.66 Determine values of k and c such that the steady-state amplitude of the center of
the cylinder in Figure P6.66 is less than 4 mm for 60 rad/s � � � 110 rad/s?

FIGURE P6.66

40 cm Massless
pulley

20 cm

40 cm

8 kg

5 × 105 N/m

kc

200 sinω t

6.67 Use the Laplace transform method to analyze the situation of an undamped absorber
attached to a viscously damped system, as shown in Figure P6.67.

(a) Determine the steady-state amplitude of the mass m1.
(b) Use the results of part (a) to design an absorber for a 123 kg machine of natural

frequency 87 rad/s and damping ratio of 0.13. Use an absorber mass of 35 kg.

m1

k1

k2

c

m2

F0 sinω t

FIGURE P6.67
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6.68 Design an undamped absorber such that the steady-state motion of the 25 kg
machine component in Figure P6.68 ceases when the absorber is added. What
is the steady-state amplitude of the 31 kg component?

6.69 A 300 kg compressor is placed at the end of a cantilever beam of length 1.8 m,
elastic modulus 200 � 109 N/m2, and moment of inertia 1.8 � 10�5 m4.
When the compressor operates at 1000 rpm, it has a steady-state amplitude of
1.2 mm. What is the compressor’s steady-state amplitude when a 30 kg
absorber of damping coefficient 500 N � s/m and stiffness 1.3 � 105 N/m is
added to the end of the beam?

6.70 An engine has a moment of inertia of 7.5 kg � m2 and a natural frequency of
125 Hz. Design a Houdaille damper such that the engine’s maximum
magnification factor is 4.8. During operation, the engine is subject to a
harmonic torque of magnitude 150 N � m at a frequency of 120 Hz. What is
the engine’s steady-state amplitude when the absorber is used?

6.71 A 200 kg machine is subjected to an excitation of magnitude 1500 N. The
machine is mounted on a foundation of stiffness 2.8 � 106 N/m. What are the
mass and damping coefficient of an optimally designed vibration damper such
that the maximum amplitude is 3 mm?

200sin67t N

25 kg

31 kg

4 × 104 N/m

5 × 104 N/m

FIGURE P6.68
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C h a p t e r 7

MODELING OF MDOF
SYSTEMS

7.1 INTRODUCTION
The number of degrees of freedom used to analyze a system is the number of kinematically
independent coordinates necessary to describe the motion of every particle in the system. The
system of Figure 7.1(a) has only one degree of freedom. If � is chosen as the generalized
coordinate, using the small angle approximation, x � a� where x is displacement of a particle
located a distance a from the pin support. If the pin support is removed as in Figure 7.1(b),
using the small displacement approximation, the analysis of the system requires two coor-
dinates. These could be chosen as x, as the displacement of the mass center and � and as
the clockwise angular rotation of the bar, all of which are measured from the system’s equi-
librium position. If a mass-spring system is hung from the mass center of the bar, as illus-
trated in Figure 7.1(c), the system has three degrees of freedom. A suitable choice of
generalized coordinates is x1 (the displacement of the left end of the bar), x2 (the displace-
ment of the right end of the bar), and x3 (the displacement of the mass). All are measured
from equilibrium.

Recall that for linear systems with static spring forces, the static spring forces cancel
with the source of the spring forces when the differential equation is derived. Neither is
included on a FBD when the objective is to derive the differential equation of motion. The
potential energy of springs with static forces is calculated from energy that is calculated
from the system’s equilibrium position. The total potential energy is expressed as V � V0
where V0 is the potential energy in the spring when the system is in equilibrium. Since V0
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is a constant, it is not considered when calculating the equivalent stiffness. The same is true
for multiple degree-of-freedom (MDOF) systems. The static forces in the springs cancel with
the source of these spring forces and are not included on FBDs or in potential energy terms.

The analysis of an n degree-of-freedom (nDOF) system requires n independent differ-
ential equations. The differential equations for systems with two degrees of freedom, dis-
cussed in Chapter 6, were derived using the free-body diagram method. The method is
used again in this chapter for systems with more than two degrees of freedom, but the
energy method is the favored method. Lagrange’s equations, which are a result of an energy
method, are specified and used to derive the differential equations governing the vibrations of
MDOF systems. The advantage of using Lagrange’s equations is that, when the differential
equations are linear and to to be expressed in matrix form, the mass matrix and the stiffness
matrix are symmetric. This imposes appropriate orthogonality conditions on the mode
shapes (Chapter 8) and leads to the derivation of the modal analysis method (Chapter 9) for
determining the forced response. When viscous damping is present, application of Lagrange’s
equations also leads to a symmetric damping matrix which is crucial to developing the forced
response to systems with viscous damping.

Application of Lagrange’s equations requires that the kinetic energy is calculated in
terms of the generalized coordinates and their time derivatives at an arbitrary instant. The
potential energy is calculated in terms of the generalized coordinates at an arbitrary instant.
Lagrange’s equations may be used to derive the differential equations for linear systems and
nonlinear systems. When viscous damping is present, Rayleigh’s dissipation function is
used to determine the energy dissipated by the damping forces. Linear equations can be
expresses in a matrix form similar to those in Equation (6.1), as

(7.1)
When the equations are linear, the kinetic energy, potential energy, and Rayleigh’s dis-

sipation function all can be written in their quadratic form. The quadratic form of kinetic
energy is used to directly determine the elements of the mass matrix. The quadratic form of
Rayleigh’s dissipation function is used to directly determine the elements of the damping
matrix. The quadratic form of potential energy is used to directly determine the elements of
the stiffness matrix. The force vector is determined by using the method of virtual work.

Mx
$

+ Cx# + Kx = F

FIGURE 7.1
(a) The system is a SDOF
system with � as the chosen
generalized coordinate.
(b) The system has two
degrees of freedom with x
and � chosen as generalized
coordinates. (c) A three
degree-of-freedom system
with x1, x2, and x3 as general-
ized coordinates.

θ

(a)

θ

(b)

x3

x2x1

x

(c)
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Since the potential energy of a system depends only upon the forces and the position of
the system (not the time history of motion), it can be calculated by any method which leads
to the instantaneous position. This is the basis of the stiffness influence coefficients. A unit
deflection for a generalized coordinate is assumed, and the deflection of all other general-
ized coordinates is assumed to be zero. The forces needed to maintain this as an equilib-
rium position, which are the stiffness influence coefficients, are calculated. It is shown that
these are the coefficients in the quadratic form of the potential energy and the elements of
the stiffness matrix. A similar method with inertia influence coefficients and the elements
of the mass matrix is developed.

The inverse of the stiffness matrix, when it exists, is the flexibility matrix A. Pre-
multiplying Equation (6.1) by A leads to

(7.2)

Thus, A can be used to formulate the differential equations. A column of flexibility
influence coefficients are the deflections of the generalized coordinates when a unit force is
placed at the location described by one generalized coordinate. Flexibility influence coeffi-
cients are the elements of A.

Continuous systems are often modeled as discrete systems. Recall that a SDOF model of
a machine at the end of a cantilever beam neglects the mass of the beam and models the
stiffness of the beam as 3EI/L3. But this only leads to an approximation of the lowest natural
frequency of the continuous system, which has an infinite number of natural frequencies.
A MDOF model of the beam leads to approximations of higher natural frequencies. The
finite-element method, discussed in Chapter 11, provides a discrete system model of a con-
tinuous system. The introduction of discrete modeling of continuous systems discussed in
this chapter is developed using flexibility influence coefficients.

This chapter is concerned with the derivation of differential equations for discrete sys-
tems. Chapter 8 is concerned with the free response of discrete systems, and Chapter 9 is
concerned with the forced response.

7.2 DERIVATION OF DIFFERENTIAL EQUATIONS USING
THE FREE-BODY DIAGRAM METHOD
Governing differential equations for SDOF systems derived using the free-body diagram
method require drawing a free-body diagram of the system at an arbitrary instant of time
and applying the basic conservation laws to the free-body diagrams. Newton’s second law
( F � ma), is applied to a particle, while rigid bodies undergoing planar motion also 
require M0 � Io � where 0 is an axis of fixed rotation. If the rigid body does not have an
axis of fixed rotation, it is best to draw two free-body diagrams of the system at an arbitrary
instant: one showing the external forces and one showing the effective forces. Recall that
the effective forces are defined as a force equal to ma– applied at the mass center and a couple
equal to I–�. Then the conservation laws are written as ( F )ext � ( F )eff and ( MQ)ext �
( MQ )eff where Q is any axis.

The first example illustrates the former procedure, while the second and third exam-
ples illustrate the latter.

g
ggg

g
g

AMx
$

+ ACx# + x = AF



462 CHAPTER 7

The three blocks slide on a frictionless surface, as shown in Figure 7.2(a). Derive the dif-
ferential equations governing the vibrations of the system using x1, x2, and x3 as generalized
coordinates.

SO LU T I ON
Free-body diagrams illustrating the forces acting on the blocks at an arbitrary instant are
shown in Figure 7.2(b). Consider the force in the spring connecting the blocks whose dis-
placements are x1 and x2. The spring force is the stiffness 2k times the change in length of
the spring, which is x2 � x1, drawn in a direction such that when x2 � x1, the force is ten-
sile. Therefore, the spring force is acting away from the blocks. The spring is assumed to
be massless. Thus, the force in the spring is the same at both ends, and the force acting on
the block from the spring whose displacement is x2 is equal to and opposite the force acting
on the block whose displacement is x1. The determination of the other spring forces is
made in the same manner.

Applying F � ma in the horizontal direction to the FBDs of each of the blocks
leads to

(a)

(b)

(c)

Taking everything involving the generalized coordinates to one side of the equations and
everything not involving the generalized coordinates to the other side and rewriting the
equations in a matrix form leads to

(d)Cm 0 0
0 2m 0
0 0 m

S C x
$

1

x
$

2

x
$

3

S + C 3k -2k 0
-2k 3k -k

0 -k 4k
S C x1

x2

x3

S = C 0
0

F (t)
S

-k(x3 - x2) - 3kx3 + F(t) = mx
$

3

-2k(x2 - x1) + k(x3 - x2) = 2mx
$

2

-kx1 + 2k(x2 - x1) = mx
$

1

g

EXAMPLE 7 . 1

x1

kx1 2k(x2 – x1)

3kx3

k(x3 – x2)

k
m

x2

2k
2m

(a)

(b)

x3

k
m

3k

f (t)

f(t)

FIGURE 7.2
(a) System of Example 7.1. (b) FBDs of the blocks at an arbitrary instant.
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A three degree-of-freedom model of an automobile suspension system and passenger is
illustrated in Figure 7.3(a). The bar of mass m has its mass center at G, which is a distance
a from the front springs. The attached mass-spring models a seat with a passenger strapped
inside. The wheels provide a displacements of y1(t) and y2(t), as illustrated. Using x1, �, and
x2 as generalized coordinates, derive the equations of motion for the system. Assume small �.

SO LU T I ON
Free-body diagrams of the body of the vehicle and the seat drawn at an arbitrary instant
are shown in Figure 7.3(b). The geometry used in writing the force applied to the rear
wheel is illustrated in Figure 7.3(c). The spring force is the stiffness times the change in
length of the spring. One end of the spring is displaced at y2(t); the other end is displaced

EXAMPLE 7 . 2

θ

θ

b a

x2

x1

m1, I

y2(t) y1(t)

c

(b)

(a)

(c)

m2

G

G

b

=

k2[y2 – (x1 – bθ)]

k1[y1 – (x1 – aθ)]

xr = x1 – bθ

Equilibrium position

x1

xr

k3(x1 + cθ – x2)

m2x2
..

m1x1
.. Iθ

..

FIGURE 7.3
Three degree-of-freedom model of suspension system of Example 7.2. (b) FBDs of system drawn at an
arbitrary instant. (c) Geometry used in calculation of spring force applied to rear wheel.
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at x1 � b�. Thus, the change in length of the spring is y2(t) � (x1 � b�). Applying ( F )ext �
( F )eff to the FBD of the vehicle yields

(a)

Application of the moment equation ( MG)ext � ( MG)eff to the FBD of the vehicle gives

(b)

Application of ( F )ext � ( F )eff to the FBD of the seat yields

(c)

Rearranging the equations such that everything involving the generalized coordinates is on one
side and everything else is on the other, and writing the equations in a matrix form leads to

(d)= C k1y1(t) + k2y2(t)
k1ay1(t ) - k2by2(t )

0
S

Cm1 0 0
0 I 0
0 0 m2

S C x
$

1

u
$

x
$

2

S + C k1 + k2 + k3 k1a - k2b + k3c -k3

k1a - k2b + k3c k1a
2

+ k2b
2

+ k3c
2

-k3c
-k3 - k3c k3

S C x1

u

x2

S
k33x1 + cu - x24 = m2x

$

2

gg

k13y1(t ) - (x1 + au)4(a) - k23y2(t ) - (x1 - bu)4(b) - k33x1 + c u - x24(c) = I u
$

gg

k13y1(t) - (x1 + au)4 + k23y2(t ) - (x1 - bu)4 - k33x1 + c u - x24 = m1x
$

1

g
g

The cart of Figure 7.4(a) rolls on a frictionless surface. A double pendulum consisting of
two slender bars which can move freely is pinned to the cart. Using x, �1, and �2 as gener-
alized coordinates, derive the equations of motion. Assume small �1 and �2.

SO LU T I ON
First consider the kinematics and the acceleration of the mass center of the bar AB.

(a)

In a similar fashion, it is determined that

(b)

The relative acceleration equation is applied between B and the mass center of bar BC:

+ (L u
$

1sin u1 + L u
#
2
1cos u1) j + u

$

2kx aL
2

sin u2 i -

L
2

cos u2 jb
= (x

$

+ L u
$

1cos u1 - L u
#

2
1 sin u1)i

aBC = aB + A
 
xrG>B + Vx(Vx rG>B )

aB = (x
$

+ L u
$

1cosu1 - L  u
#
2
1 sinu1) i + (L u

$

1sinu1 + L u
#

2
1cosu1) j

= ax
$

+

L
2

 u
$

1cosu1 -

L
2

 u
#

2
1 sinu1b  i + aL

2
 u
$

1 sinu1 +

L
2

 u
#

2
1 cosu1)b j

= x 
$

i + u
$

1kx aL
2

 sinu1 i -

L
2

 cosu1 jb + u
#

1k x cu#1k x aL
2

 sinu1i -

L
2

 cosu1 jbd
aAB = aA + AxrG>A + Vx(VxrG>A)

EXAMPLE 7 . 3
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(c)+ aL u
$

1sin u1 + L u
#

2
1cos u1 +

L
2

 u
$

2 sin u2 +

L
2

 u
#

2
2 cos u2b j

= ax$ + L u
$

1cos u1 - L u
#

2
1 sin u1 +

L
2

 u
$

2cos u2 -

L
2

 u
#

2
2  sin u2b i

+ u
#

2 kx cu#2 kx aL
2

sin u2 i -

L
2

cos u2 jbd

θ1

θ2

L

A

B

L

x

C

(a)

(b)

=

Fx1

F1x1

Fx2

Fx2

Fy1

Fy1

External forces Effective forces

Fy2
Fy2

mg

mg

kx
mx1

m( +L
2

..

..

..

. .
θ1 sinθ1 θ1 cosθ2)L

2

L
2

L
2

L
2

L
2

1
12

L
2

L
2

m(Lθ1 + Lθ1
..

sinθ1 cosθ1)

m(x + –
.

sinθ1)θ1
2

2

.2

– Lθ1
.2

2

+ Lθ1
..

cosθ1

mL2

..
m(x + sinθ1)cosθ1

+ +
..
θ2

..
θ2

1
12

mL2 ..
θ

..
θ1

cosθ2)θ2sinθ2

+ –
.. .

.

θ2 sinθ2)θ2cosθ2

FIGURE 7.4
System of Example 7.3. (a) The cart rolls on a frictionless surface and the double pendulum is free to
rotate about the center of the cart. (b) FBDs at an arbitrary instant.
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FBDs of the cart and the two bars, drawn at an arbitrary instant, are illustrated in Figure 7.4(b).
Application of to the free-body diagram of the cart leads to

(d)

Summing moments using the FBDs of bar AB leads to

(e)

Summing moments using the FBDs of bar BC leads to

(f)

Summation of forces on the FBDs of the bars gives

(g)

and

(h)

Summation of forces applied to the FBDs of the bars gives

(i)

and

(j)

Use of Equations (g) through (j) in Equations (d) through (g) leads to

(k)

(l)+m
L2

2
 u
#

2
2 (cos u1 sin u2 + sin u1cos u2) +

5
2

 mg L sin u1 = 0

3
2

mL  cos u1x
$

+

13

12
 mL2

 u
$

1 + m 
L2

4
  u
$

2 (cos u1cos u2 + sin u1 sinu2)

3m x
$

+

3

2
mL u

$

1cos u1 -

3m
2

 L u
#

2
1 sinu1 + m 

L
2

  u
$

2cosu2 - m 
L
2

 u
#

2
2  sinu2 + kx = 0

-Fy2 - mg = m aL u
$

1 sin u1 + L u
#
2
1 cos u1 +

L
2

  u
$

2 sin u2 +

L
2

  u
#
2
2 cos u2b

-Fy1 + Fy2 - mg = m aL
2

 u
$

1sinu1 +

L
2

 u
#

2
1 cos u1b

(gFy )ext = (gFy )eff

-Fx2 = m ax$ + L u
$

1cosu1 - L u
#

2
1 sinu1 +

L
2

 u
$

2 cosu2 -

L
2

  u
#

2
2 sinu2b

-Fx1 + Fx2 = m ax$ +

L
2

 u
$

1cosu1 -

L
2

 u
#

2
1 sinu1b

(gFx )ext = (gFx )eff

+m aL u
$

1sin u1 + L u
#

2
1 cos u1 +

L
2

 u
$

2 sin u2 +

L
2

 u
#

2
2 cos u2b aL2 sin u2b +

1
12

 mL2 u
$

2

-mg 
L
2

sinu2 = m ax$ + L u
$

1cosu1 - L u
#

2
1 sinu1 +

L
2

 u
$

2cos u2 -

L
2

  u
#
2
2 sinu2b aL2 cos u2b

(gMB )ext = (gMB)eff

+ m aL
2

 u
$

1 sin u1 +

L
2

 u
#

2
1 cos u1b a- L

2
 sin u1b +

1

12
 mL2u

$

1

= m ax$ +

L
2

  u
$

1 cos u1 -

L
2

  u
#

2
1 sinu1b a- L

2
 cos u1b

Fx1
(L cosu1) + Fy1

(L sinu1) + mg 
L
2

 sinu1

(gMB 
)ext = (gMB 

)eff

-kx + Fx 1 = mx
$

1

(gFx )ext = (gFx )eff
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(m)

Assuming small �1 and �2 (which implies sin �1 L �1, cos �1 L 1, sin �2 L �2, and cos �2 L 1,
along with products of generalized coordinates are small), Equations (k) through (m) are
written (respectively) as

(n)

(o)

(p)mx
$

+ m 
L2

2
 u
$

1 + m 
L2

3
  u

$

2 + mg 
L
2

 u2 = 0

3

2
mL x

$

+

13
12

mL2u
$

1 + m 
L2

4
  u
$

2 +

5
2

 mgLu1 = 0

3mx
$

+

3
2

 mLu
$

1 + m 
L
2

  u
$

2 + kx = 0

+ m 
L2

3
 u
$

2 + mg 
L
2

 sin u2 = 0

m x
$

+ m 
L2

2
 u
$

1 (cos u1cos u2 + sin u1 sin u2) + m 
L2

4
 u
#

2
1 (cos u1 sin u2 - sin u1cos u2)

7.3 LAGRANGE’S EQUATIONS
Energy methods are more useful than the free-body diagram method for deriving differen-
tial equations governing MDOF systems. Lagrange’s equations are derived using energy
methods. The equivalent systems method, discussed in Chapter 2, is actually Lagrange’s
equations written for a linear SDOF system. Lagrange’s equations can be applied to linear
and nonlinear MDOF systems to derive the governing differential equations. When
applied to linear systems, application of Lagrange’s equations leads to symmetric mass and
stiffness matrices.

However, the derivation of Lagrange’s equations requires calculus of variations, and a
formal derivation is beyond the scope of this book. The basis for the derivation of
Lagrange’s equations is the principle of work and energy. Instead of taking the dot product
of Newton’s law with a differential displacement vector, the dot product is taken with a
variation of the displacement vector. Whereas a differential, dx, is a change in the depend-
ent variable due to a change in the independent variable, (a variation written as �x is due
to a change in the dependent variable, as show in Figure 7.5).

The independent variable is time t and the dependent variable is y. Imagine following a
particle as it travels throughout space along a path y(t). The actual path that the particle fol-
lows between time t1 and time t2 is y(t). The varied path is y(t) � �y as shown in Figure 7.5(a).
The variation is an arbitrary function that the varied path could follow. The variation must
be the same as the actual path at t1 and t2. That is, �y(t1) � 0 and �y(t2) � 0. Figure 7.5(b)
illustrates the difference between a variation and a differential by examining both the func-
tion y(t) and the variation y(t) � �y during the time dt. The geometry of this illustration
shows that �(dy) � d(�y).

The actual path that the particle follows is not known. It is the job of calculus of vari-
ations to specify the actual path (or to derive an equation that specifies the actual path) by
considering all possible variations. This is the purpose of Lagrange’s equations. Application
of Lagrange’s equations specifies the equations for the actual path.
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The discussion thus far has been for a particle with a one-dimensional motion. The
particle has a position vector r(t) and the variation of the position vector is �r(t).

The expression is referred to as the virtual work �W. Consider a system with
nDOF with generalized coordinates of x1, x2, . . . , xn. The virtual work �W is the work
done by external forces as the system’s position changes from (x1, x2, . . . , xn) to (x1 � �x1,
x2 � �x2, . . . , xn � �xn). The virtual work is

(7.3)

where

(7.4)

The virtual work is broken down into the work done by conservative forces �Wc and
the work done by non-conservative forces �Wnc. The work done by conservative forces is
written as

(7.5)

where �V is the variation of the potential energy.
The term ma . �r is manipulated into the variation of kinetic energy �T. Just like the

principle of work and energy, the result is integrated between two times t1 and t2 with the

dWc = -dV

dr =

0r
0x1

 dx1 +

0r
0x2

 dx2 +
Á

0r
0xn

 dxn

dW = a F # dr

gF # dr

y

y + d y

y

dt

t

t1

(a)

t2

(b)

y(t)

y(t + dt)

y(t) + dy(t)

y(t + dt) + dy(t + dt)

d(y + dy)

d y
dy

dt

d (y + dy)

FIGURE 7.5
(a) Illustration of y(t) and
y � �y. (b) Enlargement of
section of curve in part
(a) showing detail of variation.
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requirement that the variation of the position vector is zero at these times. The result is
Hamilton’s principle, which is stated as

(7.6)

The Lagrangian is defined as

(7.7)

and if all forces are conservative, Hamilton’s principle becomes

(7.8)

For a nDOF system with generalized coordinates x1, x2 , . . . , xn, the Lagrangian L is a func-
tion of 2n variables. The potential energy is written at an arbitrary instant and is a func-
tion of n variables, which are the generalized coordinates. The kinetic energy is written at
an arbitrary instant and is a function of 2n variables: the generalized coordinates and their
time derivatives. In general,

(7.9)

The integral is a functional or a function of variables whose result is a scalar. It takes
on a variety of values for arbitrary choices of the generalized coordinates and their time deriv-
atives, but only for the exact choice is its variation zero. Using a theorem of calculus of vari-
ations, if

(7.10)

Equations (7.10) are called Lagrange’s equations and can be used to derive the differential
for conservative nDOF systems.

d
dx

 a0L
0x#
i

b -

0L
0x i

= 0  i = 1,2, . . . , n

d1
t2

t1
Ldt = 0

1
t2

t1
Ldt

L = L(x1,x2, . . . , xn, x
#

1, x
#

2, . . . , x
#

n )

d
L

t2

t1

Ldt = 0

L = T - V

d
L

t2

t1

(T - V + dWnc)dt = 0

Use Lagrange’s equations to derive the differential equations governing the motion of the system
of Example 7.1 using x1, x2, and x3 as generalized coordinates.

SO LU T I ON
The kinetic energy of the system at an arbitrary instant is

(a)

The potential energy of the system at an arbitrary instant is

(b)

The Lagrangian is

(c)L +

1
2

 3mx# 2
1 + 2mx# 2

2 + mx# 2
3 - kx 2

1 - 2k (x2 - x1)
2

- k (x3 - x2)
2

- 3kx 2
34

V =

1

2
kx 2

1 +

1
2

2k (x2 - x1)
2

+

1
2

k (x3 - x2)
2

+

1
2

 3kx 2
3

T =

1
2

mx# 2
1 +

1
2

2mx# 2
2 +

1
2

 mx# 2
3

EXAMPLE 7 . 4
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Application of Lagrange’s equations leads to

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

The differential equations derived from Lagrange’s equations are identical to those
obtained in Example 7.1 by the free-body diagram method.

mx
$

3 - kx2 + 4kx3 = 0

d
dt

 (mx# 3) - 3-k(x3 - x2) - 3kx34 = 0

d
dt

 a 0L
0x# 3
b -

0L
0x3

= 0

2mx
$

2 - 2kx1 + 3kx2 - kx3 = 0

d
dt

 (2mx# 2) - 3-2k(x2 - x1) - k (x3 - x2)(-1)4 = 0

d
dt

 a 0L
0x# 2
b -

0L
0x2

= 0

m x
$

1 + 3kx1 - 2kx2 = 0

d
dt

 (mx#1) - 3-kx1 - 2k (x2 - x1)(-1)4 = 0

d
dx

 a 0L
0x# 1
b -

0L
0x1

= 0

Use Lagrange’s equations to derive the differential equations governing the motion of the
system of Figure 7.3(a) and Example 7.2.

SO LU T I ON
The kinetic energy of the system of Figure 7.3 is the sum of the kinetic energies of the body
of the vehicle and the seat. The kinetic energy of the system is

(a)

The potential energy is the sum of the potential energies in the three springs. The change
in lengths of the springs are measured from the system’s equilibrium position and are deter-
mined in the solution of Example 7.2, resulting in

(b)V =

1

2
k13y1(t) - (x1 + au)42 +

1
2

k23y2(t) - (x1 - bu)42 +

1
2

 k33x1 + c u - x242

=

1

2
m1x

# 2
1 +

1

2
 Iu

#

2
+

1

2
m2x

# 2
2

T =

1
2

 mv 2
+

1
2

 Iv2
+ Tseat

EXAMPLE 7 . 5
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The Lagrangian is

(c)

Application of Lagrange’s equation for x1 leads to

(d)

Application of Lagrange’s equations for � leads to

(e)

Application of Lagrange’s equations for x2 leads to

(f)

Equations (d) through (f ) are rearranged and written in a matrix form leading to

(g)= C k1 y1(t) + k2 y2(t)
k1ay1(t) - k2by2(t)

0
S

Cm1 0 0
0 I 0
0 0 m2

S   C x
$

1

u
$

x
$

2

S + C k1 + k2 + k3 k1a - k2b + k3c -k3

k1a - k2b + k3b k1a
2

+ k2b
2

+ k3c
2

-k3c
-k3 - k3c k3

S  C x1

u

x2

S

d
dt

 c1
2

 m2(2x# 2) d - e-

1
2

 k3(2)[x1 + c u - x2](1) f = 0

d
dt

 a 0L
0x# 2

b -

0L
0x2

= 0

-

1

2
 k3(2)3x1 + cu - x24(c) = 0

d
dt

 c1
2

 I (2u
#

)d - e- 1
2

 k1(2)3y1(t) - (x1 + a u)4(-a) -

1
2

k2(2)3y2(t ) - (x1 - b u)4(b)

d
dt

 a 0L
0u

# b -

0L
0u

= 0

-

1

2
 k3(2)3x1 + c u - x24(1)f = 0

d
dt

 c1
2

 m1(2x# 1)d - e1
2

 k1(2)3y1(t) - (x1 + a u)4 (-1) -

1

2
 k2(2)3y2(t ) - (x1 - bu)4(-1)

d
dt

 a 0L
0x

#

1

b -

0L
0x1

= 0

-

1

2
 k33x1 + c u - x242

L =

1
2

 m1x
# 2
1 +

1
2

 Iu
#

2
+

1
2

 m2x
# 2
2 -

1
2

k13y1(t) - (x1 + au)42 -

1
2

 k2 3y2(t ) - (x1 - bu)42
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Derive the nonlinear equations governing the motion of Example 7.3 and Figure 7.4.

SO LU T I ON
The velocity of the mass center of bar AB is given by

(a)

Using a similar analysis, the velocity of particle B is

(b)

The velocity of the mass center of bar BC is

(c)

The kinetic energy of the system at an arbitrary position is

(d)

The potential energy of the system at an arbitrary instant, using the plane of the cart as the
datum, is

(e)

The Lagrangian for the system is

(f)- c1
2

 kx 2
+ mg 

3L
2

cos u1 + mg 
L
2

 cos u2 d

+

1
2

 m cax# + L u
#

1cosu1 +

L
2

 u
#

2 cos u2b
2

+ aL u
#

1sinu1 +

L
2

 u
#

2 sinu2b
2 d +

1

12
 mL2 u

#
2
2

L =

1
2

 mx# 2
+

1
2

 m c ax# +

L
2

 u
#

1cos u1b
2

+ aL
2

 u
#

1 sin u1b
2 d +

1
12

 mL2 u
#
2
1

V =

1
2

 kx 2
+ mg 

L
2

 cos u1 + mg aL cos u1 +

L
2

 cosu2b

+

1

12
 mL2 u

#

2
2

+

1
2

 m c ax# + Lu
#

1 cos u1 +

L
2

 u2 

#

cos u2b
2

+ aLu1

#

sin u1 +

L
2

 u2

#  sin u2b
2 d

T =

1
2

 mx# 2
+

1
2

 m c ax# +

L
2

 u
#

1cos u1b
2

+ aL
2

 u
#

1 sin u1b
2 d +

1
12

 mL2u
#

2
1

= (x# + L u
#

1cos u1 +

L
2

 u
#

2 cos u2) i + aLu#1sin u1 +

L
2

 u
#

2 sin u2b j

= (x# + L u
#

1 cos u1)i + L u
#

1sin u1 j + u
#

2 k x aL
2

 sin u2 i -

L
2

 cos u2 jb
vBC = vB + vxrG/B

vB = (x# + Lu
#

1cos u1) i + L u
#

1 sin u1 j

= ax# +

L
2

 u
#

1cos u1b i +

L
2

 u
#

1sinu1 j

= x # i + u
#

1kxaL
2

 sin u1 i -

L
2

 cos u1 jb
vAB = vA + vxrG>A

EXAMPLE 7 . 6
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Application of Lagrange’s equations for x leads to

(g)

(h)

Application of Lagrange’s equations for �1 yields

(i)

and

(j)

Application of Lagrange’s equations for �2 yields

(k)

and

- m 
L
2

 ax# + Lu
#

1cos u1 +

L
2

 u
#

2 cos u2b  u
#

2 sin u2

amx
$

+ mLu
$

1cos u1 - mLu
#

2
1 sin u1 + m 

L
2

 u
$

2 cos u2 - m 
L
2

 u
#

2
2 sin u2b  aL

2
cos u2b

+ (2) aLu#1 sinu1 +

L
2

 u
#

2 sinu2b  aL
2
 sinu2bd +

1

12
mL2(2)u

#

2f - c-mg 
L
2
 sinu2d = 0

d
dt

 e 1
2

m c(2) ax# + L u
#

1 cos u1 +

L
2

 u
#

2 cos u2b  aL
2
 cos u2b

d
dt

 a 0L
0u

#

2

b -

0L
0u2

= 0

- m 
L
2

 u
#

2(u
#

1 - u
#

2) sin(u1 - u2) + mg 
3L
2

 sin u1 = 0

2m x
$

+

4
3

 mL2 u
$

1 -

3

2
 mL x# u

#

1 sin u1 + m
L
2

 u
$

2 cos (u1 - u2)

+ (2) aLu# 1 sinu1 +

L
2

 u
#

2 sinu2b  (L sin u1)d f - c-mg 
3L
2

 sinu1d = 0

+

1
12

 mL2(2)u
#

1 +

1
2

 m c(2)ax# +Lu
#

1 cosu1 +

L
2

 u
#

2 cos u2b (L cos u1)

d
dt

 e1
2

 m c(2) ax# +

L
2

 u
#

1 cos u1b  aL
2
 cos u1b + (2) aL

2
 u
#

1 sinu1b  aL
2
 sinu1bd

d
dt

 a 0L
0u

#

1

b -

0L
0u1

= 0

3m x
$

+ m 
3L
2

 u
$

1cosu1- m 
3L
2

 u
#

2
1 sinu1 + m 

L
2

 u
$

2cos u2- m 
L
2

 u
#
2
2 sin u2 + kx = 0

- c- 1

2
 k (2)x d = 0

d
dt

 c1
2

m (2)x# +  
1
2

 m(2) ax# +

L
2

 u
#

1cos u1b +

1
2

m(2) ax#

+ Lu
#

1cosu1 +

L
2

 u
#

2 cos u2bd

d
dt

 a 0L
0x#
b -

0L
0x

= 0
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(l)

Equations (g), (h), and (i) are the nonlinear differential equations that govern the motion
of the system.

Using the small angle assumption (sin �1 L �1, cos �1 L 1, sin �2 L �2 and cos �2 L 1,
and assuming terms involving higher powers or products of �1 and �2 are small), Equation (k)
reduces to Equation (n) of Example 7.3 while Equations (l) and (m) are multiples of
Equations (o) and (p) of Example 7.3.

If the system is non-conservative, Lagrange’s equations are modified to taken the non-
conservative forces into account and are written as

(7.11)

where the Qi are referred to as generalized forces. The virtual work done by all nonconservative
forces �Wnc is written as

(7.12)

The power dissipated by a viscous damper is the force in the viscous damper times the
displacement of the particle to which the damper is attached. Rayleigh’s dissipation func-
tion  is the negative one-half of the total power dissipated in all viscous dampers.

(7.13)

Recall that the work done by the viscous damping force as the particle to which it is
attached moves from x1 to x2 is , where c is the viscous-damping coefficient 
and is the velocity of the particle to which it is attached. The power dissipated is

(7.14)

Now consider a viscous damper connected between two masses with displacements x1
and x2. The force in the viscous damper is . The work done by the viscous-
damping force is

(7.15)W = -

L

x2b

x2a

c (x#2 - x#1) dx2 +

L

x1b

x1a

c (x#2 - x#1) dx1

c (x# 2 - x# 1)

= - cx# 2

= -

d
dtL

t2

t1

cx# 2
  dt

P =

dW
dt

= -

d
dtL

x2

x1

cx#   dx

x#
W = - 1

x2
x1

cx# dx

� = -

1
2

P

�

dWnc = a
n

i = 1

Q i dxi

d
dx

 a 0L
0x#
i

b -

0L
0x i

= Qi  i = 1, 2, . . . , n

+ m 
L
2

 aLu# 1 sin u1 +

L
2

 u
#

2 sin u2b  u
#

2 cos u2 +

1
12

 mL2 u
$

2 + mg 
L
2

 sinu2 = 0

+ m aLu$1 sin u1 + Lu
#

2
1 cos u1 +

L
2

 u
$

2 sin u2 + m 
L
2

 u
#

2
2 cos u2b  aL

2
 sin u2b
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The power dissipated during this time is

(7.16)

Changing the variables of integration to time leads to

(7.17)

The generalized force due to viscous damping is

(7.18)

Then

(7.19)

where Qi,nv is the generalized forced due to nonviscous forces. Lagrange’s equations then
become

(7.20)
d
dx

 a 0L
0x#
i

b -

0L
0x# i

-

0�

0x#
i

= Qi, nv  i = 1, 2, . . . , n

Qi =

0�

0x#
i

+ Q i, nv

Qi =

0�

0x#
i

= c (x#2 - x#1)
2

P =

d
dt

 c
L

t2

t1

c(x# 2 - x# 1)x
#

2 dt d -

d
dt

 c
L

t2

t1

c (x# 2 - x# 1)x
#

1 dt d

P = -

dW
dt

=

d
dt

 c
L

x2b

x2a

c (x# 2 - x# 1) dx2d -

d
dt

 c
L

x1b

x1a

c (x# 2 - x# 1) dx1d

Derive the differential equations for the system of Figure 7.6 using x1, x2, and x3 as gener-
alized coordinates.

SO LU T I ON
The Lagrangian for this system is developed in Equation (c) of Example 7.4. Rayleigh’s dis-
sipation function is

(a)� = -

1
2

 cx# 2
1 -

1
2

 2c (x#2 - x#1)
2

-

1
2

c (x#3 - x#2)
2

-

1
2

 3cx# 2
3

EXAMPLE 7 . 7

x1

F1(t)

m
k 2k

c 2c

x2

F2(t)

2m
k

c

x3

m
3k

3c

FIGURE 7.6
System of Example 7.7
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The work done by the external forces is

(b)

Thus, Q1,nv � F1(t), Q2,nv � F2(t) and Q3,nv � 0. Application of Lagrange’s equation for
x1 leads to

(c)

Application of Lagrange’s equation for x2 leads to

(d)

Application of Lagrange’s equation for x3 gives

(e)

Rearranging Equations (c), (d), and (e) and summarizing in matrix form leads to

(f)+ C 3k -2k 0
-2k 3k -k

0 -k 4k
S   C x1

x2

x3

S = CF1(t )
F2(t )

0
S

Cm 0 0
0 2m 0
0 0 m

S   C x
$

1

x
$

2

x
$

3

S + C 3c -2c 0
-2c 3c - c
0 - c 4c

S  C x#1
x#2
x#3

S
- c- 1

2
 c (2)(x#3 - x#2) -

1
2

 3c (2)x#3 d = 0

d
dt

 c1
2

 m (2)x# 3 d - c- 1

2
 k (2)(x3 - x2) -

1

2
 3k (2)x3d

d
dt

 a 0L
0x# 3

b -

0L
0x3

-

0�

0x# 3
= Q3, nv

- c- 1
2
 2c (2)(x# 2 - x# 1) -

1
2

 c (2)(x# 3 - x# 2)(-1) d = F2(t)

d
dt

 c1
2

 2m (2)x# 2d - c - 1

2
 2k (2)(x2 - x1) -

1

2
 k (2)(x3 - x2)(-1)d

d
dt

 a 0L
0x# 2

b -

0L
0x2

-

0�

0x# 2

= Q2, nv

- c- 1
2

 c (2)x#2 -

1
2

 2c (2)(x# 2 - x#1)(-1)d = F1(t)

d
dt

 c1
2

 m (2)x# 1d - c- 1
2

 k (2)x2 -

1
2

 2k (2)(x2 - x1)(-1)d

d
dt
a 0L

0x#1
b -

0L
0x1

-

0�

0x# 1
= Q1, nv

dW = F1(t ) dx1 + F2(t ) dx2
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Derive the differential equations of the vehicle damping, as illustrated in Figure 7.7. Note
this system was used in Example 7.5 without damping.

SO LU T I ON
The forms of the kinetic energy and potential energy are as in Example 7.5. The form of
Rayleigh’s dissipation functions for this example is

(a)

Using the Lagrangian of Equation (c) of Example 7.5, application of the nonconservative
form of Lagrange’s equations Equation (7.19) yields

(b)

Application of Lagrange’s equations for � leads to

d
dt

 c1
2

 I(2u
#

) d - e- 1
2

 k1(2)[y1(t) - (x1 + au)] (-a) -

1
2

 k2(2)[y2(t) - (x1 - bu)](b)

d
dt

 a0L
0u

# b -

0L
0u

-

0�

0u
# = 0

-

1

2
 c3(2)[(x# 1 + c u

#

) - x# 2]f = 0

- e-

1
2

 c1(2)[y#1 - (x# 1 + au
#

)4 (-1) -

1

2
 c2(2)3y#2 - (x# 1 - bu

#

)4 (-1)

-

1
2

 k3(2)[x1 + c u - x2](1) f

d
dt

 c1
2

m1(2x# 1)d - e1
2

k1(2)[y1(t) - (x1 + au)](-1) -

1
2

 k2(2)[y2(t) - (x1 - b u)](-1)

d
dt

 a 0L
0x# 1

b -

0L
0x1

-

0�

0x# 1
= 0

� = -

1

2
 c13y#1 - (x#1 + au

#

)42 -

1
2

 c2 3y#2 - (x# 1 - b u
#

)42 -

1
2

 c3 3(x#1 - c u
#

) - x#242

EXAMPLE 7 . 8

x2

x1

b
c

a

kL c2 k1

k3 c3

m2

m1, I

c1

θ

FIGURE 7.7
Two degree-of-freedom system of
Example 7.8. The nature of the cou-
pling depends upon the choice of
generalized coordinates.
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(c)

Application of Lagrange’s equations for x2 leads to

(d)

Equations (b) through (d) are rearranged and written in a matrix form leading to

(e)

7.4 MATRIX FORMULATION OF DIFFERENTIAL
EQUATIONS FOR LINEAR SYSTEMS
It can be shown that for an nDOF linear system the potential and kinetic energies must
have the quadratic forms

(7.21)

(7.22)

The Lagrangian for a linear system becomes

(7.23)L =

1
2

 ca
n

i = 1

 a
n

j = 1

(mij x
#

i x
#

j - kij x i x j)d

T =

1

2
 a

n

i = 1
 a

n

j = 1
mij x

#

i x
#

j

V =

1
2

 a
n

i = 1
 a

n

j = 1
kij xi xj

= C k1y1(t) + k2y2(t) + c1y#1(t) + c2 y# 2(t)
k1ay1(t) - k2by2(t) + c1ay#1(t) + c2by#2(t)

0
S

+ C k1 + k2 + k3 k1a - k2b + k3c -k3

k1a - k2b + k3c k1a
2

+ k2b
2

+ k3c
2

-k3c
-k3 -k3c k3

S  C x1

u

x2

S
+ C c1 + c2 + c3 c1a - c2b + c3c - c3

c1a - c2b + c3c c1a
2

+ c2b
2

+ c3c
2

- c3c
- c3 - c3c c3

S  C x# 1

u
#

x# 2

SCm1 0 0
0 I 0
0 0 m2

S   C x
$

1

u
$

x
$

2

S
- c  - 1

2
 c3(2)(x#1 + c u

#

- x#2(-1)d = 0

d
dt

 c1
2

 m2(2x# 2)d - e- 1
2

 k3(2)[x1 + c u - x2](1)f

d
dt

 a 0L
0x#2
b -

0L
0x2

-

0�

0x#2
= 0

-

1

2
 c2(2) [y#2 - (x# 1 - b u

#

)](b)f = 0

-

1
2

 k3(2)x1 + cu - x2](c)f - e -  

1
2

 c1(2)[y#1 - (x#1 + au
#

)](-a)
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Application of Lagrange’s equations for a nonconservative system without viscous damping
for generalized coordinate xl leads to

(7.24)

Since

(7.25)

Equation (7.24) becomes

(7.26)

The right-hand side of the preceding equation is broken into four terms and the order of
summation interchanged on the second and fourth terms. Then because of the presence
of the �’s, the value of the term on the inner summation is nonzero only for one value of
the summation index. Thus, the preceding equation can be rewritten using single summa-
tions as

(7.27)

The name of a summation index is arbitrary. Thus, these summations are combined,
yielding

(7.28)

Note that in Equation (7.21), kil and kli both multiply xixl. It seems reasonable that, with-
out loss of generality, they can be set equal to one another (the formal proof of this fact will
be given in Section 7.5. The same reasoning leads to mil � mli. Thus,

(7.29)

Equation (7.29) represents a system of n simultaneous linear differential equations.
The matrix formulation of Equation (7.29) is

(7.30)

where M is the n � n mass matrix, K is the n � n stiffness matrix, F is the n � 1 force vector,
x is the n � 1 displacement vector, and is the n � 1 acceleration vector. Note fromx

$

Mx
$

+ Kx = F

a
n

i =1

mli x
$

i + a
n

i =1

kl i xi = Q l  l = 1, Á , n

Ql =

1
2

 ca
n

i =1

(mil + ml i) x
$

i + a
n

i = 1

(kil + kli)xi d

Ql =

1

2
  aa

n

i =1

mil x
$

i + a
n

j =1
 mlj x

$

j + a
n

i = 1

kil xi + a
n

j =1

klj xjb

Ql =

1

2
 a

n

i =1

 a
n

j = 1
 cmij 

d
dt

 (x#i djl + x# j dil 
) + kij (xi djl + xj dil 

) d

0x i

0x l

= dil = e0  i Z l
1  i = l

=

1

2
 a

n

i =1

 a
n

j =1
 cmij 

d
dt

 cx# i 
0x# j

0x# l

+ x# j 
0x# i

0x# l

d + kij ax i 
0x j

0x l

+ x j 
0x i

0x l

b f

Ql =

1
2

 a
n

i =1

 a
n

j =1
 cmij 

d
dt

 c 0

0x# l
 (x# i x# j ) d + kij 

0

0xl

 (xi xj)f

Q l =

d
dt

 a 0L
0x# l

b -

0L
0xl

  l = 1, 2, . . . , n
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Equation (7.28) that for the lth equation, the coefficient multiplying is (mil � mli)/2,
which is mli, the element in the lth row and ith column of M. Similarly mil, the element in
the ith row and lth column is determined as (mli � mil)/2. Hence mil � mli for each i, l � 1,
2, . . . , n. Thus, the mass matrix is symmetric. The element in the ith row and jth column
of the mass matrix is mij , the same coefficient that multiplies in the quadratic form of
the kinetic energy, Equation (7.22).

A similar argument can be used to show that the stiffness matrix is symmetric and that
the element in the ith row and jth column of K is the coefficient that multiplies xi xj in the
quadratic form of the potential energy, Equation (7.21). The ith element of the force vector
is the generalized force Qi, as determined by the method of virtual work.

The matrix formulation of the differential equations governing the motion of a linear
n degree-of-freedom system is used in deriving the free and forced responses of the system.
If the mass and stiffness matrices and the force vector are known for a chosen set of gener-
alized coordinates, differential equations of the form of Equation (7.30) can be directly
written. Thus, if the quadratic forms of the kinetic and potential energies can be deter-
mined, the elements of the mass and stiffness matrices are the coefficients in these quad-
ratic forms. Formal application of Lagrange’s equations to derive the differential equations
governing the motion of a linear system is not necessary.

The coupling of a system relative to the choice of generalized coordinate is specified
according to how the mass and stiffness matrices are populated. A diagonal matrix is a
matrix in which the only nonzero elements are along the main diagonal of the matrix. If
the stiffness matrix is not a diagonal matrix, the system is said to be statically coupled rel-
ative to the choice of generalized coordinates. If the system is statically coupled with
respect to a set of generalized coordinates xi, i � 1, 2, . . . , n, then there is at least one i
such that application of a static force to the particle whose displacement is xi results in a
static displacement of the particle whose displacement is xj , for some .

If the mass matrix is not a diagonal matrix, the system is said to be dynamically cou-
pled. If the system is dynamically coupled, then there exists at least one i such that appli-
cation of an impulse to the particle whose displacement is xi instantaneously induces a
velocity , for some .j Z ix# j

j Z i

x# i x
#

j

x
$

i

FIGURE 7.8
System of Example 7.9.

Use the quadratic forms of kinetic and potential energy to derive the differential equations
governing free vibration of the system of Figure 7.8 and discuss the coupling using (a) x
and � as generalized coordinates, and (b) xA, the vertical displacement of particle A, and xB,
the vertical displacement of particle B, as generalized coordinates.

EXAMPLE 7 . 9

G

x

k k

xA xB

θ

L/2 L/4 L/4

Slender bar
of mass m,

I = 1/12 mL2
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SO LU T I ON
(a) With x and � as generalized coordinates, the kinetic and potential energies of the system
at an arbitrary instant are

(a)

(b)

Comparing the above equations with the quadratic forms of kinetic and potential energies,
Equations (7.22) and (7.21), respectively, using x for x1 and � for x2 leads to

(c)

(d)

Note that the term multiplying x� in the quadratic form of potential energy is 2k12 � 2k21.
Thus, the governing differential equations are

(e)

Since the stiffness matrix is not a diagonal matrix and the mass matrix is a diagonal matrix
the system is statically coupled, but not dynamically coupled.

(b) With xA and xB as generalized coordinates, the quadratic forms of kinetic and
potential energies at an arbitrary instant are

(f)

(g)

The elements of the mass and stiffness matrices are obtained by comparing the above equa-
tions to Equations (7.22) and (7.21) respectively, leading to the following differential equations

(h)

Thus, the system is dynamically coupled, but not statically coupled, when xA and xB are
used as generalized coordinates.
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The method presented in this section to determine the mass and stiffness matrices for
linear systems is the MDOF analogy to the equivalent systems method presented in
Section 2.12 to derive the differential equations governing the motion of a linear SDOF system.
The equivalent systems method uses the kinetic energy to determine an equivalent mass and
the potential energy to determine an equivalent stiffness. The mass and stiffness matrices are
analogous to the equivalent mass and the equivalent stiffness.

The differential equations governing the motion of a linear nDOF system when vis-
cous damping is included are

(7.31)

where C is the nxn damping matrix. Rayleigh’s dissipation function can be used to directly
determine the elements of the damping matrix. Recall that the dissipation function is the
negative of one-half of the power dissipated by all the viscous dampers. It can be shown to
have a quadratic form of

(7.32)

The damping matrix is symmetric; that is, ci, j � cj, i.
When using the quadratic form of Rayleigh’s dissipation function to determine the damp-

ing matrix, remember that like the mass matrix and the stiffness matrix, the diagonal terms are
the terms multiplying , but that due to the dissipation function, including both
and , the off diagonal term ci, j is the negative of the coefficient multiplying .
Unlike the quadratic forms of kinetic and potential energy, the definition of Rayleigh’s
dissipation function leads to the quadratic form being defined with a negative sign.

x#
i
x# jcj,i x

#

j x#
i

ci,j x#
i
x# j-

1
2 x# 2

i

� = -

1
2

 a
n

i = 1

 a
n

j = 1

ci,j x
#

i
 x# j

Mx
$

+ Cx# + K x = F

Determine the damping matrix for the three degree-of-freedom system shown in Figure 7.9.

SO LU T I ON
The power dissipated by viscous damping is

(a)

The energy dissipation function is calculated as

(b)� = -

1
2

cx# 2
1 -

1
2

 2c (x#2 - x#1)
2

-

1
2

 3c (x# 3 - x#2)
2

-

1
2

 cx# 2
3

P = (cx# 1)x
#

1 + [2c (x# 2 - x# 1)] (x
#

2 - x# 1) + [3c (x# 3 - x# 2)](x
#

3 - x# 2) + (cx# 3)x
#

3

x1

c 2c 3c c

x2 x3

FIGURE 7.9
System of Example 7.10.

EXAMPLE 7 . 1 0
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which is rearranged to

(c)

The diagonal element of the damping matrix ci,i is the negative of twice the coefficient of
, while an off diagonal element mi,j for is the negative of the coefficient of . The

damping matrix is

(d)C = C 3c -2c 0
-2c 5c -3c
0 -3c 4c

S
x#
i
x# ji Z jx# 2

i

� = -

3
2

 cx 
# 2
1 + 2cx#1x

#

2 -

5
2

cx# 2
2 + 3cx# 2 x#3 - 2cx# 2

3

7.5 STIFFNESS INFLUENCE COEFFICIENTS
It is shown in Section 7.4 that the elements of the stiffness matrix for a linear system can
be determined as the coefficients in the quadratic form of the potential energy. The work
done by a conservative force is independent of path and can be expressed as the difference
in potential energy between the initial position and the final position of the system. The
potential energy function is a function only of the position of the system. Thus, when eval-
uating the potential energy for a specific system configuration, one can look at any means
of arriving at that configuration, even if the configuration is obtained statically.

Stiffness influence coefficients provide an alternate means of determining the elements of
the stiffness matrix. It is based on determining the potential energy for a system configuration
that is obtained through static application of concentrated forces. To illustrate the develop-
ment of the method, consider three particles along the span of a fixed-free beam as illus-
trated in Figure 7.10(a). The beam is initially in its static equilibrium configuration. Let x1,
x2, and x3 be the chosen generalized coordinates which represent the displacements of the
particles.

Consider the static application of a set of concentrated loads with f11 applied to
particle 1, f21 applied to particle 2, and f31 applied to particle 3 such that after their appli-
cation, x1 � x1, x2 � 0, and x3 � 0 as illustrated in Figure 7.10(b). Since particles 2 and 3
do not change position during application of these loads, the forces applied to these parti-
cles do no work. The total work done by the external loads during this application is

(7.33)

Now add a second set of forces with f12 applied to particle 1, f22 applied to particle 2, and
f32 applied to particle 3 such that after static application of these loads, x1 � x1, x2 � x2,
and x3 � 0 as illustrated in Figure 7.10(c). Since particles 1 and 3 do not change position
during application of these loads, only the forces applied to particle 2 do work. Note that the
force f21 was already fully applied when the displacement occurred and the displacement
occurred as f22 was being applied. Hence, the work done during application of these forces is

(7.34)U1:2 = f21 x2 +

1
2

 f22x2

U0:1 =

1
2

 f11x1
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Next add a third set of forces f13 applied to particle 1, f23 applied to particle 2, and f33
applied to particle 3 such that after static application of these loads x1 � x1, x2 � x2,
and x3 � x3 as illustrated in Figure 7.10(d). The work done during application of these
forces is

(7.35)

Thus, after application of the three sets of forces, the particles have arbitrary displacements.
According to the principle of work and energy, the potential energy in the system is equal
to the work done by the external forces between configuration 0 and configuration 3,

(7.36)

The system is linear, thus a proportional change in the system of forces applied on any
step leads to a proportional change in displacements. Define k11, k21, and k31 as the set of
forces required to cause a unit displacement for the first particle. Then due to the linearity
of the system

(7.37)

Similarly define k12, k22, and k32 as the set of forces required to cause a unit displacement
for particle 2 and k13, k23, and k33 as the set of forces required to cause a unit displacement
for particle 3. Then in general,

(7.38)fij = kij   
xj

f11 = k11x1  f21 = k21x1  f31 = k31x1

V =

1
2

 f11x1 + f21x2 +

1
2

 f22x2 + f31x3 + f32x3 +

1
2

 f33x3

U2:3 = f31x3 + f32x3 +

1

2
 f33x3

(a)

f11

x1

f21 f31

(b)

(c)

f11

x1 x2

f21 f31

f12 f22 f32

(d)

f11

x1 x2

x3

f21 f31

f12 f22 f32

f13 f23 f33

FIGURE 7.10
(a) Fixed-fixeds beam with
three particles along its
span. (b) Configuration of
beam after first set of loads.
(c) Configuration of beam
after second set of loads.
(d) Configuration of beam
after third set of loads.
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Using Equation (7.38) in Equation (7.36) leads to

(7.39)

The potential energy is a function only of the beam’s configuration, not of how the config-
uration is attained. Thus, the potential energy would be the same if the order of the load-
ing were reversed. Suppose the forces f12, f22, and f32 are applied first, resulting in x1 � 0,
x2 � x2, and x3 � 0. Then the forces f21, f22, and f32 are applied such that after their static
application, the beam’s configuration is defined by x1 � x1, x2 � x2, and x3 � 0. Then using
Equation (7.38), the potential energy is calculated as

(7.40)

Since the potential energy calculated by Equation (7.39) must be the same as that calcu-
lated by Equation (7.40) for arbitrary values of x1, x2, and x3, k12 � k21. Other combina-
tions of the order of loading can be studied to show that in general,

(7.41)

This result, which guarantees that the stiffness matrix is symmetric, is known as Maxwell’s
reciprocity relation.

Then using Equation (7.41) in Equation (7.39) leads to

(7.42)

Equation (7.42) is identical to the quadratic form of the potential energy for this three
degree-of-freedom system. Thus, the coefficients kij, i, j � 1, 2, 3 are the elements of the
stiffness matrix. The kij calculated in this fashion are called stiffness influence coefficients.
Equation (7.41) shows that the stiffness matrix is symmetric when stiffness influence coef-
ficients are used in its determination.

The concept of stiffness influence coefficients can be generalized to any linear system.
Each column of the stiffness matrix has a physical interpretation. The jth column of the
stiffness matrix is the set of forces acting on the particles whose displacements are described
by the chosen generalized coordinates such that after static application of these forces,
xj � 1 and xi � 0 for .

In summary, the influence coefficient method for determining the elements of an n
degree-of-freedom system is as follows:

1. Assign a unit displacement for x1, maintaining x2, x3, . . . , xn in their static-equilibrium
position. Calculate the system of forces required to maintain this as an equilibrium.
position. The forces, ki1, are applied at the locations whose displacements define the
generalized coordinates in the directions of the positive values of the generalized coor-
dinates. This set of forces yields the first column of the stiffness matrix.

2. Continue this procedure to find all columns of the stiffness matrix. The jth column is
found by prescribing xj � 1 and xi � 0, , and calculating the system of forces nec-
essary to maintain this as an equilibrium position.

3. If xj is an angular coordinate, then kji is an applied moment. When calculating the jth
column of the stiffness matrix, a unit rotation in radians must be applied to the angle
defined by xj in the direction of the positive value of the angular coordinate. If the

i [ j

i Z j
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small angle assumption is necessary to achieve a linear system, it is also used to calcu-
late the stiffness influence coefficients.

4. Reciprocity implies the stiffness matrix must be symmetric: kij � kji. The symmetry
can be used as a check.

5. When deriving differential equations for linear systems, note that static deflections in
springs cancel with the gravity forces or other conservative forces that cause the static
deflections. Thus, static deflections and their sources do not need to be considered in
determining stiffness influence coefficients.

Use the stiffness influence coefficient method to calculate the stiffness matrix for the system
of Figure 7.2 in Example 7.1.

SO LU T I ON
The first column of the stiffness matrix is obtained by setting x1 � 1, x2 � 0, x3 � 0, and
calculating the system of applied forces necessary to maintain this position in equilibrium.
Free-body diagrams of the blocks are shown in Figure 7.11. Setting F � 0 yields

Block a: 

Block b:

Block c: Q k31 = 0

2k + k21 = 0 Q k21 = -2k

-k - 2k + k11 = 0 Q k11 = 3k

g

EXAMPLE 7 . 1 1

mg

N1

k 2k k11
k21

k k
k22

3k
k33

2mg

(a)

(b)

(c)

N2

2k
k31

mg

N3

mg

N1

2k k12

2mg

N2

2k
k32

mg

N3

k kk23

mg

N1

k13

2mg

N2

mg

N3

FIGURE 7.11
(a) First column of stiffness matrix is calculated by setting x1 � 1 , x2 � 0, and x3 � 0, and determining
forces maintaining the position in static equilibrium. (b) Second column of stiffness matrix is calcu-
lated by setting x1 � 0, x2 � 1, and x3 � 0, and determining forces maintaining the position in static
equilibrium. (c) Third column of stiffness matrix is calculated by setting x1 � 0, x2 � 0, and x3 � 1, and
determining forces maintaining the position in static equilibrium.
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The second column is obtained by setting x2 � 0, x1 � 1, and x3 � 0. Summing forces on
the free-body diagrams yields

Block a:

Block b:

Block c:

The third column is obtained by setting x1 � 0, x2 � 0, and x3 � 1. Summing forces on
the free-body diagrams yields

Block a:

Block b:

Block c:

The stiffness matrix is

K = C 3k -2k 0
-2k 3k -k

0 -k 4k
S

-k - 3k + k33 = 0 Q k33 = 4k

k + k23 = 0 Q k23 = -k

Q k13 = 0

k + k32 = 0 Q k32 = -k

-2k - k + k22 = 0 Q k22 = 3k

2k + k12 = 0 Q k12 = -2k

Use the stiffness influence coefficient method to find the stiffness matrix for the system
in Figure 7.12. Use xA, the downward displacement of block A, xB, the upward displace-
ment of block B, and �, the counterclockwise angular rotation of the pulley, as general-
ized coordinates.

SO LU T I ON
The first column of the stiffness matrix is obtained by setting xA � 1, xB � 0, and � � 0,
and finding the resulting system of forces and moments to maintain this as an equilibrium
position. Note that since � is an angular coordinate, k31 is a moment.

Block A:

Block B:

Pulley:      

The second column is obtained by setting xA � 0, xB � 1, and � � 0. The equations of
equilibrium yield

Block A:

Block B:

Pulley:   aMO = 0 Q 3k (2r) + k32 = 0 Q k32 = -6kr

aF = 0 Q 3k - k22 = 0 Q k22 = 3k

aF = 0 Q k12 = 0

aMO = 0 Q k (r) + k31 = 0 Q k31 = -kr

aF = 0 Q k21 = 0

aF = 0 Q - k + k11 = 0 Q k11 = k

EXAMPLE 7 . 1 2
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The third column is obtained by setting xA � 0, xB � 0, and � � 1. The equations of equi-
librium yield

Block A:

Block B:

Pulley:      

Thus, the stiffness matrix for this choice of generalized coordinates is

K = C k 0 -kr
0 3k -6kr

-kr -6kr 13kr 2

S
aMO = 0 Q -k(r)(r) - 3k (2r)(2r) + k33 = 0 Q k33 = 13kr 2

aF = 0 Q 3k (2r) + k23 = 0 Q k23 = -6kr

aF = 0 Q kr + k13 = 0 Q k13 = -kr

2r

k
3k

r

I

xB

xA

θ

m2m

(a) (b)

(c) (d)

mpg

k

k11

k21

k31

Oy
Ox

mpg

k (r) 3k (2r)

k13 k23

k33

Oy
Ox

mpg

3k

k12 k22

k32

Oy
Ox

FIGURE 7.12
(a) System of Example 7.12. (b) First column of stiffness matrix is obtained by setting xA � 1, xB � 0, and
� � 0 and calculating forces and moments to maintain the position in static equilibrium. (c) Second column
of stiffness matrix is obtained by setting xA � 0, xB � 1, and � � 0 and calculating forces and moments to
maintain the position in static equilibrium. (d) Third column of stiffness matrix is obtained by setting xA � 0,
xB � 0, and � � 1 and calculating forces and moments to maintain the position in static equilibrium.
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Use the influence coefficient method to find the stiffness matrix for the system of Figure 7.13
using �1, the clockwise angular displacement of bar AB, and �2, the counterclockwise angu-
lar displacement of bar CD, as generalized coordinates.

EXAMPLE 7 . 1 3
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Ay

Ax
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C

(a)

(b)

(c)
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Dy
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k22
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3k

2k

k

L/2

L/2

L/3L/6

L
2

3k
L
2

k k(L)

k(L)

5L
6

k
5L
6

B
L/3 L/6

FIGURE 7.13
(a) System of Example 7.13. (b) First column of stiffness matrix is determined by setting �1 � 1
and �2 � 0, and calculating the applied moments required to maintain this position in equilibrium.
(c) Second column of stiffness matrix is determined by setting �1 � 0 and �2 � 1 , and calculating the
applied moments required to maintain this position in equilibrium.
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SO LU T I ON
The first column of the stiffness matrix is obtained by setting �1 � 1 and �2 � 0 and find-
ing the moments that must be applied to the bars to maintain this as an equilibrium posi-
tion. The small angle assumption is used. Equilibrium equations are applied to the
free-body diagrams of Figure 7.13(b).

Taking moments to be positive clockwise about an axis at A and moments to be posi-
tive counterclockwise about an axis at D, we have

(a)

(b)

The second column is obtained by setting �1 � 0 and �2 � 1. The equilibrium equa-
tions are applied to the free-body diagrams to yield

(c)

(d)

The stiffness matrix is

(e)K = D 79

36
kL2

-5k 
L2

3

-5k 
L2

3
22
9

kL2

T
aMD = 0 = -kL(L) - 5k 

L
6

 a5 L
6
b - 3k 

L
2

 aL
2
b + k22 Q k22 = 22k 

L2

9

aMA = 0 = kL a5 L
6
b + 5k 

L
6

 (L) + k12 Q k12 = -5k 
L2

3

aMD = 0 = 5k 
L
6

 (L) + kL a5 L
6
b + k21 Q k21 = -5k 

L2

3

aMA = 0 = -2k 
L
2

 aL
2
b - 5k 

L
6

 a5
L
6
b - kL(L) + k11 Q k11 =

79

36
 kL2

The transverse vibrations of the cantilever beam Figure 7.14 are to be approximated by
modeling the beam as a two degree-of-freedom system. The inertia of the beam is modeled
by placing discrete masses at the beam’s midspan and end. Calculate the stiffness matrix for
this two degree-of-freedom model using the displacements of the midspan and end of the
beam as generalized coordinates.

SO LU T I ON
Calculation of the stiffness matrix requires the evaluation of the deflection of the beam due
to a concentrated load at the midspan and a concentrated load at the end of the beam.
Perhaps the best way of handling the beam deflection problem is to use the method of
superposition as shown in Figure 7.14(b). The elements of the ith column of the stiffness
matrix are calculated from

(a)

(b)y (L) = k1i y1(L) + k2i y2(L)

y aL
2
b = k1i y1aL

2
b + k2i y2aL

2
b

EXAMPLE 7 . 1 4
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where y(z) is the total deflected shape of the beam, y1(z) is the deflected shape of the beam due
to a concentrated unit load at the midspan, and y2(z) is the deflected shape of the beam due to
a concentrated unit load at the end of the beam. From Table D.2, these are evaluated as

(c)

(d)

To determine the first column, set y (L/2) � 1 and y (L) � 0. The equations are solved
simultaneously, yielding

(e)

To determine the second column, set y(L/2) � 0 and y(L) � 1. The equations are solved
simultaneously, yielding

(f)k12 = -

240EI
7L3   k22 =

96EI

7L3

k11 =

768EI
7L3   k21 = -

240EI
7L3

y2(L) =

L3

3EI
y1(L) =

5L3

48EI

y1aL
2
b =

L3

24EI
  y2aL

2
b =

5L3

48EI

(a)

(b)

=

f2f1

y(z)

z

x1 x2

f1

y1(z)

+

f2

y2(z)

FIGURE 7.14
(a) Two degree-of-freedom model of cantilever beam of Example 7.14. (b) Illustration of the method
of superposition used to calculate the stiffness matrix.

7.6 FLEXIBILITY INFLUENCE COEFFICIENTS
Development of the stiffness matrix using stiffness influence coefficients is straight-forward.
For mechanical systems, the calculation of stiffness influence coefficients requires the appli-
cation of the principles of statics and little algebra. However, as shown in Example 7.14,
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the calculation of a column of stiffness influence coefficients for a structural system mod-
eled with n degrees of freedom requires the solution of n simultaneous equations. This leads
to significant computation time for systems with many degrees of freedom. Flexibility
influence coefficients provide a convenient alternative. They are easier to calculate than
stiffness influence coefficients for structural systems and the knowledge of them is sufficient
for solution of the free-vibration problem.

If the stiffness matrix, K, is nonsingular, then its inverse exists. The flexibility matrix,
A, is defined by

(7.43)

Premultiplying Equation (7.1) by A gives

(7.44)

Equation (7.44) shows that knowledge of A instead of K is sufficient for solution of a vibra-
tion problem.

The elements of K are determined by using stiffness influence coefficients. Analogously,
flexibility influence coefficients can be used to determine A. The flexibility influence coeffi-
cient aij is defined as the displacement of the particle whose displacement is represented by
xi when a unit load is applied to the particle whose displacement is represented by xj and no
other loading is applied to the system. If xj represents an angular coordinate, then a unit
moment is applied.

Suppose an arbitrary set of concentrated loads { f1, f2, , fn} is applied statically to an 
nDOF system. The load fi is applied to the particle whose displacement is represented by xi.
Using the definition of flexibility influence coefficients, xj is calculated from

(7.45)

Equation (7.45) is summarized in matrix form as

(7.46)

Multiplying Equation (7.46) by A–1 yields

(7.47)
which defines the static relationship between force and displacement. Equation (7.47)
shows that the flexibility influence coefficients as defined are the elements of the inverse of
the stiffness matrix, called the flexibility matrix.

The procedure for determining the flexibility matrix using influence coefficients is as follows:

1. Apply a unit load at the location whose displacement is defined by x1. The flexibility
influence coefficient in the first column, ai1, is the resulting displacement of the par-
ticle whose displacement is xi.

2. Successively apply concentrated unit loads to particles whose displacements define the
remaining generalized coordinates. Calculate column of flexibility influence coeffi-
cients using the principles of statics.

3. If xl is an angular displacement, then a unit moment is applied to calculate ajl , j � 1, , n.
The displacements calculated for ali, i � 1, . . . , n, are angular displacements.

4. Since the stiffness matrix is symmetric, the flexibility matrix must also be symmetric.
This condition serves as a check on the analysis.

Á

f = A-1x = Kx

x = Af

x j = a
n

i = 1

aji f i

Á

AMx
$

+ ACx# + x = AF

A = K-1
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Determine the flexibility matrix for the system in Figure 7.13 of Example 7.13 using flex-
ibility influence coefficients.

SO LU T I ON
The free-body diagrams of Figure 7.15 show the external forces, in terms of angular dis-
placements, acting on each bar when an arbitrary set of moments is applied. The equations
of equilibrium are used to derive equations relating the displacements to the applied forces

(a)

(b)

The first column of the flexibility matrix is obtained by setting m1 � 1, m2 � 0, �1 � a11,
�2 � a21, and solving the resulting equations simultaneously. The second column is obtained
by setting m1 � 0, m2 � 1, �1 � a12, �2 � a22, and solving the resulting simultaneous equa-
tions. The flexibility matrix is

(c)A = ≥
396

419kL2

270

419kL2

270
419kL2

711
838kL2

¥

Bar BC :  aMD = 0 Q m2 = -

5kL2

3
u1 +

22kL2

9
u2

Bar AB :  aMA = 0 Q m1 =

79kL2

36
u1 -

5kL2

3
u2

EXAMPLE 7 . 1 5

Ax

Ay

Dx

Dy

m1

m2

2k
L
2

k
5L
6

–

θ1

3k
L
2

θ2

Lθ2 θ1 k
5L
6

θ2 – Lθ1

FIGURE 7.15
FBDs of static equilibrium position used to calculate flexibility influence coefficients for system of
Example 7.15. For the first column, m1 � 1 and m2 � 0. For the second column, m1 � 0 and m2 � 1.

Two small machines are to be bolted to an overhanging beam as shown in Figure 7.16. The
beam is nonuniform; thus prediction of influence coefficients from strength-of-materials
concepts is difficult. Instead, the project engineer performs static measurements. After the
first machine is installed, the engineer notes that the deflection directly below the machine

EXAMPLE 7 . 1 6
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is 10 mm and the deflection of the end of the beam is 2 mm. After the second machine is
also installed, the deflection of the end of the beam is 0.8 mm.
(a) What is the deflection at the location where the first machine is installed after the

second machine is installed?
(b) What is the flexibility matrix for this system?

SO LU T I ON
(a) Assuming a linear system, the principle of superposition yields the following relation-
ships between the static loads, the influence coefficients, and the deflection:

(a)

(b)

When only the first machine is installed, f1 � (60 kg)(9.81 m/s2) � 588.6 N, f2 � 0,
x1 � 0.01 m, x2 � �0.002 m. Substitution into the preceding equations yields a11 � 1.7 �
10–5 m/N, a21 � �3.4 � 10–6 m/N. When the second machine is also installed, f1 � 588.6
N, f2 � (20 kg)(9.81 m/s2) � 196.2 N, and x2 � �0.0008 m. Then, since a12 � a21, the dis-
placement at the location of the first machine when both machines are installed is

(c)

(b) The second of the preceding equations yields

(d)

The flexibility matrix is

(e)A = c  1.7 -0.34
-0.34   0.61

d10-5
 m/N

a22 =

x2 - a21 f1

f2

=

3-0.0008 m - (-3.4 * 10-6
 m/N)(588.6  N)4

196.2  N
= 6.1 * 10-6 m/N

x1 = (1.7 * 10-5
 m/N)(588.6  N) + (-3.4 * 10-6

 m/N)(196.2  N) = 9.3  mm

x2 = a21 f1 + a22 f2

x1 = a11 f1 + a12 f2

(a)

60 kg
20
kg

60 kg

0.8 mm

2 mm

(b)

60 kg
20
kg

10 mm

FIGURE 7.16
(a) System of Example 7.16. (b) As each machine is bolted to the beam, static deflection measurements
are made.
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Four machines are equally spaced along the length of an 8 m fixed-free beam of elastic
modulus 210 � 109 N/m2 and cross-section moment of inertia 1.6 � 10–5 m4, as shown
in Figure 7.17. Determine the flexibility matrix for a four degree-of-freedom model of the
system with the location of the machines as the generalized coordinates.

SO LU T I ON
The deflection equation for a fixed-free beam taken from Appendix D is

(a)

The flexibility matrix is calculated sequentially by column in reverse order. Imagine the
unit load placed at a � L � 8 m. Then

(b)

In a similar manner,

(c)

Symmetry of the flexibility matrix is used to determine a34 � a43. Then a unit load is imag-
ined at and

(d)

Imagine a unit load placed at 

(e)a21 = w aL
4

; L
2
b = 1.98 * 10-6

 m>N, a22 = w aL
2

; L
2
b = 6.35 * 10-6

 m>N
a = L>2

a33 = w a3L
4

; 3L
4
b = 2.14 * 10-5

 m>N

a31 = w aL
4

; 3L
4
b = 3.17 * 10-6

 m>N, a32 = w aL
2

; 3L
4
b = 1.11 * 10-5

 m>N,

a = 3L>4

a43 = w a3L
4

; Lb = 3.21 * 10-5
 m>N, a44 = w (L ; L) = 5.08 * 10-5

 m>N
a42 = w aL

2
; Lb = 1.59 * 10-5

 m>N,

=

11(8 m)3
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 N>m2) (1.6 * 10-5

 m4)
= 4.37 * 10-6

 m>N
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4
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1
EI
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 aL
4
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11L3
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1
EI

 c1
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FIGURE 7.17
Four machines along the span of a fixed-free beam used in Example 7.17.
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Finally, imagine a unit load placed at 

(f)

The flexibility matrix is

(g)

Systems exist in which the stiffness matrix is singular and hence the flexibility matrix
does not exist. These systems are called semidefinite or unconstrained. It is shown in Chapter 8
that these systems have a lowest natural frequency of zero and a corresponding mode where
the system moves as a rigid body.

The system of Figure 7.18(a) has two degrees of freedom and is unconstrained. The
stiffness matrix for this system is calculated as

(7.48)

The second row of the stiffness matrix is a multiple of the first row, which implies that the
matrix is singular and a flexibility matrix for this system does not exist. Indeed, when the def-
inition of flexibility influence coefficients is applied in an attempt to calculate the flexibility
matrix, as shown in Figure 7.18(b), no solution is found. Since the system is unconstrained,
when a unit force is applied to either mass, the system cannot remain in equilibrium. Instead,
the system will behave as a rigid body with uniform acceleration.

Another example of an unconstrained system is the system of Figure 7.11 in
Example 7.10. The stiffness matrix for this example is repeated here

(7.49)

Inspection of this matrix reveals that the first row plus two times the second row is pro-
portional to the third row. Thus, the three rows of the stiffness matrix are dependent, which
implies that the stiffness matrix is singular, which, in turn, implies that the flexibility
matrix does not exist. If, for example, a unit moment were applied to the pulley, then there
are no other external forces which develop a moment about the center of the pulley. Hence,
equilibrium cannot be maintained.

K = J
k 0 -kr
0 3k -6kr

-kr -6kr 13kr 2 K

K = c k -k
-k k

d

A = 10-7 ≥
   7.90   19.8   31.7   43.7
19.8  63.5 111.1 158.7
31.7 111.1 214.3 321.4
43.7 158.7 321.4 507.9

¥   m>N

a11 = w aL
4

; L
4
b = 7.90 * 10-7

 m>N
a = L>4

k

(a)

(b)

k (a21 – a11) = 0
1

m1 m2

FIGURE 7.18
(a) A two degree-of-freedom unrestrained
system. (b) FBDs of a system are used to show
that the flexibility matrix does not exist.
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A beam pinned at one end with no other support is an example of an unconstrained
structural system. Application of a force or moment will lead to rigid body rotation about
the pin support. A free-free beam is doubly unconstrained, in that it has two independ-
ent rigid-body motions. A free-free beam is unconstrained from transverse motion as well
as rigid-body rotation.

Flexibility influence coefficients can be used to calculate the flexibility matrix.
Equation (7.44) shows that knowledge of the flexibility matrix instead of knowledge of the
stiffness matrix is sufficient to proceed with solution of the system of differential equations
governing the vibrations of a MDOF system. The choice of whether to determine the stiff-
ness matrix or the flexibility matrix is usually easy.

For structural systems, calculation of the flexibility matrix is easier than calculation of
the stiffness matrix. For these systems, deflection equations from mechanics of solids are
used to determine the deflection of a particle due to an applied concentrated load. The
deflection equation for the structure is often available in a textbook or handbook (e.g.,
Appendix D). Thus, calculation of the flexibility matrix is direct, whereas the solution of
a system of simultaneous equations is necessary to determine each column of the stiffness
matrix. However, calculation of the stiffness matrix is easier than calculation of the flexi-
bility matrix for mechanical systems that comprise rigid bodies connected by flexible ele-
ments. For these systems, application of the equations of static equilibrium to appropriate
free-body diagrams is sufficient to calculate the stiffness matrix, while calculation of a
column of the flexibility matrix also requires the solution of a system of simultaneous
equations.

The stiffness matrix must be calculated for unconstrained systems.

7.7 INERTIA INFLUENCE COEFFICIENTS
The mass matrix can be calculated directly from the quadratic form of kinetic energy. It
also can be calculated from influence coefficients calculated from an impulse and momentum
analysis. Consider a linear system initially at rest in equilibrium. Free vibrations will occur
if the system is given either an initial kinetic or potential energy. The stiffness influence
coefficients are developed by examining potential energy induced by a static application of
a system of forces. Inertia influence coefficients are developed by examining the kinetic
energy induced by application of a system of impulses. An instantaneous change in velocity
(and hence an instantaneous change in kinetic energy) occurs due to application of an
impulse. If a system is dynamically coupled, then an instantaneous change in the velocity
associated with one generalized coordinate may cause an instantaneous change in the veloci-
ties associated with the other generalized coordinates.

Consider a MDOF system with generalized coordinates x1, x2, . . . , xn. Assume a
system of impulses is applied such that Ii is an impulse applied to the particle whose velocity
is Motion occurs with possibly non-zero velocities in the other generalized coordinates.
These velocities are related to the applied impulses by n application of the principle of
impulse and momentum. For a linear system, these are

(7.50)Ii = a
n

i = 1

mij x# j

x# i .
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where mij are the inertia influence coefficients. Consider in particular a system of applied
impulses such that and for Then Equation (7.50) reduces to

(7.51)

Thus, the inertia influence coefficient mik is one component of a system of impulses that is
applied to generate an instantaneous velocity with for Specifically, it 
is the impulse that is applied to the particle whose displacement is represented by xi. If a
system of impulses is applied to a linear system such that the relationship between the
applied impulses and the induced velocities is given by Equation (7.50), then the principle
of work and energy can be used to show that the kinetic energy developed by the system is
the quadratic form of kinetic energy given by Equation (7.22). Thus, the inertia influence
coefficients are the elements of the mass matrix.

The following summarizes the calculation of inertia influence coefficients:
1. Assume that a system of impulses, Ii, i � 1, 2, . . . , n are applied such that 

, , . . . , . Note that Ij is the impulse applied to the particle whose
displacement is described by the generalized coordinate xj. Repeated application of the
principle of impulse and momentum allows for the solution of the applied impulse.
The inertial influence coefficients are mi1 � Ii for i � 1, 2, . . . , n.

2. The procedure in step 1 is repeated with and all other velocities equal to zero 
for k � 2, 3, . . . , n. The inertia influence coefficients are mik � Ik.

3. If xj represents an angular coordinate, then Ij is an angular impulse and is an angu-
lar velocity.

4. The mass matrix is symmetric, mij � mji. This serves as a check on the calculations.

x# j

x# k = 1

x# n = 0x# 2 = 0x# 2 = 0
x# 1 = 1,

j Z k.x# j = 0x# k = 1

Ii = mik

j Z k.x# j = 0x# k = 1

Determine the mass matrix for the system of Figure 7.19(a) using inertia influence coeffi-
cients. Use � and x, as illustrated, as generalized coordinates.
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SO LU T I ON
To determine the first column of the mass matrix, set and The angular 
momentum of the system is equal to The linear momentum of the system is 

If the velocity of the end of the bar is zero but its angular velocity is one, the relative
velocity equation is used to determine the velocity of the mass center as directed down-
ward. An angular impulse equal to m11 is applied clockwise to the bar, and a linear impulse
equal to m21 is applied downward at the end of the bar. Impulse and momentum diagrams
are shown in Figure 7.19(b). Applying the principle of linear impulse and momentum gives

(a)

Applying the principle of angular impulse and angular momentum about the end of the
bar to impulse diagram of Figure 7.19(b)

(b)

To determine the second column of the mass matrix, set and . The angular
momentum of the bar is zero, and the linear momentum is simply m. An angular impulse
equal to m12 is applied clockwise to the bar, and a linear impulse of magnitude m22 is
applied downward at the end of the bar. Applying the principle of linear impulse and
momentum to the impulse diagram of Figure 7.19(c) yields

(c)

Of course, the mass matrix is symmetric, so However, it is best to check
the result. Applying the principle of angular impulse and angular momentum to the dia-
grams of Figure 7.19(c) about an axis at the end of the bar leads to

(d)

Thus, the mass matrix for this system is

(e)M = ≥
m

L2

3
m

L
2

m
L
2

m
¥

m
L
2

= m12

m12 = m21 = m L
2.

m = m22

x# = 1u
#

= 0

m 
L
2

 aL
2
b +

1
12

mL2
= m11 Q m11 = m 

L2

3

m 
L
2

= m21

L>2mv.

#

qI u =
1
12

mL2.
x# = 0.u

#

= 1

7.8 LUMPED-MASS MODELING
OF CONTINUOUS SYSTEMS
Vibrations of continuous systems are governed by partial differential equations. Analytical
solutions to partial differential equations are often difficult to obtain. Thus, approximate and
numerical methods are often used to approximate the vibration properties and systems response
of continuous systems. Some of these, such as the Rayleigh-Ritz method and the finite-
element method, are discussed in Chapters 10 and 11. A simpler method of approximation



500 CHAPTER 7

is to replace the distributed inertia of the continuous system by a finite number of lumped
inertia elements. A point where a lumped mass is placed is called a node. All inertia effects
are concentrated at the nodes. The nodes are assumed to be connected by elastic but mass-
less elements. Generalized coordinates are chosen as the displacements of the nodes.

A lumped-mass model of a continuous system is a discrete model of a continuous system.
A system with n nodes is modeled as an n degree-of-freedom system. Differential equations
of the form of Equation (7.1) or Equation (7.44) are derived to approximate the vibrations of
the continuous system. It is necessary to determine the mass matrix, either the stiffness matrix
or the flexibility matrix, and the force vector for the discrete approximation.

Unless the system is unconstrained, the flexibility matrix is used in lumped-mass mod-
eling of a continuous system. The flexibility matrix is obtained by using flexibility influence
coefficients, as described in Section 7.6. If the system is unconstrained, the stiffness matrix
must be determined.

Lumped-mass approximations for modeling a continuous system using one degree of
freedom were considered in Chapter 2. Recall that the inertia effects of a linear spring are
approximated by placing a particle of mass equal to one-third of the mass of the spring at
its end. The one-third approximation determined by calculating the particle mass such that
the kinetic energy of the model system is equal to the kinetic energy of the spring, assum-
ing a linear displacement function along the axis of the spring. This model illustrates that
it is incorrect to model the inertia effects of the spring by using the full mass of the spring.
The kinetic energy of particles near its fixed support is much less than the kinetic energy
of the particles near the point of attachment to the system. Kinetic energy considerations
could be used to determine the mass matrix for a discrete approximation. However, such a
mass matrix, called the consistent mass matrix, is difficult to obtain and is not a diagonal
matrix. The amount of effort used in determining a consistent mass matrix would be better
used in developing a finite-element model for the system.

For simplicity, it is desirable to specify a diagonal mass matrix for a lumped-mass
approximation of a continuous system. If a discretization is used where the mass of the
system is lumped at nodes, then an obvious approximation to the mass matrix is a diago-
nal matrix with the nodal masses along the diagonal. In such a situation, the values of the
nodal masses affects the accuracy of the system response. Using the one-degree-of-freedom
approximation of the inertia effects of a linear spring as a guide, it is clear that using the
entire mass of the system in the approximation will lead to errors in the approximation.

When a diagonal matrix is used to model the inertia effects of a continuous system, the
mass lumped at each node should represent the mass of an identifiable region of the struc-
ture. A good scheme is to define the nodal mass as the mass of a region whose boundaries
are halfway between the node and neighboring nodes on its right and left. If the node has
no neighbor on one side, but is adjacent to a free end, then all of the mass between the
node and the free end is used in calculating the nodal mass. If the particle is adjacent to a
support that prevents motion, then only half of the mass between the node and the sup-
port is used. The accuracy of this method of approximation is considered in Chapter 8.

Calculation of the force vector may also require additional approximations. As shown in
Section 7.3, the force vector is obtained by calculating the generalized forces, which occur when
the method of virtual work is used. If a concentrated load is applied at a node, then the gener-
alized force for the node’s generalized coordinate is the value of the concentrated load and the
generalized forces for all other coordinates are zero. However, if a concentrated load is applied
at a location other than a node or the loading is distributed, calculation of the generalized forces
requires additional approximations. The dynamic displacement is not available to apply the
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method of virtual work. In these cases it is suggested that the loading be replaced by a series of
concentrated loads, calculated as follows, such that the resulting system is approximately stati-
cally equivalent to the applied loading. Static equivalence does not imply dynamic equivalence.

If the applied loading is replaced by a system of concentrated loads, the following
method is used. The loading between any two nodes is replaced by a concentrated load at
each of the nodes. The two concentrated loads are statically equivalent to the loading
between the nodes. The sum of the concentrated loads is the resultant of the load-
ing between the nodes. The moment of the distributed loading about either node is the
same as the moment of the two concentrated loads about that point. Thus, the total general-
ized force applied at a node is approximated by the sum of the contribution from the load-
ing between the node and its neighbor to the left and the contribution from the loading
between the node and its neighbor to the right. If the node is adjacent to a free end, the con-
tribution to the loading between the node and the free end is the resultant of the loading. If
the particle is adjacent to a support that prevents displacement, only the resultant of the
loading between the node and the point halfway between the node and the support is used.
In this case, the work done by particles near supports is ignored in modeling the system, just
as these particles’ kinetic energy is ignored. The concentrated load is not statically equiva-
lent to the actual loading if the particle is adjacent to a free end or a support.

Derive the differential equations whose solution approximates the forced response of the
cantilever beam of Figure 7.20. Use four degrees of freedom to discretize the system. The
beam is made of a material of elastic modulus E and mass density �. It has a cross-sectional
area A and moment of inertia I. Neglect damping.
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FIGURE 7.20
(a) System of Example 7.19. (b) Calculation of nodal masses. (c) Nodal forces are applied such that the
forces are statically equivalent to the distributed loading of Figure 7.20(a).
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SO LU T I ON
The beam is discretized by lumping its mass in four particles as shown in Figure 7.20(b).
The nodes are chosen to be equally spaced. The generalized coordinates are the displace-
ments of the nodes. The mass of each particle models the inertia effects of the regions
shown in the figure. The loading is replaced by time-dependent concentrated loads at the
nodes, as shown in Figure 7.20(c).

The flexibility matrix for this discretized system is determined from flexibility influ-
ence coefficients, as described in Section 7.6. The first column is obtained by placing a unit
load at the first node and calculating the resulting deflections at each of the nodes. The
result is

(a)

The mass matrix is a diagonal matrix with the nodal masses along the diagonal. The force
vector is simply the vector of concentrated loads from Figure 7.20(c). Then Equation (7.44)
becomes

(b)

which simplifies to
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7.9 BENCHMARK EXAMPLES

7.9.1 MACHINE ON FLOOR OF AN INDUSTRIAL PLANT
Consider the machine directly bolted to the beam. Four lumped masses, as illustrated
in Figure 7.21, are used to represent the motion of the beam, rather than one. The 
total weight of the beam is 250.8 lbf or a mass of 7.79 slugs. The mass matrix is deter-
mined using the methods described in Section 7.8. Each lumped mass has a value of 
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7.79 slugs/5 � 1.56 slugs. The mass associated with x3 is the mass of the machine plus the
lumped mass:

(a)

The flexibility matrix is calculated using Appendix D. For example, calculation of the
fourth column of the matrix requires a unit force applied at a � 16 ft, and calculation of
the deflection at the locations of the generalized coordinates is

(b)
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FIGURE 7.21
Four degree-of-freedom model of machine
bolted directly to beam.
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(e)

(f)

The differential equations that model the system are

(g)

or

(h)

Now consider a five degree-of-freedom model including the vibration isolator of stiff-
ness 3.93 � 104 lbf/ft as illustrated in Figure 7.22(a). Let the displacement of the machine
be x5. The first four columns and rows of the flexibility matrix for this model are the same
as in Equation (f ). The fifth column is calculated by placing a unit load on the machine
and no loads anywhere else. However, summing forces on a free-body diagram of the
machine Figure 7.22(b) reveal

(i)

and the force developed in the isolator is unity. Thus, the deflections of the other points on
the beam are as if a unit load were applied to the mass whose displacement is x3. This is the
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displacement as calculated for the third column of the flexibility matrix. Hence, the flexi-
bility matrix for the five degree-of-freedom model is

(j)

The mass matrix is

(k)

The differential equations modeling the displacement of the system are

(l)10-7  G
3.34     5.73     5.35     3.14 106.7

5.73 14.4 15.2     9.31 302.9

5.35 15.2 20.1 13.2 401.1

3.14     9.31 13.2 11.2 263.4
5.35 15.2 20.1 13.2 794.3

W G 
x
$

1

x
$

2

x
$

3

x
$

4

x
$

5

W + G
x1

x2

x3

x4

x5

W = 10-7 G
      3.43

      9.74
  12.9

      8.47

255.4

W F0   sin vt

M = F
1.56 0 0 0 0

0 1.56 0 0 0
0 0 1.56 0 0
0 0 0 1.56 0
0 0 0 0 31.1

V   slug

A = 10-7 H
2.14 3.67     3.43 2.01      3.43
3.67 9.12     9.74 5.97      9.74
3.43 9.74 12.9 8.47  12.9
2.01 5.97     8.47 7.21        8.47
3.43 9.74 12.9 8.47 255.4

X  

ft
lb

4 ft 4 ft 4 ft4 ft4 ft

1.56
slug

31.1
slug

3.93 × 104

1.56
slug

1

(a) (b)

1

1.56
slug

1.56
slug

x5

x4x3

k(a55 – a35) = 1

x2x1

lb
ft

FIGURE 7.22
(a) Five degree-of-freedom model machine on fixed pinned beam. (b) FBD of machine and particle on
beam.



7.9.2 SIMPLIFIED SUSPENSION SYSTEM
The distribution of mass about the center of mass is considered to matter such that the
vehicle has the four degree-of-freedom model of Figure 7.23. The vehicle is now repre-
sented as a nonuniform bar of mass ms � 300 kg. The length of the bar is the length of the
vehicle is l � 3 m with a mass center 1.3 m from the front axle. The moment of inertia of
the vehicle is l � 225 kg � m2. Each axle has a mass ma � 25 kg. The stiffness of each set
of tires is kt � 100,000 N/m. It is estimated that the damping coefficient of each tire is
10,000 N � s/m. The front wheel has a displacement y(t), and the rear wheel has a displace-
ment where v is the constant horizontal speed of the car. The generalized 
coordinates are x1 (the displacement of the mass center of the vehicle form the system’s equi-
librium position), � (the clockwise angular displacement of the vehicle form the system’s
equilibrium position), and x2 (the displacement of the front axle), and x3 (the displacement
of the rear axle), where all are measured from the system’s equilibrium position.

Lagrange’s equations are employed to derive the governing differential equations. The
kinetic energy of the car at an arbitrary instant is

(a)

The potential energy of the car at an arbitrary instant is

(b)

The system’s Lagrangian is

(c)+

1

2
kt (z - x3 )2 d+

1
2

kt (y - x2)
2

- c1
2

k 3x2 - (x1 + a u)42 +

1

2
k {x3 - 3x1 - (L - a )u4}2

L =

1

2
 ms x 

# 2
1 +

1

2
I u

#
2
2 +

1

2
 ma x 

# 2
2 +

1

2
 max 

# 2
3

V =

1
2

k3x2- (x1+a u)42 +

1
2

k{x3- 3x1- (L - a )u4}2
+

1
2

kt (y - x2)2
+

1
2

kt (z - x3)2

T =

1
2

 ms x 
# 2
1 +

1
2

I u
#

2
+

1
2

 ma x 
#2
2 +

1
2

 ma x 
# 2

3

z = y 1t -
L
v2
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1.7 m 1.3 m

x3

v

x1

G

12,000 N/m

ms = 300 kg I = 225 kg · m2

100,000 N/m

1200 N · s/m

25 kg

10,000 N · s/m

z(t) = y(t – L/v)

x2

12,000 N/m

100,000 N/m

1200 N · s/m

10,000 N · s/m

y(t)

θ

25 kg

FIGURE 7.23
Four degree-of-freedom
model of vehicle suspension
system.
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Rayleigh’s dissipation function is

(d)

Application of Lagrange’s equations yield

(e)

(f)

(g)

and

(h)

The equations summarized in matrix form become

(i)+ ≥
k 3a2

+ (L - a)24 k L -ka k (L - a)
-k (L - 2a) 2k -k -k

-ka -k k + kt 0
k (L - a) -k 0 k + kt

¥  ≥
u

x1

x2

x3

¥ = ≥
0
0

ct y# + kt y
ctz

#

+ kt z

¥

+ ≥
c 3a2

+ (L - a)24 cL - ca c (L - a)
cL 2c - c - c
- ca - c c + ct 0

c (L - a) - c 0 c + ct

¥  ≥
u
#

x# 1

x
#

2

x# 3

¥

≥
I 0 0 0
0 ms 0 0
0 0 ma 0
0 0 0 ma

¥  ≥
u
$

x
$

1

x
$

2

x
$

3

¥

ma x
$

3 + c (L - a)u
#

- cx# 1 + (c + ct )x
#

3 + k (L - a )u - kx1 + (k + kt )x3 = ct z# + kt z

d
dt

 a 0L
0x# 3
b -

0L
0x3

-

0�

0x# 3
= 0

ma x
$

2 - cau
#

- cx# 1 + (c + ct )x
#

2 - ka u - kx1 + (k + kt )x2 = ct y# + kt y

d
dt

 a 0L
0x# 2
b -

0L
0x2

-

0�

0x# 2
= 0

ms x
$

1 + c (L - 2a)u
#

+ 2cx#1 - cx#2 - cx#3 + k (L - 2a) + 2kx1 - kx2 - kx1 = 0

d
dt

 a 0L
0x# 1
b -

0L
0x1

-

0�

0x# 1
= 0

+ kLx1 - kax2 + k (L - a )x3 = 0

I u
$

+ c 3a2
+ (L - a)24 u# + cLx#1 - cax#2 + c (L - a )x#3 + k 3a2

+ (L - a)24u

d
dt

 a 0L

0u
# b -

0L
0u

-

0�

0u
# = 0

-

1

2
 ct ( y# - x# 2)

2
+

1

2
 ct (z

#

- x# 3)2

� = -

1
2

 c [x# 2 - (x# 1 + a u
#

)]2
-

1
2

 c {x# 3-[x# 1- (L - a )u
#

]}2
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Substituting the given values into Equation (i) leads to

(j)

7.10 FURTHER EXAMPLES

+104 ≥
 5.5     -3.60   -1.56      2.04

-1.08    2.4 -1.2 -1.2
-1.56 -1.2      1.12 0
   2.04 -1.2 0  1.2

¥  ≥
u

x1

x2

x3

¥ = ≥
0
0

1 * 104y# + 1 * 105y
1 * 104z# + 1 * 105z

¥

≥
225 0 0 0
0 300 0 0
0 0 25 0
0 0 0 25

¥  ≥
u
$

x
$

1

x
$

2

x
$

3

¥ + 103≥
 5.5   -0.48   -1.56      2.04

-0.48    2.4 -1.2 -1.2
-1.56 -1.2  11.2 0
   2.04 -1.2 0 1.12

¥  ≥
u
#

x#1
x#2
x#3

¥

Refer to the system shown in Figure 7.24(a). 

(a) Use Lagrange’s equations to derive the differential equations governing the motion of
the three degree-of-freedom system shown. Use x1, x2, and � as generalized coordinates.
Assume small displacements. 

(b) Use stiffness influence coefficients to derive the stiffness matrix. 
(c) Use inertia influence coefficients to derive the mass matrix.

EXAMPLE 7 . 2 0

x1 x2

k

k

k

2L/3 L/4

L/2 L/2

L/12

F(t)

M(t)

Identical slender rods
of mass m

(a)

q

FIGURE 7.24
(a) System of Example 7.20. (b) FBDs for calculation of the first column of stiffness matrix. (c) FBDs for
the second column of stiffness matrix. (d) FBDs for the third column of stiffness matrix. (e) Impulse-
momentum diagrams to determine the first column of mass matrix. (f) Impulse-momentum diagrams for
the second column of mass matrix. (g) Impulse-momentum diagrams for the third column of mass matrix.
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k33

k

oy

oy

ox

ox

k11

(b)

(c)

(d)

k21

k
L
3

k33

k

k23

k22

k12

k
k32

L
2

kL

oy

ox

k13

k
2L
3

FIGURE 7.24
(Continued)

SO LU T I ON
(a) The system’s kinetic energy at an arbitrary instant is

(a)

The system’s potential energy at the same instant is

(b)V =

1
2

k aL
2
ub2

+

1

2
kx 2

1 +

1

2
k ax1 + 2x2

3
- Lub2

T =

1
2

m (Lu
#

)2
+

1
2

 a 1
12

mL2b u#2 +

1
2

m ax
#

1 + x# 2

2
b2

+

1
2
a 1
12

mL2b ax
#

2 - x# 1

L
b2
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The Lagrangain becomes

(c)- c1
2

k aL
2
ub2

+

1
2

kx 2
1 +

1
2

k ax1 + 2x2

3
- L ub2 d

L = T - V =

1
2
a1
3

mL2b u# 2 +

1
2

m ax
#

1 + x# 2

2
b2

+

1
2
a 1
12

mL2b ax
#

2 - x# 1

L
b2

=

m31

m11

m21

=

(f)

(e)

(g)

m32m22

Ix

Iy

m12

Ix

Iy

mL2I
12

mL
2

mL2

mL
2

mL
2

1
12

I
L

=

m33m23

m13

Ix

Iy

mL2I
12

I
L

FIGURE 7.24
(Continued)
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The method of virtual work is used to obtain the generalized forces. Assume virtual dis-
placements ��, �x1, and �x2. The virtual work done by the external forces is

(d)

Thus, 

Successive application of Lagrange’s equations leads to

(e)

(f)

(g)

Cleaning up these equations and writing them in a matrix form gives

(h)

(b) The differential equations are derived assuming the same displacement vector as in 
part (a). The first column of the stiffness matrix is obtained by setting � � 1, x1 � 0, and

G
1

3
mL2 0 0

0
1
3

m
1
6

m

0
1
6

m
1
3

m

W  J
u
$

x
$

1

x
$

2
K + G

5
4

kL2
-

1
3

kL -

2
3

kL

-

1
3

kL
10
9

k
2
9

k

-

2
3

kL
2
9

k
4
9

k

W  J
u

x1

x2
K = E M(t)

1
4

F(t )

3
4

F (t )

U

- c- 1

2
(2)k a x1 + 2x2

3
- L ub  a2

3
b d =

3
4

F (t )

d
dt

 c1
2

 (2)m ax# 1 + x# 2

2
b  a1

2
b +

1
2

 (2) a 1
12

mL2b  ax
#

2 - x# 1

L
b  a1

L
bd

d
dt

 a 0L
0x# 2

b -

0L
0x2

= Q3

- c- 1
2

(2)kx1 -

1
2

(2)k ax1 + 2x2

3
- L ub a1

3
bd =

1
4

F (t )

d
dx
c1
2

(2)m ax
#

1 + x# 2

2
b a1

2
b +

1
2

(2) a 1
12

mL2b ax
#

2 - x# 1

L
b a- 1

L
bd

d
dt

 a 0L
0x# 1

b -

0L
0x1

= Q2

d
dt

 c1
2

 (2)a1
3

mL2b u# d - c- 1

2
 (2)k aL

2
b2

u -

1

2
 (2)k ax1 + 2x2

3
- Lub (-L) d = M (t )

d
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 a0L

0u
#b -

0L
0u

= Q1

Q1 = M (t ), Q2 =

F (t )

4
, and  Q3 =

3F (t )

4
.

dW = M (t )du + F (t )adx1 + 3dx2

4
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x2 � 0, as shown in Figure 7.24(b). Summing moments using the FBD of the lower bar,
MO � 0 yields

(i)

Summing moments on the FBD of the upper bar using M2 � 0 yields

(j)

Summing moments on the FBD of the upper bar using M1 � 0 yields

(k)

The second column is obtained by setting � � 0, x1 � 1, and x2 � 0. Summing moments
on the upper bar using the FBDs of Figure 7.24(c) yields

(l)

and

(m)

The third column is obtained by setting � � 0, x1 � 0, and x2 � 1. Summing moments
on the upper bar using the FBDs of Figure 7.24(d) yields

(n)

The remaining elements of the stiffness matrix are determined using symmetry of the stiff-
ness matrix.

(c) The mass matrix is determined through the use of inertia influence coefficients. The
first column is calculated by setting , , and . Using the principle of
angular impulse and momentum applied to the lower bar about O using impulse momen-
tum diagrams of Figure 7.24(e) leads to

(o)

Applying the principle of impulse and momentum to the upper bar yields

(p)

The second column of the mass matrix is calculated by setting , , and 
The induced velocity of the mass center of the upper bar is one-half downward, and the
induced angular velocity of the bar is counterclockwise. Using angular momentum
about O on the lower bar of the momentum diagrams of Figure 7.24(f ) leads to

(q)m12 = 0

1>L
x# 2 = 0.x# 1 = 1u

#

= 0

m21 = m31 = 0

m11 =

1
12

mL2
+

mL
2

 aL
2
b Q m11 =

mL2

3

x# 2 = 0x# 1 = 0u
#

= 1

(k33)L -

2k
3

 a2L
3
b = 0 Q k33 =

4k
9

(k32 )L -

k
3

 a2L
3
b = 0 Q k32 =

2k
9

(k22)L - (k)L - ak
3
b aL

3
b = 0 Q k22 =

10k
9

k31(L) + (kL) a2L
3
b = 0 Q k31 = -

2kL
3

g

k21(L) + (kL) aL
3
b = 0 Q k21 = -

kL
3

g

k11 - (kL)(L) - ak L
2
b  aL

2
b = 0 Q k11 =

5kL2

4

g
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Application of the principle of angular impulse and angular momentum for the upper bar
about an axis through the particle whose displacement is x2 leads to

(r)

Application of the principle of angular impulse and angular momentum for the upper bar
about an axis through the particle whose displacement is x1 leads to

(s)

The third column of the mass matrix is calculated by setting  , , and 
The induced velocity of the mass center is one-half downward, and the induced angular
velocity of the bar is clockwise. Application of the principle of angular impulse and
angular momentum for the upper bar about an axis through the particle whose displace-
ment is x1 using the diagrams of Figure 7.24(g) leads to

(t)

The remaining elements of the mass matrix are determined from its symmetry.

m33 (L ) =

m
2

 aL
2
b +

1
12

mL Q m33 =

m
3

1>L
x# 2 = 1.x# 1 = 0u

#

= 0

m32 (L) =

m
2

 aL
2
b -

1
12

mL Q m32 =

m
6

m22 (L) =

m
2

 aL
2
b +

1
12

mL Q m22 =

m
3

The three degree-of-freedom model of a human hand and upper arm when squeezing a
handle was first suggested in by Dong, Dong, Wu, and Rakheja. It is illustrated in Figure 7.25.
Use Lagrange’s equations to derive a mathematical model for the arm.

SO LU T I ON
The kinetic energy of the system at an arbitrary instant using the generalized coordinates
indicated in Figure 7.25(b) is

(a)

The potential energy at an arbitrary instant is

(b)

The Lagrangian is

(c)

Rayleigh’s dissipation function is

(d)� = -

1
2

c1x# 2
1 -

1
2

c2 (x# 2 - x1)2
-

1
2
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-
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2
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-

1
2
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-
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2

k3 (x3 - x2 )2
-

1
2

k4 ( y - x2 )2
-

1
2

k5 ( y - x3 )2

L =

1
2

m1x# 2
1 +

1
2

m2x# 2
2 +

1
2

m3x# 2
3 +

1
2

m4 y# 2 +

1
2

m5 y# 2 -

1
2

k1x 2
1 -

1
2

k2 (x2 - x1)2

V =

1

2
k1x 2

1 +

1

2
k2 (x2 - x1)

2
+

1

2
k3 (x3 - x2)

2
+

1

2
k4 (y - x2)2

+

1

2
k5 ( y - x3 )2

T =

1

2
m1x# 2

1 +

1

2
m2x# 2

2 +

1

2
m3 x# 2

3 +

1

2
m4y# 2

+

1

2
m5y# 2

EXAMPLE 7 . 2 1
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Application of Lagrange’s equation for x1, yields

(e)

Application of Lagrange’s equation for x2, yields

(f)

Application of Lagrange’s equation for x3, yields

(g)- k5( y - x3 ) (-1)4 = 0

d
dx

 (m3x# 3 ) - 3- c3(x
#

3 - x2) - c5( y# - x# 3 ) (-1)4 - 3-k3 (x3 - x2 )

d
dt

 a 0L
0x# 3

b -

0�

0x# 3

-

0L
0x3

= 0

- 3-k2(x2 - x1) - k3 (x3 - x2) (-1)-k4( y - x2) (-1)4 = 0

d
dx

 (m2x# 2 ) - 3- c2(x
#

2 - x# 1) - c3(x
#

3 - x# 2) (-1)c4 ( y# - x# 2) (-1)4

d
dt

 a 0L
0x#2
b -

0�

0x#2
-

0L
0x2

= 0

d
dx

 (m1x# 1) - 3- c1x
#

1 - c2(x# 2 - x# 1) (-1)4 - 3-k1x1 - k2 (x2 - x1) (-1)4 = 0

d
dt

 a 0L
0x# 1

b -

0�

0x# 1

-

0L
0x1

= 0

k5 c5

c2
k2

c1
k1

k4 c4

Fingers
m3

Palm
m2

Upper arm
m1

(b)(a)

Fingers’
skin

Palm
skin

x3

c3k3

x2

x1

y

FIGURE 7.25
(a) Hand and upper arm gripping an object.
(b) Three degree-of-freedom model of hand
and upper arm.
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The differential equations are written in matrix form as

(h)J
x1

x2

x3
K = J

0

c4 y# + k4 y
c5 y# + k5 y K+  J

k1 + k2 -k2 0

-k2 k2 + k3 + k4 -k3

0 -k3 k3 + k5

K

J
m1 0 0
0 m2 0
0 0 m3

K  J
x
$

1

x
$

2

x
$

3
K + J

c1 + c2 -c2 -0
- c2 c2 + c3 + c4 - c3

0 - c3 c3 + c5
K  J

x#1
x#2
x#3
K

To study the instability of a missile as it flies, it is modeled as a free-free beam. For ease of
modeling, a four degree-of-freedom model is used as shown in Figure 7.26(a). The beam
is divided as shown and the masses are lumped as shown. Determine the differential equa-
tions for governing the four degree-of-freedom model.

SO LU T I ON
The flexibility matrix for this unrestrained system does not exist; therefore, we use the stiff-
ness matrix in the modeling. Stiffness influence coefficients are used to develop the stiff-
ness matrix. Consider the deflection of the beam due to concentrated loads applied at

, and L, as shown in Figure 7.26(b). The deflection of a beam due to this
series of concentrated loads is

(a)

Requiring that gives C2 � 0. Requiring that leads to C1 � 0. The
system is in static equilibrium; thus, F 0, or using the FBD of Figure 7.27(c) yields

(b)F1 + F2 + F3 + F4 = 0

=g
v‡(0) =

F1

EIv–(0) = 0

+

1
6

F4 (z - L )3u (z - L) + C1

z 3

6
+ C2

z 2

2
+ C3z + C4d

w (z) =

1
EI

 c1
6

F1z 3
+

1
6

F2 az -

L
3
b3

u az -

L
3
b +

1
6

F3 az -

2L
3
b3

u az -

2L
3
b

z = 0, L>3, 2L>3

EXAMPLE 7 . 2 2

m/3

(b)

(a)

(c)

m/3

F4F2F1 F3

L/3 L/3 L/3

m /6 m /6

L/3 L/3 L/3

v

FIGURE 7.26
(a) Missile is modeled as a free-free
beam. (b) Four degree-of-freedom model
of missile with concentrated masses
placed along span of beam. (c) Forces
are used to determine the stiffness
matrix; since the system is unrestrained,
statics must first be used to obtain rela-
tions between the forces.
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and M � 0 about any axis. Choose an axis through x � L,

(c)

Solving for F1 and F4 from Equations (b) and (c) leads to

(d)

(e)

Substituting Equations (d) and (e) into Equation (a) leads to

(f)

The constants C3 and C4 cannot be solved by application of statics or boundary conditions.
The deflections at the points where the forces are applied are

(g)

(h)

(i)

and

(j)

The first column of the stiffness matrix is obtained by setting x1 � 1, x2 � 0, x3 � 0, and
x4 � 0. Substitute Equation (e) into Equations (h) through (j). Solve the resulting equations
for F2, F3, C3, and C4. Substitute into Equations (d) and (e) to find F1 and F4. The second
column of the stiffness matrix is obtained by setting x1 � 0, x2 � 1, x3 � 0, and x4 � 0 and
repeating the same procedure. The third column is obtained by setting x1 � 0, x2 � 0,
x3 � 1, and x4 � 0 and repeating the procedure. The fourth column is obtained by setting
x1 � 0, x2 � 0, x3 � 0, and x4 � 1. The stiffness matrix must be symmetric. The result is

(k)K =

EI
L3 ≥

   43.2      -97.2      64.8 -10.8
-97.2       259.2 -226.8    64.8
   64.8    -226.8    259.2 -97.2
-10.8         64.8    259.2     43.2
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 c1
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The mass matrix is obtained by the methods of Section 7.7. resulting in

(l)

where mb is the total mass of the beam.
The differential equations governing the displacements of the lumped masses are

(m)
mb

6
 ≥

1 0 0 0
0 2 0 0
0 0 2 0
0 0 0 1

¥  ≥
x
$

1

x
$

2

x
$

3

x
$

4

¥ +

EI
L3 ≥

  43.2 -97.2    64.8 -10.8
-97.2  259.2 -226.8  64.8
  64.8 -226.8  259.2 -97.2
-10.8    64.8  259.2  43.2

¥  ≥
x1

x2

x3

x4

¥ = ≥
0
0
0
0

¥

M =

mb

6
 ≥

1 0 0 0
0 2 0 0
0 0 2 0
0 0 0 1

¥

7.11 SUMMARY

7.11.1 IMPORTANT CONCEPTS
• The FBD method can be used to derive the governing differential equations of a MDOF

system.
• Lagrange’s equations provide an alternative method for deriving differential equation for

a MDOF system.
• Lagrange’s equations is based upon the calculus of variations. The kinetic energy and the

potential energy are calculated at an arbitrary instant in terms of the generalized coordinates.
• The Lagrangian is the difference between kinetic and potential energies written at an

arbitrary instant.
• Rayleigh’s dissipation function is the power dissipated by viscous damping forces, writ-

ten at an arbitrary instant.
• The method of virtual work is used to calculate the generalized forces.
• The kinetic energy, the potential energy, and Rayleigh’s dissipation function all have

quadratic forms for linear systems.
• The mass matrix, stiffness matrix, and damping matrix can be directly calculated from

the quadratic forms.
• The mass matrix, damping matrix, and stiffness matrix are all symmetric when

Lagrange’s equations are used to derive the differential equations.
• When the mass matrix is not a diagonal matrix, the system is said to be dynamically

coupled. When the stiffness matrix is not a diagonal matrix, the system is said to be stat-
ically coupled.
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• The stiffness matrix also may be calculated using stiffness influence coefficients. One
column of the stiffness matrix is calculated at a time. If the ith column is being calcu-
lated, a unit displacement is assumed for the particle whose displacement is represented
by the generalized coordinate xi with the displacements of the particles whose displace-
ments are represented by xj for j � 1, 2, , n, but set equal to zero. The stiffness
influence coefficients are the forces required to maintain this in static equilibrium.

• The flexibility matrix is the inverse of the stiffness matrix. The differential equations can
be written using the flexibility matrix.

• The flexibility matrix can be calculated using flexibility influence coefficients. One
column of the flexibility matrix is calculated at a time. To calculate the ith column of
the flexibility matrix, a unit force is applied at the location described by the generalized
coordinate xi . The flexibility influence coefficients are the displacements at the locations
described by the generalized coordinates.

• The flexibility matrix does not exist for unrestrained systems.
• Inertia influence coefficients can be used to calculate the mass matrix. Assume a unit

velocity for the ith generalized coordinate and all other velocities zero as 
for Calculate the system of impulses that would have to be applied to achieve this
configuration. These impulses are the ith column of the mass matrix.

• Continuous systems may be modeled as MDOF systems. Flexibility influence coeffi-
cients are used to determine the flexibility matrix for a lumped mass model.

7.11.2 IMPORTANT EQUATIONS
Hamilton’s Principle

(7.6)

Lagrangian

(7.7)

Lagrange’s equations for a conservative system

(7.10)

Lagrange’s equations for a nonconservative system

(7.11)

Virtual work by non-conservative forces

(7.12)

Rayleigh’s dissipation function

(7.13)� = -

1
2

P

dWnc = a
n

i =  1

Qidxi

d
dx

 a 0L
0x#
i

b -

0L
0xi

= Qi  i = 1, 2, . . . , n

d
dx

 a 0L
0x#
i

b -

0L
0x# i

= 0  i = 1, 2 , . . . , n

L = T - V

d
L

t2

t1

(T - V + dWnc)dt = 0

j Z i.
x# j = 0x# i = 1

j Z iÁ
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Quadratic forms of potential and kinetic energies

(7.21)

(7.22)

Differential equations for a linear system written in matrix form

(7.31)

Quadratic form of Rayleigh’s dissipation function

(7.32)

Flexibility matrix

(7.43)

PROBLEMS

SHORT ANSWER PROBLEMS
For Problems 7.1 through 7.15, indicate whether the statement presented is true or false.
If true, state why. If false, rewrite the statement to make it true.

7.1 The differential equations for a linear MDOF system can be written in a matrix
form.

7.2 Lagrange’s equations can be used to derive the differential equations governing
the motion only for linear systems.

7.3 Lagrange’s equations can be used for conservative systems and nonconservative
systems.

7.4 The FBD method, when applied to a MDOF linear system, always leads to
symmetric mass, stiffness, and damping matrices.

7.5 Lagrange’s equations, when applied to a MDOF linear system, always leads to
symmetric mass, stiffness, and damping matrices.

7.6 The quadratic form of the potential energy can be used to determine the stiffness
matrix for a linear MDOF system.

7.7 A system is dynamically coupled if the mass matrix for the system is not
symmetric.

7.8 The choice of generalized coordinates is irrelevant in deciding whether a system
is dynamically coupled.

7.9 The flexibility matrix is the transpose of the stiffness matrix.
7.10 A diagonal stiffness matrix means that kij � kji for all i, j � 1, 2, . . . , n.
7.11 Elements of the mass matrix for a MDOF system may have different dimensions.
7.12 The formulation of the stiffness influence coefficient method to determine the

stiffness matrix for a linear MDOF system relies on the concept that potential
energy is a function of position.

A = K-1

� = -

1
2a

n

i = 1
a

n

j = 1

ci,j x
#

i x
#

j

Mx
$

+ Cx# + Kx = F

T =

1

2a
n

i = 1
a

n

j = 1

mijx
#

i x
#

j

V =

1
2a

n

i = 1
a

n

j = 1

kij xi xj
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7.13 When flexibility influence coefficients are used to calculate the flexibility matrix
for a MDOF system, the flexibility matrix is calculated one column at a time.

7.14 The stiffness matrix for a system always exists but the flexibility matrix does not
always exist.

7.15 A system is not statically coupled if its flexibility matrix is a diagonal matrix.
7.16 Lagrange’s equations can be used to derive the equations governing the

vibrations of three masses along the span of a beam ignoring the inertia of the
beam and using three degrees of freedom in the model.

Problems 7.17 through 7.28 require a short answer.

7.17 Write the general matrix form of the differential equations governing the
undamped and forced vibrations of a linear nDOF system.

7.18 State Lagrange’s equations for a conservative system.
7.19 What defines whether a system is dynamically coupled?
7.20 How is Rayleigh’s dissipation function used?
7.21 What is a variation?
7.22 How is the method of virtual work applied in the application of Lagrange’s

equations for a MDOF system?
7.23 What is Maxwell’s reciprocity relation and how is it applied?
7.24 Write the differential equations governing a MDOF system in matrix form

when the mass matrix, damping matrix, and flexibility matrix are known.

For Problems 7.25 through 7.28, the generalized coordinates for modeling a system have
been selected as x1, x2, and � where x1 and x2 are linear displacements and � is an angular
coordinate.

7.25 Describe the calculation of the stiffness influence coefficient k13.
7.26 Describe the calculation of the flexibility influence coefficient a13.
7.27 Describe the calculation of the inertia influence coefficient m12.
7.28 Describe the calculation of the inertia influence coefficient m31.

Problems 7.29 through 7.41 require a short calculation.

7.29 What is the kinetic energy of the system of Figure SP7.29 at an arbitrary instant?

7.30 What is the potential energy in the system of Figure SP7.29 at an arbitrary instant?
7.31 What is Rayleigh’s dissipation function for the system of Figure SP7.28 at an

arbitrary instant?
7.32 What is the result of

d
dt

 c 0

0x#
 (2x# - y# )2d

x1

300 N · s/m120 N · s/m 100 N · s/m

600 N/m2000 N/m3000 N/m

150 N · s/m

x2 x3

10 kg 4 kg 8 kg

FIGURE SP7.29
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7.33 What is virtual work done by the external forces in Figure SP7.33, assuming
virtual displacements �x and �y?

7.34 What are the generalized forces for the system of Figure SP7.34 using x and � as
generalized coordinates?

7.35 The quadratic form of the potential energy for a three degree-of-freedom 
system is

Determine the stiffness matrix for the system.

7.36 The kinetic energy for a three degree-of-freedom system is

Determine the mass matrix for the system.

7.37 When a load of 50 N is applied to the 250 kg mass in the system of Figure SP7.37,
the displacements of the masses are x1 � 3 mm, x2 � 5 mm, and x3 � 2.5 mm.
Determine all possible elements of the system’s flexibility matrix.

T = 3 ax# 2 -

1
2

x# 1b
2

+ 12 ax# 2 +

1
3

x# 1b
2

+ 4x# 2
3

V = 5x 2
1 + 4x1x2 + 2x1x3 + 8x 2

2 + 3x2x2 + 6x 2
3

x

F1(t)

F2(t)

L/2

q

FIGURE SP7.34

2r

M(t)

F(t)

r

y

x

FIGURE SP7.33
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7.38 When the block of mass 10 kg is given a displacement of 3 mm in the system
of Figure SP7.38 and all other blocks are held in their equilibrium positions, it
is found that the forces on the blocks are F1 � 0, F2 � 100 N, and F3 � 300 N.
Determine all possible elements of the system’s stiffness matrix.

7.39 What is the determinant of the stiffness matrix of the system of Figure SP7.39?

7.40 When block A of Figure SP7.40 is given a velocity of 15 m/s and the velocities
of blocks B and C remain at rest, an impulse of 3 N # s applied to block A is
required. Determine all possible elements of the system’s mass matrix.

7.41 When the right end of the bar of the system of Figure SP7.41 is given a velocity of
3 m/s but the angular velocity of the bar is zero, an impulse of magnitude 6 N # s is
required at the right end of the bar and an angular impulse of 10 N # m # s is
required. Determine all possible elements of the mass matrix for this two
degree-of-freedom system using x, which is the displacement of the right end
of the bar, and �, which is the angular rotation of the mass center of the bar, as
generalized coordinates.

x1 x2 x3

15 m/s

A
3 N · s

B C

FIGURE SP7.40

x2

k
2m

x3

3k
mm

x1 x4

2k
2m

FIGURE SP7.39

x1 x2 x3

20 kg
100 N

30 kg 300 N

3 mm

10 kg

FIGURE SP7.38

75 kg
50 N

250 kg 70 kg

FIGURE SP7.37
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7.42 Lagrange’s equations are used to derive the differential equations for a three
degree-of-freedom system resulting in

where x1 and x2 are linear displacements and � is an angular coordinate. Match
the term in the equation with its units. Some units may be used more than
once, others not at all.

(a) m11 (i) N # s/m
(b) m23 (ii) N/m
(c) m33 (iii) m
(d) c12 (iv) kg
(e) c22 (v) N # s # m/rad
(f ) c33 (vi) N # m/rad
(g) k13 (vii) rad/s2

(h) k21 (viii) N/rad
(i) k33 (ix) N
(j) F2 (x) kg # m2

(k) F3 (xi) N # m
(l) x2 (xii) N # s/rad
(m) (xiii) m/s
(n) (xiv) N # s2/m

(xv) kg # m

CHAPTER PROBLEMS
7.1–7.7 Use the free-body diagram method to derive the differential equations governing

the motion of the systems shown in Figures P7.1 through P7.7 using the
indicated generalized coordinates. Make linearizing assumptions and write the
resulting equations in matrix form.

x1

k 2k k k

x2 x3

m m m

FIGURE P7.1
(Problems 7.1, 7.8, 7.23, 7.30, 7.36, 7.51, 7.66)
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m21 m22 m23
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K  J
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x
$

2

u
$ K + J

c11 c12 c13

c21 c22 c23

c31 c32 c33
K  J

x# 1
x# 2
u
# K + J

k11 k12 k13

k21 k22 k23

k31 k32 k33
K  J

x1

x2

u
K = J

F1

F2

F3
K

θ  = 0

6 N · s
10 N · s/m

x = 3m/s.
.

FIGURE SP7.41
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x1

m

k 2k

2k

c 2c

x2

2k

c

x3

2m
3m

FIGURE P7.6
(Problems 7.6, 7.13, 7.41, 7.56, 7.71)

k kk

x3

Slender rod of
mass m

m

L/2L/2

x2x1

FIGURE P7.4
(Problems 7.4, 7.11, 7.25, 7.39, 7.54, 7.69)

θ

2kk

x2

Rod of
mass m1,

moment of
inertia Im2

x1

0.4L 0.3L 0.2L
2k

G

0.1L

FIGURE P7.5
(Problems 7.5, 7.12, 7.26, 7.40, 7.55, 7.70)

q

k

k

x1

2m

2k

Slender rod of
mass m

m

L
3

L
3

2

x2

FIGURE P7.2
(Problems 7.2, 7.9, 7.31, 7.37, 7.52, 7.67)
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k

x1

2m

2k

Slender rod of
mass m

m

L/4L/4L/2

x2

FIGURE P7.3
(Problems 7.3, 7.10, 7.24, 7.38, 7.53, 7.68)
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7.8–7.14 Use Lagrange’s equations to derive the differential equations governing the
motion of the systems shown in Figures P7.1 through P7.7. Use the indicated
generalized coordinates. Make linearizing assumtions, and write the resulting
equations in matrix form. Indicate whether the system is statically coupled,
dynamically coupled, neither, or both.

7.15–7.22 Use Lagrange’s equations to drive the differential equations governing the
motion of the systems shown in Figures P7.15 through P7.22. Use the
indicated generalized coordinates. Make linearizing assumptions, and write the
resulting equations in matrix form. Indicate whether the system is statically
coupled, dynamically coupled, neither, or both.

xD xC

2k
k kk

Idler pulley

Thin disk of
mass m and radius
r rolls without slip
relative to center of
cart. xD is absolute

displacement of
mass center of disk. 2m

FIGURE P7.16
(Problems 7.16, 7.33, 7.44, 7.59, 7.74)

xD xC

kk 2k r
F(t)

Thin disk of
mass m and radius
r rolls without slip
relative to center of
mass 2m. xD is
absolute displacement
of mass center of disk.

FIGURE P7.15
(Problems 7.15, 7.27, 7.32, 7.43, 7.58, 7.73)

q

k

k c

2c2k

m

2m

L/32L/3

x2

x1

F(t)

FIGURE P7.7
(Problems 7.7, 7.14, 7.42, 7.57, 7.72)
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k1

k2

k3

k4

r

r

r

J

J

J

q1

q2

q3

FIGURE P7.21
(Problems 7.21, 7.49, 7.64, 7.79)

q

k k
Identical slender
rods of length L

and mass m.

k

L/4

L

x2

x1

L/4 L/2

FIGURE P7.19
(Problems 7.19, 7.28, 7.34, 7.47, 7.62, 7.77)

m
k k

Identical slender
bars of mass m.

q1 q2

2L/3 2L/3

L/3

x

L/3

FIGURE P7.20
(Problems 7.20, 7.35, 7.48, 7.63, 7.78)
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r 2I

FIGURE P7.17
(Problems 7.17, 7.45, 7.60, 7.75)

2r

r

x2
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q

FIGURE P7.18
(Problems 7.18, 7.46, 7.61, 7.76)
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7.23–7.29 Determine the kinetic energy of the system at an arbitrary instant for the systems
of Figures P7.1, P7.3, P7.4, P7.5, P7.15, P7.19, and P7.22. Put the kinetic
energy in a quadratic form. Use the quadratic form to determine the mass
matrix for the system.

7.30–7.35 Determine the potential energy of the system at an arbitrary instant for the
systems of Figures P7.1, P7.2, P7.15, P7.16, P7.19, and P7.20. Put the
potential energy in a quadratic form. Use the quadratic form to determine 
the stiffness matrix for the system.

7.36–7.50 Derive the stiffness matrix for the systems of Figures P7.1, P7.2, P7.3, P7.4, P7.5,
P7.6, P7.7, P7.15, P7.16, P7.17, P7.18, P7.19, P7.20, P7.21, and P7.22 using
the indicated generalized coordinates and stiffness influence coefficients.

7.51–7.65 Determine the flexibility matrix for the systems of Figures P7.1, P7.2, P7.3, P7.4,
P7.5, P7.6, P7.7, P7.15, P7.16, P7.17, P7.18, P7.19, P7.20, P7.21, and P7.22
using the indicated generalized coordinates and flexibility influence coefficients.

7.66–7.80 Determine the mass matrix for the systems of Figures P7.1, P7.2, P7.3, P7.4,
P7.5, P7.6, P7.7, P7.15, P7.16, P7.17, P7.18, P7.19, P7.20, P7.21, and P7.22
using the indicated generalized coordinates and inertia influence coefficients.

7.81 Derive the differential equations governing the torsional oscillations of the
turbomotor of Figure P7.81. The motor operates at 800 rpm and the turbine
shaft turns at 3200 rpm.

Uniform slender
rod of mass 2m

L/2 L/4 L/4

x2

x2x1

kF(t)

kc

k c

k

M

m

FIGURE P7.22
(Problems 7.22, 7.29, 7.50, 7.65, 7.80)

Turbine

Moments of inertia:
Motor 1800 kg · m2

Turbine 600 kg · m2

Gear A 400 kg · m2

Gear B 80 kg · m2

Gear B

Gear A

4:1 gear ratio

θ3

Motor

Motor shaft
G = 80 × 109 N/m2 
L = 1.4 m
d = 305 mm

Turbine shaft
G = 80 × 109 N/m2 
L = 2.1 m
d = 180 mm

θ1

θ2

FIGURE P7.81
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7.82 Derive the differential equations governing the torsional oscillations of the
system of Figure P7.82.

7.83 A rotor of mass m is mounted on an elastic shaft with journal bearings at both
ends. A three degree-of-freedom model of the system is shown in Figure P7.83.
Each journal bearing is modeled as a spring in parallel with a viscous damper.
Drive the differential equations governing the transverse motion of the system.

7.84 A three degree-of-freedom model of a railroad bridge is shown in Figure P7.84.
The bridge is composed of three rigid spans. Each span is pinned at its base.
Using the angular displacements of the spans as generalized coordinates, derive
the differential equations governing the motion of the bridge.

7.85 A five-degree of model of a railroad bridge is shown in Figure P7.85. The bridge
is composed of five rigid spans. The connection between each span and its base
is modeled as a torsional spring. Using the angular displacements of the spans as
the generalized coordinates, derive the differential equations governing the
motion of the bridge.

q1

k1

G
m, I
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l l

q2

k2 k2 k1
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m, I

h
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FIGURE P7.84
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7.86 A four degree-of-freedom model of an aircraft wing is shown in Figure P7.86.
Derive the flexibility matrix for the model.

7.87 Figure P7.87 illustrates a three degree-of-freedom model of an aircraft. A rigid
fuselage is attached to two thin flexible wings. An engine is attached to each
wing, but the wings themselves are of negligible mass. Derive the differential
equations governing the motion of the system.

7.88 An airplane is modeled as two flexible wings attached to a rigid fuselage
(Figure P7.88). Use two degrees of freedom to model each wing and derive the
differential equations governing the motion of the five degree-of-freedom system.

x3

x5x4x2x1

E, I E, I E, I E, I
Mm1 m2 m2 m1

L/2 L/2 L/2 L/2

FIGURE P7.88

x1

x2

x3

L L

E, I E, I
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FIGURE P7.87
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x2 x3 x4

FIGURE P7.86
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7.89 A drum of mass m is being hoisted by an overhead crane as illustrated in
Figure P7.89. The crane is modeled as a simply supported beam with a winch at
its midspan. The cable connecting the crane to the drum is of stiffness k. Derive
the differential equations governing the motion of the system using four degrees
of freedom to model the system, three degrees of freedom for the beam and one
for the displacement of the load.

7.90–7.93 The beams shown in Figures P7.90 through P7.93 are made of an elastic
material of elastic modulus 210 � 109 N/m2 and have a cross-sectional
moment of inertia 1.3 � 10–5 m4. Determine the flexibility matrix when 
a three degree-of-freedom model is used to analyze the beam’s vibrations.
Use the displacements of the particles shown as generalized coordinates. 
Use Table D.2 for deflection calculations.

Beam of
mass m,
E, I, L

x2
k

m

x3x1

Includes mass
of winch

x4

FIGURE P7.89

40 cm40 cm 40 cm 40 cm

FIGURE P7.90

FIGURE P7.91

80 cm80 cm 80 cm 80 cm
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7.94 Determine the stiffness matrix for the three degree-of-freedom model of the free-
free beam of Figure P7.94.

7.95 Using a two degree-of-freedom model, derive the differential equations governing
the forced vibration of the system of Figure P7.95.

7.96 Use a two degree-of-freedom model to derive the differential equations governing
the motion of the system of Figure P7.96. A thin disk of mass moment of inertia
ID is attached to the end of the fixed-free beam. Use x, the vertical displacement
of the disk, and �, the slope of the end of the beam, as generalized coordinates.

FIGURE P7.96

L

E, I2

F0 sin w t

x

m, I

q

FIGURE P7.95

L/3

EI
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FIGURE P7.94
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C h a p t e r 8

FREE VIBRATIONS
OF MDOF SYSTEMS

8.1 INTRODUCTION
Free vibrations of an n degree-of-freedom (nDOF) system are governed by a system of n
differential equations. If the system is linear, the differential equations can be summarized
in matrix form. When the differential equations are derived using Lagrange’s equations, the
mass, stiffness, and damping matrices are guaranteed to be symmetric. It is assumed that,
whatever method is used to derive the differential equations for a linear system, they can
be summarized in a matrix form, which for free vibrations is either

(8.1)

or
(8.2)

The free response of an nDOF system is more complicated than the free response of a
one or two degree-of-freedom system. Computation of the response requires matrix algebra.
A reader unfamiliar with topics in matrix algebra (such as eigenvalues and eigenvectors)
is encouraged to read Appendix C before proceeding.

For an undamped system, the response of a MDOF system is assumed to be syn-
chronous; the particles represented by the generalized coordinates move with the same
frequency. This leads to a normal-mode solution in which a mode shape vector provides
the relation between the generalized coordinates. The time dependence of the response is
expressed by an exponential with a complex exponent equal to i�t. When the normal

AM  x
$

+ ACx# + x = 0

M x
$

+ Cx
#

+ Kx = 0
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mode solution is substituted into the differential equations governing the undamped free
response, the natural frequencies are shown to be the square roots of the eigenvalues of
M�1K or the reciprocals of the square roots of the eigenvalues of AM. The mode-shape
vectors are the corresponding eigenvectors. An nDOF system has n natural frequencies.

The general free response is a linear combination of all modes in the solution. The con-
stants in the linear combination are determined from the initial conditions, the values of
the generalized coordinates at t � 0, and their velocities at t � 0. There are 2n initial
conditions required.

Two special cases are considered. When the system is unrestrained, it has its lowest
natural frequency equal to zero, which corresponds to a rigid-body movement of the
system. In degenerate systems, two natural frequencies of the system are equal. 

If the equations are derived using Lagrange’s equations or any method that is derived
from Lagrange’s equations, the mass matrix and the stiffness matrix are guaranteed to be
symmetric. This implies that a kinetic-energy scalar product and a potential-energy scalar
product can be defined. This leads to showing that all eigenvalues of M�1K are real, all
eigenvalues are non-negative, and an orthogonality condition exists for eigenvectors
corresponding to distinct natural frequencies of the same system. Also, an expansion theo-
rem is developed for representing a vector by the eigenvectors of a MDOF system.

Any multiple of an eigenvector is also an eigenvector corresponding to the same eigen-
value. The normalized mode-shape vector is defined such that the kinetic-energy scalar
product of the vector with itself is one. This has an implication for the potential-energy
scalar product of a vector with itself.

Principal coordinates are defined as coordinates which uncouple the differential equations.
A method is presented for determination of principal coordinates for a MDOF system.

Rayleigh’s quotient provides a method for approximation of the lowest natural fre-
quency of a MDOF system. Numerical methods are presented for determination of the
natural frequencies and their mode shapes.

Damping is addressed for MDOF systems. Systems that have proportional damping
(where the damping matrix is a linear combination of the stiffness matrix and the mass
matrix) are uncoupled using the same principal coordinates as the corresponding
undamped system. Natural frequencies and modal damping ratios are defined. General vis-
cous damping is considered by rewriting the n second-order differential equations as 2n
first-order differential equations.

8.2 NORMAL-MODE SOLUTION
The general formulation of the differential equations governing free vibrations of a linear
undamped n-degree-of-freedom system is

(8.3)

where M and K are the symmetric n � n mass and stiffness matrices, respectively, and x is
the n-dimensional column vector of generalized coordinates.

Free vibrations of a MDOF system are initiated by the presence of an initial potential
or kinetic energy. If the system is undamped, there are no dissipative mechanisms and it is
expected that the free vibrations described by the solution of Equation (8.3) are periodic.
It is assumed that the vibrations are synchronous in that all dependent variables execute

M x
$

+ K x = 0
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motion with the same time-dependent behavior. Thus, when free vibrations at a single fre-
quency are initiated for a particular system, the ratio of any two dependent variables is inde-
pendent of time. These assumptions lead to hypothesizing the normal-mode solution of
Equation (8.3) in the form

(8.4)

where � is the frequency of vibration and X is an n-dimensional vector of constants, called
a mode shape. This hypothesis implies that certain initial conditions lead to a solution of the
form of Equation (8.4) for specific values of �. The values of � such that Equation (8.4) is
a solution of Equation (8.3) are called the natural frequencies. Each natural frequency has
at least one corresponding mode shape. Since the differential equations represented by
Equation (8.3) are linear and homogeneous, their general solution is a linear superposition
over all possible modes.

Substitution of Equation (8.4) into Equation (8.3) leads to

(8.5)

Since for any real value of t,

(8.6)

The mass matrix is nonsingular, and thus M�1 exists. Premultiplying Equation (8.6) by
M�1 and rearranging gives

(8.7)

where I is the n � n identity matrix. Equation (8.7) is the matrix representation of a system
of n simultaneous linear algebraic equations for the n components of the mode shape
vector. The system is homogeneous. Application of Cramer’s rule gives the solution for the
jth component of X, Xj, as

(8.8)

Thus the trivial solution (X � 0) is obtained unless

(8.9)

Hence, applying the definitions of Appendix C, �2 must be an eigenvalue of M�1K. The
square root of a real positive eigenvalue has two possible values, one positive and one
negative. While both are used to develop the general solution, the positive square root is
identified as a natural frequency. The mode shape is the corresponding eigenvector.

It is shown in Section 7.6 that when the stiffness matrix, K, is nonsingular, its inverse
is the flexibility matrix, A. Premultiplying Equation (8.6) by A leads to

(8.10)

Dividing by �2 gives

(8.11)

Thus, the natural frequencies are the reciprocals of the positive square roots of the eigen-
values of AM and the mode shapes are its eigenvectors. The matrix, AM, is often called the
dynamical matrix.

aAM -

1
v2 Ib X = 0

(-v2AM + I )X = 0

 det | M-1K - v2I | = 0

Xj =

0
 det | M-1K - v2I |

( M-1K - v2I )X = 0

-v2MX + KX = 0

e ivt
Z 0,

(-v2MX + KX )e ivt
= 0

x(t ) = Xe ivt
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Natural frequencies of MDOF systems are calculated as either the square roots of the
eigenvalues of M�1K or as the reciprocals of the square roots of the eigenvalues of AM. The
mode shapes are the corresponding eigenvectors of either matrix.

8.3 NATURAL FREQUENCIES AND MODE SHAPES
In the previous section, it is shown that the natural frequencies of an nDOF system are the
positive square roots of the eigenvalues of M�1K or the reciprocals of the positive square
roots of the eigenvalues of AM. The mode shape vectors are the corresponding eigenvec-
tors. As shown in Appendix C, the evaluation of Equation (8.9) leads to an nth-order poly-
nomial equation, called the characteristic equation, whose roots are the eigenvalues. Since all
elements of the mass and stiffness matrices are real, all coefficients in the characteristic equa-
tion are real and thus, if complex roots occur, they must occur in complex conjugate pairs.
However, it can be shown that, because of the symmetry of M and K, the characteristic equa-
tion has only real roots. Negative roots are possible, but lead to imaginary values of the nat-
ural frequency. When the negative square root of a negative eigenvalue is multiplied by i to
form the exponent in the normal-mode solution of Equation (8.4), a real positive exponent
is developed. This term grows without bound as time increases. Such a system is unstable.

Assume that all eigenvalues of M�1K corresponding to symmetric mass and stiffness
matrices are nonnegative. Then there exist n real natural frequencies that can be ordered by

Each distinct eigenvalue has a corresponding
nontrivial eigenvector, X i, which satisfies

(8.12)

This mode shape, Xi, is an n-dimensional column vector of the form

(8.13)

Since the system of equations represented by Equation (8.12) is homogeneous, the mode
shape is not unique. However, if is not a repeated root of the characteristic equation, then
there is only one linearly independent nontrivial solution of Equation (8.12). The eigenvec-
tor is unique only to an arbitrary multiplicative constant. Normalization schemes exist such
that the constant is chosen so the eigenvector satisfies an externally imposed condition.

If is a repeated root of the characteristic equation of multiplicity r, there are r
linearly independent nontrivial solutions of Equation (8.12). Each of these mode shapes is
also unique to a multiplicative constant.

Solution of the eigenvalue-eigenvector problem is an important part of the vibra-
tion analysis of MDOF systems. The quadratic formula is used to find the roots of the
characteristic equation for a two degree-of-freedom system. The natural frequencies of
a three degree-of-freedom system are obtained by finding the roots of a cubic polyno-
mial, which can be done by trial and error or an iterative method. The algebraic com-
plexity of the solution grows exponentially with the number of degrees of freedom. The
development of a characteristic equation for an nDOF system requires the evaluation of

v2
1

v2
1

Xi = F
Xi1

Xi2

o

Xin

V

M-1K Xi = v2
i Xi

v2
i , i = 1, 2, Á , nv1 … v2 …

Á
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an n � n determinant and the natural frequencies are the n roots of the characteristic
equation. The determination of each eigenvector requires the solution of n homoge-
neous simultaneous algebraic equations. Thus, numerical methods which do not require
the evaluation of the characteristic equation are used for systems with a large number
of degrees of freedom.

EXAMPLE 8 . 1
Determine the natural frequencies and mode shapes for the system of Figure 8.1. Use � and
x as generalized coordinates.

SO LU T I ON
The kinetic energy of the system at an arbitrary instant is

(a)

The potential energy of the system at an arbitrary instant is

(b)

Application of Lagrange’s equations leads to

(c)

Since the mass matrix is a diagonal matrix, its inverse is also a diagonal matrix with the
reciprocals of the diagonal elements of M along its diagonal. The matrix M�1K is

(d)M-1K = D 12
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FIGURE 8.1
System of Example 8.1.
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where . Calculating the eigenvalues of M�1K, we have

(e)

The eigenvalues are obtained by solving

(f)

where The solutions are

(g)

The natural frequencies are the square roots of the eigenvalues

(h)

The mode-shape vectors are obtained from

(i)

for i � 1,2. The two equations are linearly dependent when evaluated for the eigenvalues.
The first equation gives

(j)

or

(k)

Recalling that �1 � 0.419�,

(l)

and given that �2 � 3.58�,

(m)X22 =

L(3f - 3.58f)

6f
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Arbitrarily taking Xi1 � 1, the mode-shape vectors are

(n)

In the first mode, when x is 1, the value of � is 0.430L. The bar and the block are moving
in the same direction for the first mode. In the second mode, when x is 1, the value of � is
�0.977L, which is a counter-clockwise rotation. The bar and the block move in opposite
directions for the second mode. A point of zero displacement must exist in the spring
connecting the bar to the block.

X1 = c 1
0.430L

d                X2 = c 1
-0.0977L

d

EXAMPLE 8 . 2
Calculate the natural frequencies and the mode shapes for the three degree-of-freedom
system of Figure 8.2(a).

SO LU T I ON
The differential equations for free vibrations using the displacements of the masses from
equilibrium as the generalized coordinates are

(a)

Calculating M�1K gives

(b)

where � � k/m. Application of Equation (8.9) gives

(c)

Expansion of the determinant yields the characteristic equation

(d)

where � � �/�. A plot of the preceding cubic polynomial is given in Figure 8.2(b). The
roots of this equation are

(e)

which leads to the natural frequencies
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k
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FIGURE 8.2
(a) Three degree-of-freedom
system of Example 8.2. (b) Plot
of characteristic equation of
Example 8.2 where roots occur
at values of � where curve
intersects horizontal axis.
(c) Illustration of mode shape for
first mode. (d) Illustration of mode
shape for second mode; mode has
one node. (e) Illustration of mode
shape for third mode; mode has
two nodes.
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The mode shapes are obtained by finding the nontrivial solutions of

(g)

The first equation leads to

(h)

while the third equation leads to

(i)

Arbitrarily choosing Xi2 � 1 leads to the following mode shape vectors:

(j)

The graphical representations of the mode shapes in Figure 8.2(c) through (e) are based
on the assumption that the displacement in each spring is a linear function of position
along the length of the spring. There are no nodes for the first mode. The second mode has
a node in the spring between the first and second mass. The third mode has one node in
the spring between the first and second mass and one node in the spring between the
second and third masses.
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C3f - li -2f 0
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S CXi 1

Xi 2

Xi 3

S = C0
0
0
S

EXAMPLE 8 . 3
An engineer is designing an 18-ft-long steel fixed-pinned beam (E � 30 � 106 lb/in2,
� � 394 lb/ft3) for use in an industrial plant. The beam is to support a machine at its
midspan. The machine may weigh up to 5 tons and will operate at speeds between
1000 rad/s and 2000 rad/s. The engineer is considering using either a W-shape W16 � 100
(I � 712 in4, A � 29.4 in2) beam or a W-shape W27 � 114 beam (I � 4090 in4, A �
33.5 in2) in the design. Use a three degree-of-freedom model of the beam to help decide
which shape is the better choice in this design.

SO LU T I ON
Using a three degree-of-freedom model as shown in Figure 8.3(a), the mass of the beam is
lumped at three equally spaced locations along the span of the beam. The mass of each particle
is where mb is the total mass of the beam. If � is the mass of the machine, the mass
matrix for a three degree-of-freedom model is

M = F
mb

4
0 0

0
mb

4
+ b 0

0 0
mb

4

V

mb>4,



542 CHAPTER 8

FIGURE 8.3
(a) System of Example 8.3 where inertia of the beam is lumped at three locations along axis of beam.
(b) Natural frequencies versus mass of machine for W27�114 beam. (c) Natural frequencies versus
mass for W16�100 beam.
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The flexibility matrix A for the model is determined from Appendix D.
A MATLAB script is written to symbolically determine the eigenvalues of AM as a

function of the machine mass. The natural frequencies are the reciprocal of the square roots
of the eigenvalues. The MATLAB generated plots of the natural frequency approximations
as a function of the machine mass for each of the beams under consideration are given in
Figures 8.3(b) and (c). These plots show that using the W16�100 shape is not a good
choice, as the system’s second natural frequency is in this range. The W27�114 shape is a
better choice, as the specified operating range of 1000 rad/s to 2000 rad/s is between the
system’s two lowest natural frequencies for all machines up to 5 tons.

8.4 GENERAL SOLUTION
Equation (8.3) is a homogeneous system of n second-order linear differential equations.
The normal-mode assumption, Equation (8.4), leads to the determination of n natural
frequencies. If � is an eigenvalue of M�1K, then both and satisfy
Equation (8.9) and give rise to the same solution, X, of Equation (8.7). The functions e i�t

and e�i�t are linearly independent with each other and linearly independent with other
functions of the same form with different values of �. Thus, the normal-mode solution gen-
erates 2n linearly independent solutions of Equation (8.3). The most general solution of a
linear homogeneous problem is a linear combination of all possible solutions. To this end,

(8.14)

Using Euler’s identity to replace the complex exponential by trigonometric functions and
redefining the arbitrary constants gives

(8.15)

Trigonometric identities are used to write Equation (8.15) in the alternate form

(8.16)

Initial conditions must be specified for each dependent variable

(8.17)

Application of the 2n initial conditions to Equation (8.16) yields 2n equations to be solved
for the 2n integration constants.

(8.18)
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EXAMPLE 8 . 4
The block of mass of Figure 8.2(a) is given an initial displacement � while the other
blocks are held in their equilibrium position. The system is then released. What is the
response of the system?

SO LU T I ON
The solution is formed according to Equation (8.16) resulting in

(a)

Application of the initial displacements yield

(b)

Application of initial velocities lead to

(c)

Equation (c) is satisfied by taking cos(��1) � cos(��2) � cos(��3 ) � 0 or �1 � �2
� �3� ��2. Then Equation (b) becomes
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Equation (d) is solved yielding A1 � 0.101�, A2 � 0.174�, and, A3 � �0.275�. The
response of the system is

(e)

Equations (e) are plotted in Figure 8.4 for m � 10 kg, and � � 1 mm.

8.5 SPECIAL CASES

8.5.1 DEGENERATE SYSTEMS
Repeated eigenvalues of M�1K and AM occur when the natural frequencies of two distinct
modes coincide. It is usually possible to identify the separate modes of vibration. For exam-
ple, consider the circular cantilever beam of Figure 8.5. The beam has a thin disk attacked
at its end. If the disk is vertically displaced and released, the disk undergoes free transverse
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FIGURE 8.4
Solution of Example 8.4.
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vibrations. For a SDOF model with inertia effects of the beam ignored, the natural fre-
quency of free transverse vibrations of the disk is

(8.20)

where E is the elastic modulus of the beam, I is the cross-sectional moment of inertia of the
beam, L is the length of the beam, and m is the mass of the disk. If the disk is twisted and
released, it undergoes free torsional oscillations. For a SDOF model, with inertia effects of
the beam ignored, the natural frequency of free torsional oscillations is

(8.21)

where J is the polar moment of inertia of the cross section of the beam, G is the beam’s
shear modulus, and ID is the mass moment of inertia of the disk. These two natural fre-
quencies are equal for a steel shaft when the ratio of the length of the beam to the radius
of the disk is 1.40. The two modes of vibration are independent but happen to have the
same natural frequency.

A system with a repeated natural frequency is called a degenerate system. If �i is a nat-
ural frequency calculated from an eigenvalue of multiplicity m, then only n � m of the
linear algebraic equations from which the mode shape is calculated are independent. Thus,
m elements of the mode shape can be arbitrarily chosen. The most general mode shape
involves m arbitrary constants. Then m linearly independent mode shapes, Xi, Xi�1, . . . ,
Xi�m, are specified. The general solution of Equation (8.3) is still given by Equation (8.16),
but �i � �i�1 � . . . � �i�m�1.

v2 = A
JG

IDL

v1 = A
3EI
mL3

y

FIGURE 8.5
For certain combinations of parameters, natural
frequency of transverse vibration coincides with
natural frequency for torsional oscillations.

EXAMPLE 8 . 5
The two degree-of-freedom system of Figure 8.6 has a natural frequency of corre-
sponding to a rotational mode and a natural frequency of corresponding to a trans-
lational mode. The system is neither statically nor dynamically coupled. A block of mass m
is attached to the mass center of the bar through a spring as shown in Figure 8.6(d), adding
a degree of freedom and leading to static coupling. The differential equations governing
free vibration of this vibration of this three degree-of-freedom system are
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The rotational mode is still uncoupled from the other modes. Find a value of k1 such that
another natural frequency of the system coincides with the natural frequency of the rota-
tional mode. Find the mode shapes corresponding to all modes.

SO LU T I ON
The determinant leading to the characteristic equation is

(b)

where
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FIGURE 8.6

(a) Original system of Example 8.5.
(b) Mode shape for translational
mode . (c) Mode
shape for rotational mode

. (d) System of
Example 8.5 with added mass-
spring system. Correct tuning
of mass-spring system gives
a double root of the characteristic
equation resulting in two inde-
pendent mode shapes for the
same natural frequency.
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The characteristic equation obtained by row expansion of the determinant, using the third
row, is

(c)

where

(d)

The roots of the characteristic equation are

(e)

The � � 6 root corresponds to the natural frequency of the rotational mode. Requiring
one of the other natural frequencies to be equal to the natural frequency of the rotational
mode leads to

(f)

Then the natural frequencies become

(g)

The mode shape corresponding to the lowest natural frequency is

(h)

For � � 6, the mode shapes are determined from

(i)

The general solution of this system contains two arbitrary constants and can be written as

(j)

Thus, the two linearly independent mode shapes corresponding to are

(k)X2 = D 1

-

2
3
0

T  X3 = C0
0
1
S

v = 16k>m

D a

-

2
3

a

b

T = a D 1

-

2
3

0

T + b C0
0
1
S

C -1.6f -2.4f 0
-2.4f -3.6f 0

0 0 0
S CX21

X22

X23

S = C0
0
0
S

X1 = C 1
1.5
0
S

v1 = A
4k
5m

  v2 = v3 = A6
k
m

1 + a � 21 + a2
= 6 Q a =

12

5

b = 6, 1 + a � 21 + a2

b =

l

f

(6 - b)3b2
- 2(1 + a )b + 2a4 = 0
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Note that the mode corresponding to the lowest natural frequency is a translational mode
with extension of the spring. One mode corresponding to is a translational
mode with extension in the spring, but with a node in the spring. The second independ-
ent mode for is a rigid-body rotation of the bar about its mass center, with
no extension in the spring.

8.5.2 UNRESTRAINED SYSTEMS
A second special case occurs when one of the eigenvalues of M�1K is zero. The general
solution for a system with a zero eigenvalue is

(8.22)

where C1, C2, and Ai are constants determined from application of the initial conditions.
The first part of the solution corresponds to a rigid-body motion. The summation term
corresponds to oscillatory motion.

A system has a natural frequency of zero only when it is unrestrained. For example, if
both masses of the two degree-of-freedom system of Figure 8.7(a) are given the same ini-
tial displacement with no initial velocity, they will remain in their displaced positions
indefinitely. If the shaft connecting the two flywheels of Figure 8.7(b) is rotating at a con-
stant speed, both flywheels will continue to rotate at this speed.

When motion of an unrestrained system occurs, either linear or angular momentum is
conserved for the entire system. Application of the principle of conservation of linear
momentum or the principle of conservation of angular momentum provides a relationship
between the generalized coordinates of the form

(8.23)

where C1 is a constant determined from the initial state. Equation (8.23) can be integrated
to provide a constraint between the generalized coordinates of the form

(8.24)

Equation (8.25) could be used to reduce the number of degrees of freedom by one.

a
n

l = 1

al x l = C1t + C2

a
n

l = 1

al x# l = C1

x (t ) = (C1 + C2t )X1 + a
n

i = 2

Ai X i sin (vi t - fi )

v = 16k>m
v = 16k>m

FIGURE 8.7
(a) A two degree-of-freedom
unrestrained system. If both
blocks are given the same dis-
placement, they will move as
a rigid body. If the blocks are
given different displacements,
free oscillations occur. (b) An
unrestrained torsional system.

θ1 θ2

m2m1

x1 x2

(a) (b)
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EXAMPLE 8 . 6
A railroad car of mass 1500 kg is to be coupled to an assembly of two precoupled identi-
cal railroad cars. The couplers are elastic connections of stiffness 4.2 � 107 N/m. The
single car is rolled toward the other cars with a velocity of 7 m/s, as shown in Figure 8.8(a).
Describe the motion of the three railroad cars after coupling is achieved.

SO LU T I ON
After coupling, the motion of the three railroad cars is modeled by using three degrees of
freedom, as shown in Figure 8.7(b). The differential equations of motion are

(a)

The natural frequencies are determined from

(b)

where The resulting characteristic equation is solved to yield

(c)

The corresponding mode shapes are

(d)

Since the lowest natural frequency is zero, the system is unrestrained. The mode-shape
vector for the first mode is that of a rigid-body motion in which all cars move together.
In the second mode, the middle car is a node, and the other two cars move in opposite

X1 = C1
1
1
S  X2 = C   1  0

-1
S  X3 = C   1-2

  1
S

v1 = 0  v2 = A
k
m

= 167.3 rad>s    v3 = A
3k
m

= 289.8   rad>s
f = k>m.

 det  Cf - l -f 0
-f 2f - l -f

0 - f f - l

S = 0

Cm 0 0
0 m 0
0 0 m

S C x
$

1

x
$

2

x
$

3

S + C k -k 0
-k 2k -k
0 -k k

S C x1

x2

x3

S = C0
0
0
S

1500 kg
7 m/s

1500 kg 1500 kg

k = 4.2 × 107 N/m

x1 x2 x3

m
k k

m m

(a)

(b)

FIGURE 8.8
(a) Shunting of railroad cars. (b) Three degree-of-freedom model once cars are coupled.
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directions with the same amplitude. The third mode has two nodes: one in the spring con-
necting the first car to the middle car and one in the spring connecting the third car to the
middle car.

The general solution of the differential equations is

(e)

Application of the initial conditions leads to

(f)

and

(g)

Equations (g) and (h) are satisfied if

(h)

The equation expressing conservation of linear momentum of the railroad cars after cou-
pling is achieved is

(i)mx# 1(t ) + mx# 2(t ) + mx# 3(t ) = C

C1 = f1 = f2 = 0 C2 = 2.32   m/s  C3 = 0.021   m C4 = 0.004   m

= C2 C1
1
1
S + C3 (167.3) C 1

0
-1
S cos (-f1) + C4 (289.8) C 1

-2
1
S  cos(-f2 )

C x# 1(0)
x# 2(0)
x# 3(0)

S = C7 m/s
0
0
S

C x1(0)
x2(0)
x3(0)

S = C0
0
0
S = C1 C1

1
1
S + C3 C    1

   0
-1
S  sin  (-f1 ) + C4 C    1

-2
   1
S  sin (-f2 )

+ C4 C 1
-2
1
S  sin (289.8t + f2 )

C x1(t )
x2(t )
x3(t )

S = (C1 + C2t ) C1
1
1
S + C3 C 1

0
-1
S   sin (167.3t + f1)

EXAMPLE 8 . 7
Consider the unrestrained three degree-of-freedom system of Example 7.12 and Figure 7.12.
Let Calculate the natural frequencies and illustrate the development of the
constraint from momentum considerations.

SO LU T I ON
The differential equations are

(a)C2m 0 0
0 m 0
0 0 I

S C x
$

A

x
$

B

u
$

S + C k 0 -kr
0 3k -6kr

-kr -6kr 13kr2

S C xA

xB

u

S = C0
0
0
S

mr 2>I = 2.
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The characteristic equation is developed from

(b)

where . The characteristic equation is

(c)

where . The roots of this equation are

(d)

which lead to natural frequencies of

(e)

Application of the principle of conservation of angular momentum about the center of the
pulley leads to

(f)2mrx#A (t ) + 2mrx#B (t ) + I u
#

(t ) = 2mrx#A (0) + 2mrx#B (0) + Iu
#

(0)

v1 = 0  v2 = 0.823A
k
m
  v3 = 5.369A

k
m

b = 0, 0.677, 28.82

b = l>f
-b3

+

59

2
b2

-

39

2
b = 0

f = k>m

 det  E
1
2
f - l 0 -

r
2
f

0 3f - l -6rf

-

mr
I
f -

6mr
I
f

13mr 2

I
f - l

U = 0

8.6 ENERGY SCALAR PRODUCTS
A scalar product is an operation performed on two vectors such that the result is a scalar.
In order for the operation to be termed a scalar product, it must satisfy certain rules as
outlined in Appendix C. When the differential equations governing the motion of a linear
nDOF system are formulated by using energy methods, the mass and stiffness matrices are
symmetric. Then for a stable restrained system, the following two operations satisfy all
requirements to be called scalar products. Let y and z be any two n-dimensional vectors;
define

(8.25)

and

(8.26)

The scalar product defined by Equation (8.25) is called the potential energy scalar
product. Let Xi be the mode shape corresponding to a natural frequency �i. If the system
response includes only this mode, then from Equation (8.16)

(8.27)x (t ) = Ai Xi sin (vi t - fi )

(y, z)M = z T My

(y, z )K = z T Ky
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From Equation (7.21), the potential energy is calculated as

(8.28)

Thus, at a given instant of time, the potential energy scalar product of a mode shape with
itself is proportional to the potential energy associated with that mode.

The scalar product defined by Equation (8.26) is called the kinetic energy scalar
product. It can be shown by using Equations (7.22) and (8.26) that

(8.29)

or that for a linear system, the kinetic energy scalar product of a mode shape with itself is
proportional to the kinetic energy associated with that mode.

The mass and stiffness matrices for a linear system are guaranteed to be symmetric. In
addition, the mass matrix is positive definite. The stiffness matrix for a stable system is pos-
itive definite unless it is unrestrained. The stiffness matrix for an unstable system is not pos-
itive definite. Thus, from Example C.5 of Appendix C, Equation (8.26) defines a valid
scalar product for all nDOF systems and Equation (8.25) defines a valid scalar product for
all stable constrained nDOF systems.

The ability to define the potential-energy scalar product and the kinetic-energy scalar
product is because M and K are guaranteed to be symmetric. One property that scalar
product defined for real vectors must satisfy is commutivity; that is

(8.30)

and

(8.31)

Taking the potential-energy scalar product of y and z using Equation (8.30) implies

(8.32)

for all n dimensional y and z, which is true if K is symmetric. The commutivity of the
kinetic energy scalar product is proved in the same fashion.

Another property of scalar products is that, when a scalar product of a vector is taken
with itself, the operation must yield a non-negative quantity and the operation is only zero
for the zero vector. This statement, for the potential energy scalar product, is equivalent to

(8.33)

for all y and yTKy � 0 if and only if y � 0.
Equation (8.33) is also a statement of positive definiteness of the matrix K. It can be

shown that for all stable systems K satisfies the first part of the statement. For restrained sys-
tems, K satisfies the second part as well. If the system is unrestrained, there exists a y Z 0
such that yTKy � 0. This y is the mode shape for the rigid-body mode. The kinetic-energy
scalar product always satisfies an equivalent statement to Equation (8.33).

For all real n-dimensional vectors w, y, and z and for all scalars 	 and �, we have

(8.34)(aw + by, z )K = a (w, z )K + b(y,z )K

yTKy Ú 0

zTKy = yTK z

(y, z)M = (z, y)M

(y, z )K = (z, y)K

T =

A 2
i

2
v2

i  cos 2(vi t - fi )(X i , X i )M

V =

A2
i

2
 sin 2(vi t - fi )a

n

r = 1
a

n

s = 1

kr s Xir Xis =

A2
i

2
 sin 2 (vi t - fi )(Xi 

, Xi )K
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and

(8.35)

Equations (8.34) and (8.35) are statements of the linearity of the potential and kinetic
energy scalar products.

Two vectors are said to be orthogonal with respect to a scalar product if their scalar
product is zero. The n-dimensional vectors y and z are orthogonal with respect to the
potential-energy scalar product, giving

(8.36)

The vectors are orthogonal with respect to the kinetic energy scalar product if

(8.37)

The use of scalar product notation is not essential to analyze and understand free and
forced vibrations of MDOF systems. However, writing equations in scalar product nota-
tion is usually less confusing than using matrix and vector notation. In addition, since the
scalar products have identifiable physical meaning, it may be easier to identify the physical
significance of an equation when it is written in scalar product notation. At the very least,
the energy scalar products can be thought of as shorthand notation for the products
defined by Equations (8.25) and (8.26). For these reasons, the remainder of the discussion
in Chapter 8 and the entire discussion in Chapter 7 use scalar product notation. In addi-
tion, a scalar product is developed for use with continuous systems in Chapter 10. Many
equations are also written using matrix notation for those not comfortable with scalar product
notation.

( y, z )M = 0

( y, z )K = 0

(aw + by, z )M = a(w, z )M + b(y, z )M

EXAMPLE 8 . 8
Consider the system of Figure 8.2 and Example 8.2. Define the vectors

(a)

Calculate (a) (y, z)
M

, (b) (y, z)
K

, and (c) for any three-dimensional vector x prove Equation
(8.33) for this system.

SO LU T I ON
(a) Using the mass matrix from Example 8.2, we have

(b)= 2(m) - 1(2m) + 3(2m) = 6m

( y, z)M = [2 -1 3]Dm 0 0
0 m 0

0 0
m
2

T C1
2
4
S = [2 -1 3] C   m

2m
2m
S

y = C   1   2
-4
S  z = C  2

-1
  3
S
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(b) Using the stiffness matrix from Example 8.2, we have

(c)

(c) For an arbitrary x,

(d)

Clearly, Equation (d) is greater than or equal to zero for all choices of x. Additionally, it
is obvious that (x, x)

K
� 0 if x � 0 and the only x for which Equation (d) equals zero is

x � 0. Equation (d) is twice the potential energy of the system if x were a mode shape
vector.

= kx 
2
1 + 2k (x2 - x1)

2
+ k (x3 - x2)

2
+ 2kx 

2
3

= 3kx 
2
1 - 4kx1x2 + 3kx 

2
2 - 2kx2x3 + 3kx 

2
3

= x1(3kx1 - 2kx2) + x2(-2kx1 + 3kx2 - kx3) + x3(-kx2 + 3kx3)

( x, x)K = [x1 x2 x3]C 3k -2k 0
-2k 3k -k

0 -k 3k
S C x1

x2

x3

S = [x1 x2 x3] C 3kx1-
 
2kx2

-2kx1+  3kx2-kx3

-kx2+  3kx3

S
= 2(-k) - 1(0) + 3(10k) = 28k

( y, z)K = [2 -1 3]C 3k -2k 0
-2k 3k -k

0 -k 3k
S C1

2
4
S = [2 -1 3] C -k

0
10k
S

8.7 PROPERTIES OF NATURAL FREQUENCIES
AND MODE SHAPES
Let �i and �j be distinct natural frequencies of an nDOF system. Let Xi and Xj be their
respective mode shapes. From Equation (8.6), the equations satisfied by these natural fre-
quencies and mode shapes are

(8.38)

and

(8.39)

Premultiplying Equation (8.38) by gives

(8.40)

or in scalar product notation

(8.41)

Premultiplying Equation (8.39) by gives

(8.42)v2
j ( Xj , Xi )M = (Xj , Xi )K

XT
i

v2
i ( Xi 

, Xj )M = ( Xi 
, Xj )K

v2
i XT

j M Xi = XT
j K Xi

XT
j

v2
j M Xj = K Xj

v2
i M Xi = K Xi
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Subtracting Equation (8.42) from Equation (8.41) gives

(8.43)

On the basis of the commutivity of the scalar products, Equation (8.43) reduces to

(8.44)

Since 

(8.45)

or mode shapes corresponding to distinct natural frequencies are orthogonal with respect
to the kinetic energy scalar product. Then from Equation (8.41), these mode shapes are
also orthogonal with respect to the potential energy scalar product, or

(8.46)

If a system has a zero natural frequency, then it is strictly improper to define a poten-
tial energy scalar product. Property 3 required of scalar products is violated. However, it
can be shown that the mode shape for the rigid-body mode for an unrestrained system is
orthogonal to all other mode shapes for the system.

If an eigenvalue is not distinct, but has a multiplicity m > 1, then there are m linearly
independent mode shapes corresponding to that eigenvalue. The preceding analysis shows
that each of these mode shapes is orthogonal to mode shapes corresponding to different
natural frequencies. Independent mode shapes obtained by solving Equation (8.7) for the
same eigenvalue may or may not be mutually orthogonal with respect to the energy scalar
products. However, a procedure known as the Gram-Schmidt orthogonalization process
can be used to replace these mode shapes with a set of m mutually orthogonal mode shapes.
These orthogonalized mode shapes are linearly dependent with the original mode shapes.

(Xi 
,  Xj 

)K = 0

(Xi , Xj )M = 0

vi Z vj ,

(v2
i - v2

j )(Xi , Xj )M = 0

v2
i (Xi, Xj )M - v2

j (Xj , Xi )M = (Xi, Xj )K - (Xj , Xi )K

EXAMPLE 8 . 9
Demonstrate orthogonality of the mode shapes with respect to the kinetic energy scalar
product for the system of Example 8.2

SO LU T I ON
The mass matrix, stiffness matrix, and mode shapes are as given in Example 8.2. Orthogo-
nality with respect to the kinetic energy inner product is as follows:

= [0.908 1 0.384]C -1.375m
m   

      0.647m
S

= [0.908 1 0.384]Dm 0 0
0 m 0

0 0
m
2

T C-1.375
1 

       1.294
S

(X2, X 1)M = X 
T
1 

M X 2
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A version of the preceding argument is used to prove that the eigenvalues are all real.
The formal proof of this statement involves the introduction of a scalar product that can
be defined to operate on complex vectors and can be evaluated to be a complex number.
The properties of a complex scalar product are more general than for a real scalar product.
The property of commutivity is generalized to a property where the scalar product is the
complex conjugate of its commutative. Assume a complex eigenvalue of M�1K or AM exists
and then prove that the eigenvalue must be real due to the symmetry of M, K, and A.

The argument can also be used to show that if M and K are positive definite, then the
eigenvalues of M�1K are all positive. Let Xi � Xj in Equation (8.41)

(8.47)

If M and K are positive definite, then both scalar products in the quotient of Equation (8.47)
are positive. Hence,

(8.48)v2
i 7 0

v2
i =

( Xi 
, Xi 

)K

( Xi 
, Xi 

)M

= -0.00159m L 0

= (-1.375)(-0.534m) + (1)(m) + (1.294)(-1.339m)

= [1.375 1 1.294]C -0.535m
m   

-1.339m
S

= [-1.375 1 1.294]Dm 0 0
0 m 0

0 0
m
2

T C -0.534
1 

-2.677
S

(X3, X 2)M = X 
T
2 

M X 3

= 0.00095m L 0

= (0.908)(-0.534m) + (1)(m) + (0.384)(-1.339m)

= [0.908 1 0.384]C -0.534m
m   

-1.339m
S

= [0.908 1 0.384]Dm 0 0
0 m 0

0 0
m
2

T C -0.534
1 

-2.677
S

(X3, X 1)M = X 
T
1 

M X 3

= -0.000052m L 0

= (0.908)(-1.375m) + (1)(m) + (0.384)(0.647m)
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This, in turn, shows that a system in which both the mass and stiffness matrices are posi-
tive definite is stable.

The ratio of Equation (8.47) is called Rayleigh’s quotient. For a given mode it is the ratio
or the potential energy to the kinetic energy.

It is possible to construct n orthogonal, and hence linearly independent, mode shapes
for an nDOF system. Thus any n-dimensional vector can be written as a linear combina-
tion of these n mode shapes. To this end, if y is any n-dimensional vector, there exist con-
stants c1, c2, . . . , cn such that

(8.49)

Equation (8.49) is a representation of the expansion theorem. Premultiplying Equation (8.49)
by for some j, 1 j n gives, in scalar product notation

(8.50)

Interchanging the scalar product operation with the summation and using the linearity
property of scalar products gives 

(8.51)

The orthogonality of the mode shapes implies that the only nonzero term in the summa-
tion occurs when i � j. Then Equation (8.51) reduces to

(8.52)

8.8 NORMALIZED MODE SHAPES
A mode shape corresponding to a specific natural frequency of an nDOF system is unique
only to a multiplicative constant. The arbitrariness can be alleviated by requiring the mode
shape to satisfy the normalization constraint. A mode shape chosen to satisfy the normal-
ization constraint is called a normalized mode shape. The normalization constraint, itself, is
arbitrary. However, all mode shapes are required to satisfy the same normalization con-
straint. The constraint should be chosen such that subsequent use of the normalized mode
shape is convenient.

It is convenient to normalize mode shapes by requiring that the kinetic energy scalar
product of a mode shape with itself is equal to one. That is,

(8.53)

If the mode shape, Xi, is normalized according to Equation (8.53), then from Rayleigh’s
quotient, Equation (8.47)

(8.54)XT
i   K Xi = (Xi 

, Xi 
)K = v2

i

(Xi 
,  Xi 

)M = XT
i   

MXi = 1

cj =

(Xj 
,  y)M

(Xj 
,  Xj 

)M

(Xj 
, y)M = a

n

i =1

ci 
( Xj 

,  Xi 
)M

(Xj 
,  y)M = aXj 

,a
n

i =1

ci  
Xib

M

……XT
j  

M

y = a
n

i =1

ci  
Xi
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The orthogonality relations, Equations (8.45) and (8.46), the normalization constraint,
Equation (8.53), and the subsequent result of the choice of normalization, Equation (8.54),
are summarized by

(8.55)

and

(8.56)

where �ij is the Kronecker delta. From this point, mode shapes will be assumed to be nor-
malized by Equation (8.53).

With the normalization scheme of Equation (8.53), the expansion theorem, Equations (8.49)
and (8.52), becomes

(8.57)y = a
n

i =1

(Xi 
, y)M  

Xi

( Xi 
,  Xj 

)K = v2
idij

(Xi 
,  X j 

)M = dij

EXAMPLE 8 . 10
Expand the vector

(a)

using the normalized mode shapes of Example 8.2.

SO LU T I ON
The general mode shapes of Example 8.2 are

(b)

where B1, B2, and B3 are arbitrary constants. The normalization of the first mode shape
proceeds as follows

(c)

which yields and

(d)X1 =

1

2m
 C0.659

0.726
0.279

S
B1 = 0.726>1m

1 = (X1,  X1)M = B 2
1 30.908 1 0.3844 Dm 0 0

0 m 0

0 0
m
2

T C 0.908
1  
0.384

S  

X1 = B1C 0.908
1  
0.384

S  X2 = B2C-1.375
1 

       1.294
S  X3 = B3C -0.534

1  
-2.677

S

y = C   1  4
-2
S
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The other mode shapes are normalized in the same manner yielding

(e)

The first coefficient in the expansion is calculated by

(f)

The other coefficients are calculated in a similar manner, yielding 
Thus,

(g)

8.9 RAYLEIGH’S QUOTIENT
Consider a situation where the free vibrations of a SDOF system are generated such that
only one mode is present. The frequency of the mode is � and its mode shape is X. The
maximum potential energy associated with this mode of vibration is determined from
Equation (8.28) as

(8.58)

The maximum kinetic energy associated with this mode is determined from Equation (8.29) as

(8.59)

For a conservative system, where a continual process of transfer of kinetic and potential
energy occurs without dissipation, the maximum potential energy equals the maximum
kinetic energy. Thus, from Equations (8.58) and (8.59)

(8.60)

or

(8.61)v2
=

(X, X)K

(X, X)M

v2(X, X)M = (X, X)K

T
 max 

=

1
2

 v2(X , X )M

V
 max 

=

1
2

(X, X)K

C    1
   4
-2
S = 3.284 C0.659

0.726
0.279

S + 0.690 C -0.712
  0.518
  0.670

S + 2.777 C -0.242
  0.453
-1.213

S
c3 = 2.7771m.

c2 = 0.6901m,

c1 = (X1,  y)M =

1

2m
30.659 0.726 0.2794 Dm 0 0

0 m 0

0 0
m
2

T C    1
   4
-2
S = 3.2842m

X2 =

1

2m
 C -0.712

  0.518
  0.670

S  X3 =

1

2m
 C -0.242

   0.453
-1.213

S
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For a general n-dimensional vector X, not necessarily a mode shape, Equation (8.61) is gen-
eralized to

(8.62)

The scalar function defined in Equation (8.62) is called Rayleigh’s quotient. If X is a
mode shape of the linear n degree of freedom whose stiffness and mass matrices are K and
M, respectively, then R(X) takes on the value of the natural frequency associated with that
mode. If X is not a mode shape, then R(X) takes on some other value.

Rayleigh’s quotient can be useful in determining an upper bound on the lowest natu-
ral frequency. In some cases, it can be used to attain a good approximation to the lowest
natural frequency.

From the expansion theorem, an arbitrary vector X can be written as a linear combi-
nation of the normalized mode shapes

(8.63)

Substituting Equation (8.63) in Rayleigh’s quotient, using properties of the scalar
products and orthonormality of the mode shapes, leads to

(8.64)

Stationary values of R(X) occur when

(8.65)

The n solutions of Equation (8.65) are summarized by ci � �ij for j � 1, . . . , n. That is,
Rayleigh’s quotient is stationary only when X is an eigenvector. It is also possible to show
that these stationary values are minimums. Hence is the minimum value of Rayleigh’s
quotient.

The preceding result implies that an upper bound and perhaps an approximation for
the lowest natural frequency can be obtained by using Rayleigh’s quotient. Rayleigh’s quo-
tient can be calculated for several trial vectors. The lowest natural frequency can be no
greater than the square root of the smallest value obtained. The closer a trial vector is to the
actual mode shape, the closer the value of Rayleigh’s quotient is to the square of the lowest
natural frequency.
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2
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2
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a
n
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i
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n
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ci  
X i

R (X) =

(X, X)K

(X, X)M

EXAMPLE 8 . 1 1
Use Rayleigh’s quotient to obtain an approximation to the lowest natural frequency of the
system of Example 8.2. Use the trial vectors

X = C 1
1

  0.5
S  Y = C   1-1

  1
S  Z = C   1  3

-1
S
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SO LU T I ON
Calculate Rayleigh’s quotient:

(a)

Similar calculations yield

(b)

From the preceding equations, an upper bound on the lowest natural frequency is

(c)

From Example 8.2, the lowest natural frequency for this system is 

8.10 PRINCIPAL COORDINATES
Let �1, �2, . . . , �n, be the natural frequencies of a linear nDOF system with correspon-
ding normalized mode shapes X1, X2, . . . , Xn. The expansion theorem implies that there
exists coefficients such that at any time the solution of Equation (8.3) can be expanded in
a series of eigenvectors. These coefficients must be continuous functions of time, call them
pi(t), i � 1, 2, . . . , n. The expansion theorem implies

(8.66)

Substitution of Equation (8.66) into Equation (8.3) leads to

(8.67)

Taking the standard scalar product of Equation (8.67) with Xj for an arbitrary j leads to

which, after the properties of scalar products are invoked, becomes

(8.68)a
n

i = 1

p
$

i (Xj 
, M Xi) + a

n

i =1

pi (Xj 
, K Xi 

) = 0

aX j 
,a

n

i = 1

p
$

i M  Xib + aX j 
,a

n

i = 1

pi  
K  Xib = 0

Maa
n

i = 1

p
$

i Xib + K aa
n

i = 1

pi Xib = 0

x(t) = a
n

i = 1

pi(t)Xi

0.8932k>m.

v1 6 0.907A
k
m

R (Y ) = 6.0 

k
m
  R (Z) = 2.57

k
m

R (X) =

31 1 0.54C 3k -2k 0
-2k 3k -k

0 -k 3k
S C 1

1
0.5
S

31 1 0.54Dm 0 0
0 m 0

0 0
m
2

T C 1
1
0.5
S

= 0.823
k
m
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Using the definitions of the energy scalar products, Equations (8.26) and (8.27), in
Equation (8.68) leads to

(8.69)

Orthogonality and normalization of mode shapes, Equations (8.56) and (8.57), are used in
Equation (8.69), leading to

(8.70)

Since j was arbitrarily chosen, an equation of the form of Equation (8.70) can be written
for each j � 1, 2, . . . , n.

Equation (8.66) can be viewed as a linear transformation between the chosen general-
ized coordinates, x, and the coordinates p � [p1 p2 · · · pn]

T, called the principal coordinates.
The transformation matrix is the matrix whose columns are the normalized mode shapes.
This matrix, P � [X 1 X 2 · · · Xn] is called the modal matrix. Since the columns of the
modal matrix are linearly independent, the modal matrix is nonsingular and the transfor-
mations

(8.71)

have a one-to-one correspondence.
The differential equations governing the vibrations of a linear nDOF system are uncou-

pled when the principal coordinates are used as dependent variables.

x = Pp  p = P-1x

p
$

j + v2
i pj = 0

a
n

i = 1

p
$

i (Xj  
, Xi 

)M + a
n

i = 1

pi (Xj 
, Xi 

)K = 0

EXAMPLE 8 . 1 2
(a) Write the differential equations satisfied by the principal coordinates for the system of

Example 8.2. 
(b) Find the relation between the principal coordinates and the original generalized coor-

dinates and vice versa. 
(c) Motion of the system is initiated by moving the third mass a distance � from equilib-

rium while holding the other masses in their equilibrium position and then releasing
the system from rest. Solve for the response of the principal coordinates.

SO LU T I ON
(a) Recalling from Example 8.2, the natural frequencies of the system are

(a)

The differential equations governing the principal coordinates are

(b)

(c)

(c)p
$

3 + a2.597A
k
m
b2

p3 = 0

p
$

2 + a2.110A
k
m
b2

p2 = 0

p
$

1 + a0.893A
k
m
b2

p1 = 0

v1 = 0.893A
k
m
  v2 = 2.110A

k
m
  v3 = 2.597A

k
m
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(b) The normalized eigenvectors are calculated in Example 8.10 as

(d)

The modal matrix is the matrix whose columns are the normalized eigenvectors

(e)

The relation between the two sets of coordinates is given by Equation (8.74)

(f)

The relationship is inverted yielding

(g)

(c) The initial conditions for x are

(h)

The initial conditions for the principal coordinates are obtained from Equation (g) as

(i)

and

(j)

The general solution for the principal coordinates is

(k)

(l)

(m)p3(t) = A3 sin a2.597A
k
m

tb + B3 cos a2.597A
k
m

tb

p2(t) = A2 sin a2.110A
k
m

tb + B2 cos a2.110A
k
m

tb

p1(t) = A1 sin a0.893A
k
m

tb + B1 cos a0.893A
k
m

tb

C p
#

1(0)
p
#

2(0)
p
#

3(0)
S = 2m C     0.659 0.726   0.140

-0.712 0.518   0.335
-0.242 0.453 -0.607

S C0
0
0
S = C0

0
0
S

C p1(0)
p2(0
p3(0)

S = 2m C     0.659 0.726    0.140
-0.712 0.518    0.335
-0.242 0.453 -0.607

S C0
0
d

S = 2m d C   0.140
  0.335
-0.607

S
C x1(0)

x2(0)
x3(0)

S = C0
0
d

S      C x#1(0)
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S = C0
0
0
S

p = P-1x Q C p1(t)
p2(t)
p3(t)
S = 2mC     0.659 0.726   0.140

-0.712 0.518   0.335
-0.242 0.453 -0.607

S C x1(t)
x2(t)
x3(t)
S

x = Pp Q C x1(t)
x2(t)
x3(t)
S =
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2m
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p2(t)
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C0.659 -0.712 -0.242

0.726    0.518     0.453
0.279    0.670 -1.213

S
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S  X2 =
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   0.670

S  X1 =
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Application of initial conditions, Equations (i) and (j) lead to 
A1 � 0, A2 � 0, and A3 � 0. The original generalized 

coordinates are obtained using Equation (f ) as

(n)

(o)

(p)

Equations (n) through (p) are the same as Equation (e) of Example 8.4.

+ 0.736d cos a2.597A
k
m

tb

x3(t) = 0.0389d cos a0.893A
k
m

tb + 0.224d cos a2.110A
k
m

tb

- 0.275d cos a2.597A
k
m

tb

x2(t) = 0.102d cos a0.893A
k
m

tb + 0.174d cos a2.110A
k
m

tb

+ 0.147d cos a2.597A
k
m

tb

x1(t) = 0.0922d cos a0.893A
k
m

tb - 0.238d cos a2.110A
k
m

tb

0.335d1m, B3 = -0.607d1m,
B1 = 0.140d1m, B2 =

Equation (8.71) shows that the generalized coordinates are linear combinations of the
principal coordinates. The generalized coordinates for a linear system are chosen such that the
displacement of any particle in the system is a linear combination of the generalized coordi-
nates. Thus, the displacement of any particle in the system is a linear combination of the prin-
cipal coordinates. This implies that if a particle is a node for the higher mode of a two
degree-of-freedom system, then p1 is proportional to the displacement of that particle. If a
particle is a node for the second mode of a three degree-of-freedom system, then a linear com-
bination of the first and third principal coordinates represents the displacement of that point.
Nothing can be inferred about the physical interpretation of either principal coordinate.

8.11 DETERMINATION OF NATURAL FREQUENCIES
AND MODE SHAPES
The determination of the natural frequencies and mode shapes for a MDOF system
requires the solution of a matrix eigenvalue-eigenvector problem. If the system has more
than three degrees of freedom, the algebraic and computational burden usually leads one
to seek approximate, numerical, or computer solutions. Rayleigh’s quotient, presented in
Section 8.9, may be used to provide an upper bound to the lowest natural frequency. In the
Rayleigh-Ritz method for discrete systems, a linear combination of linearly independent
vectors is used in Rayleigh’s quotient. The coefficients in the linear combination are chosen
to render Rayleigh’s quotient stationary.
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Most applications require more accurate determination of the natural frequencies and
mode shapes than can be provided by Rayleigh’s quotient or the Rayleigh-Ritz method. A
number of numerical methods lead to accurate numerical determination of natural fre-
quencies and mode shapes. One such is the matrix iteration method. Beginning with a trial
mode shape vector x0, a sequence of vectors xi is generated by

(8.72)

It can be shown that the ratio of two corresponding elements of xi and xi�1 approaches 
as i gets large and that xi approaches the corresponding mode shape vector. Higher natural
frequencies and mode shape vectors can be obtained by requiring trial vectors to be orthog-
onal with respect to the kinetic energy scalar product to all previously obtained mode shape
vectors. Matrix iteration has the advantage that natural frequencies and mode shape vectors
are determined sequentially and that only the number desired need to be determined.

Jacobi’s method is a powerful iterative method that determines all eigenvalues and
eigenvectors of a matrix. Jacobi’s method uses a series of transformations to convert a
symmetric matrix into a diagonal matrix with the eigenvalues along the diagonal. The
product of the matrices used in the transformation produces a matrix whose columns are
the eigenvectors. The mass and stiffness matrices for a MDOF system are guaranteed to
be symmetric, but the matrix M�1K, whose eigenvalues are the squares of the natural fre-
quencies, is not necessarily symmetric. In this case, it can be shown that there exists a
symmetric matrix D that can be obtained by a method called Choleski decomposition,
such that the eigenvalues and eigenvectors of M�1K are the same as the eigenvalues and
eigenvectors of D.

The above methods are described in other texts on vibrations or numerical analysis
texts. These methods are tools that can be used to solve eigenvalue-eigenvector problems
and thus, lead to natural frequencies and mode shapes for MDOF systems. However,
understanding the mechanics of these methods does not enhance the understanding of
vibrations. These methods have been incorporated into the eigenvalue routines used in
MATLAB. These MATLAB routines are easy to use.

v2
1

xi = AMxi -1

EXAMPLE 8 . 1 3
Study the accuracy of lumped-mass models to approximate the natural frequencies of a
simply supported beam. Model the beam using 2, 3, 4, 5, 6, and 7 lumped masses.
Compare the natural frequency approximations obtained when each lumped mass is mb/n,
where mb is the total mass of the beam and n is the number of nodes, to the natural fre-
quencies obtained when the method of Section 7.8 is used to obtain the nodal masses.

SO LU T I ON
A simply supported beam modeled with n lumped masses is illustrated in Figure 8.9. The
nodal masses are of equal value

(a)

where � is a parameter dependent on the method of discretization. If the sum of the nodal
masses equals the total mass of the beam, then � � n. If each nodal mass represents the
mass of a region surrounding the particle, as described and illustrated in Section 7.8, then
� � n � 1.

m =

mb

b
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The generalized coordinates are the transverse displacements of the lumped masses. The
mass matrix is a diagonal matrix with mii � m as the diagonal element for i � 1, 2, . . . , n.

Flexibility influence coefficients are used to determine the elements of the flexibility
matrix. These elements are of the form

(b)

where qij is determined from Appendix D as

(c)
Symmetry of the flexibility matrix is used to determine qij for j � i.

The differential equations governing the free vibrations of the approximate system are

(d)

where

(e)

The natural frequencies are the reciprocals of the square roots of the eigenvalues of
. The nondimensional natural frequencies are

(f)

A MATLAB script is written to determine the non dimensional natural frequencies of
the simply supported beam with n discrete masses for n � 2, 3, . . . , 7. The eigenvalues of
Q are summarized in Table 8.1.

v*
i = vi A

L3mb

EI

fQ , v2
i =

1
1li
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L3mb

bEI

fQ x
$

+ x = 0

qij = a j

n + 1
- 1b a i

n + 1
b3

+

1
6
a j

n + 1
b a1-

j

n + 1
b a2 -

j

n + 1
b a i

n + 1
b j Ú i

aij =

L3

EI
 qij

m m m··· m

FIGURE 8.9
Lumped model of a simply supported beam by nmasses. The generalized coordinates are the transverse
displacements of the masses.

Nondimensional frequencies for simply supported beam

Mode number

� 1 2 3 4 5 6 7

n � 2 5.6922 22.046 — — — — —
n � 3 4.9333 19.596 41.607 — — — —
n � 4 4.4133 17.637 39.988 64.202 — — —
n � 5 4.0290 16.100 36.000 62.356 89.194 — —
n � 6 3.7302 14.913 33.456 58.826 88.776 116.19 —
n � 7 3.4894 13.954 31.348 55.427 85.221 117.68 145.52

T A B L E 8 . 1
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The natural frequency approximations using � � n � 1 are summarized in Table 8.2,
while the natural frequency approximations for � � n are summarized in Table 8.3. When
the results are compared to the exact natural frequencies, obtained by the method of
Chapter 10, it is clear that using � � n � 1 leads to a better approximation.

8.12 PROPORTIONAL DAMPING
A MDOF system is said to have proportional damping if the viscous damping matrix is a linear
combination of the mass matrix and the stiffness matrix,

(8.73)
where 	 and � are constants. The differential equations governing the free vibrations of a
linear system with proportional damping are

(8.74)M x
$

+ (aK + bM)x# + K x = 0

C = aK + bM

Dimensional frequencies assuming � � n � 1
T A B L E 8 . 2

Mode number

1 2 3 4 5 6 7

Exact 9.8696 39.478 88.826 157.91 246.74 355.31 483.61
n � 2 9.8591 38.184 — — — — —
n � 3 9.8666 39.192 83.214 — — — —
n � 4 9.8685 39.381 87.179 143.56 — — —
n � 5 9.8691 39.437 88.182 152.74 218.48 — —
n � 6 9.8693 39.457 88.523 155.64 234.88 307.40 —
n � 7 9.8694 39.467 88.664 156.77 241.04 332.85 411.60

where � is the dimensional natural frequency.v = v
# 2 EI

rAL4

�N

Dimensional frequencies assuming � � n
T A B L E 8 . 3

Mode number

1 2 3 4 5 6 7

Exact 9.8696 39.478 88.826 157.91 246.74 355.31 483.61
n � 2 8.0499 31.177 — — — — —
n � 3 8.5447 33.941 72.065 — — — —
n � 4 8.8267 35.223 77.973 128.40 — — —
n � 5 9.0092 36.000 80.499 139.43 199.44 — —
n � 6 9.1372 36.820 81.956 144.09 217.46 284.60 —
n � 7 9.2320 36.918 82.938 146.64 225.47 311.35 295.93

where � is the natural frequency of a simply supported beam.v = v
# 2 EI

rAL4

�N
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Let �1 	 �2 	 . . . 	 �n be the natural frequencies of an undamped system whose mass
matrix is M and whose stiffness matrix is K. Let X1, X2, . . . , Xn be the corresponding nor-
malized mode shapes. The expansion theorem implies that x(t) can be written as a linear
combination of the mode shape vectors, as in Equation (8.66). Substituting Equation (8.66)
in Equation (8.74) leads to

(8.75)

Taking the standard scalar product of Equation (8.75) with Xj for an arbitrary j, and using
properties of scalar products and the definitions of energy scalar products, leads to

(8.76)

Use of the orthonormality relations, Equations (8.55) and (8.56), in Equation (8.76)
leads to

(8.77)

The principal coordinates are related to the original generalized coordinates through the
linear transformation, Equation (8.71). Thus the same principal coordinates that uncouple
the undamped system uncouple the system when proportional damping is added.

Equation (8.77) is analogous to the differential equation governing free vibrations of a
SDOF system and by analogy, is rewritten as

(8.78)

where (8.79)

is called the modal damping ratio.
The general solution of Equation (8.78) for 
j � 1 is

(8.80)

where Aj and �j are determined from initial conditions. The generalized coordinates are
obtained by using Equation (8.71).

Damping in structural systems is mostly hysteretic and hard to quantify. Lacking a
better model, proportional damping is often assumed. The modal damping ratios are usu-
ally determined experimentally. The equivalent damping ratio for a harmonically excited
SDOF system with hysteretic damping is proportional to the natural frequency, and
inversely proportional to the excitation frequency. This model fits proportional damping
where the damping matrix is proportional to the stiffness matrix. In these cases, the modes
with higher frequencies are damped more than modes with lower frequencies. The natural
frequencies in stiff structural systems are usually greatly separated. The effect of the higher
modes in the free vibration response is often negligible.
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EXAMPLE 8 . 1 4
The system of Examples 8.2 and 8.12 has damping added, as shown in Figure 8.10. The
values of the parameters are m � 2 kg, k � 200 N/m, and c � 17 N · s/m. Motion of the
system is initiated by moving the third mass a distance � from equilibrium while holding
the other masses in equilibrium and releasing the system from rest.

(a) Write the differential equations satisfied by the principal coordinates and determine
the modal damping ratios.

(b) Find the free response of the system.

SO LU T I ON
The differential equations of motion are

(a)

The damping matrix is proportional to the stiffness matrix with

(b)

The natural frequencies of this system are given by Equation (f ) of Example 8.2. They are
calculated using the values of the parameters as

(c)

The modal damping ratios are

(d)

(e)

(f)z3 =

av3

2
=

(0.085   s)(25.97 rad/s)

2
= 1.10

z2 =

av2

2
=

(0.085  s)(21.1  rad/s)

2
= 0.900

z1 =

av1

2
=

(0.085  s)(8.93  rad/s)

2
= 0.380

v1 = 8.93   rad/s  v2 = 21.1  rad/s  v3 = 25.97  rad/s

a =

c
k

=

17  N # s/m

200 N/m
= 0.085 s

+ C 600 -400 0
-400 600 -200
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S C x1
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x3
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0
0
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0 2 0
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S C x
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x
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x
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x
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4S

FIGURE 8.10
System of Example 8.14 is the system of Example 8.2, but with viscous damping added.
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The first two modes are underdamped; the third is overdamped. The differential equations
governing the principal coordinates are

(g)

(h)

(i)

(b) The solutions for the principal coordinates are

(j)

(k)

(l)

The initial conditions that the principal coordinates must satisfy are those given in
Equations (i) and (j) of Example 8.12. They are applied to Equations (j) through (l) to
determine the constants of integration yielding

(m)

(n)

(o)

The generalized coordinates are related to the principal coordinates by

(p)

which leads to

(q)

(r)

(s)

8.13 GENERAL VISCOUS DAMPING
The differential equations governing the free vibrations of a MDOF system with viscous
damping is

(8.81)
If the damping matrix is a linear combination of the mass matrix and the stiffness matrix,
the system is proportionally damped. In this case, the principal coordinates of the undamped

M x
$

+ Cx# + Kx = 0

+ 1.405e-19.24t
- 0.6688e-40.46t4

x3(t) = d30.0422e-3.39t sin (8.26t + 1.81) + 0.0993e-18.92t sin (9.33t + 0.484)

- 0.5248e-19.24t
+ 0.2498e-40.46t4

x2(t) = d30.110e-3.39t sin (8.26t + 1.81) + 0.0678e-18.92t sin (9.33t + 0.484)

+ 0.2803e-19.24t
- 0.1334e-40.46t4

x1(t) = d30.0997e-3.39t sin (8.26t + 1.81) - 0.1056e-18.92t sin (9.33t + 0.484)

x = Pp =

1

22
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0.726   0.518    0.453
0.279   0.670 -1.213
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system are used to uncouple the differential equations, Equation (8.76). The differential
equation defining each principal coordinate is analogous to the differential equation govern-
ing the motion of a linear SDOF system with viscous damping.

If the damping matrix is arbitrary, the principal coordinates of the undamped system do
not uncouple Equation (8.81). A more general procedure must be used. Equation (8.81) can
be reformulated as 2n first-order differential equations by writing

(8.82)

where (8.83)

A solution to Equation (8.82) is assumed as
(8.84)

Substitution of Equation (8.84) into Equation (8.82) leads to

(8.85)

or (8.86)

Thus the values of � are the eigenvalues of and the vectors are the corresponding
eigenvectors 
.

The values of � occur in complex conjugate pairs. The system is stable only if all eigen-
values have nonnegative real parts. Eigenvectors corresponding to complex conjugate
eigenvalues are also complex conjugates of one another. Eigenvectors corresponding to
eigenvalues which are not complex conjugates satisfy the orthogonality relation

(8.87)£
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EXAMPLE 8 . 1 5
Plot the free-vibration response to the system of Figure 8.11 under the initial conditions
x1(0) � 0, x2(0) � 0.01 m, 

SO LU T I ON
The differential equations governing the motion of the system are

(a)

The damping matrix for this system is not a linear combination of the mass matrix and
the stiffness matrix. Hence, the principal coordinates of the undamped system cannot be
used to uncouple the differential equations. These equations are written in the form of
Equation (8.82) where

(b)y = Dx#1
x#2
x1

x2

T M
∼

= D 0 0 m 0
0 0 0 2m
m 0 0 0
0 2m 0 c

T K
∼

= D -m 0 0 0
0 -2m 0 0
0 0 3k -2k
0 0 -2k 2k

T

cm 0
0 2m

d cx
$

1

x
$

2

d + c0 0
0 c

d cx
#

1

x#2
d + c 3k -2k

-2k 2k
d cx1

x2

d = c0
0
d

x#1(0) = 0, and x#2(0) = 0.
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A solution of Equation (8.82) is assumed in the form of Equation (8.84). The resulting values
of � are the eigenvalues of . The eigenvalues obtained by using MATLAB are

(c)

The corresponding eigenvectors are

(d)

The general solution is a linear combination over all modes

(e)y = a
4

j = 1

Cj £j e-gi t

£1,2 = D -0.924 < 0.166i
     0.340 � 0.0437i
   0.0039 < 0.0214i
-0.0011 � 0.0079i

T  £3,4 = D 0.4984 < 0.3123
0.6871 � 0.4179i
0.0240 < 0.0448i
0.0320 � 0.0617i

T
g1,2 = 0.2110 � 43.19i  g3,4 = 0.7890 � 11.50i

M
∼

-1K
∼

FIGURE 8.11
(a) System of Example 8.15 has a general viscous-damping matrix. (b) Free vibration response of
system of Example 8.15.

k c2k
m 2m

x1
x2

c = 80 N · s/mk = 10,000 N/m m = 20 kg

(a)

–8
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 
(m

)
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–4

–2

0

2

4

6

8

10

t (s)

(b)

x1(t)

x2(t)

×10–3
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where Cj are constants of integration. Application of initial conditions leads to

(f)

Since the eigenvalues and eigenvectors are complex conjugate pairs, evaluation of the solu-
tion leads to a real response. Evaluation and plotting the response over a period of time
leads to Figure 8.11(b).

8.14 BENCHMARK EXAMPLES

8.14.1 MACHINE ON FLOOR OF AN INDUSTRIAL PLANT
The differential equations for free vibration of the machine bolted to the beam illustrated
in Figure 7.21 are taken from Equation (h) of Section 7.9.1 with the right-hand side equal
to zero as

(a)

The eigenvalues of AM are obtained using MATLAB as

(b)

The natural frequencies are reciprocals of the eigenvalues

(c)

The mode shape vectors are

(d)

The mode-shape vectors are illustrated in Figure 8.12.
The differential equations for free vibration of the machine connected to the beam by

the isolator of stiffness 3.93 � 104 lbf/ft with the beam modeled with four degrees of free-
dom, illustrated in Figure 7.22(a), are obtained from Equation (l) of Section 7.9.1 as

X1 = D0.1867
0.5263
0.6926
0.4566

T X2 = D   0.5533
  0.7226
-0.0203
-0.4113

T X3 = D   0.3044
  0.2697
-0.0423

  0.9126

T X4 = D   0.7698
-0.6335
  0.0155
-0.0764

T

v1 =

1

2l4

= 150.2  rad/s         v2 =

1

2l3

= 1.51 * 103 rad/s

v3 =

1

2l2

= 2.14 * 103 rad/s  v4 =

1

2l1

= 4.16 * 103 rad/s

l1 = 5.79 * 10-8 l2 = 2.19 * 10-7 l3 = 4.37 * 10-7 l4 = 4.43 * 10-5

10-7D3.34   5.73 112.2   3.13
5.73 14.23 318.5   9.31
5.31 15.19 421.8 13.21
3.13   9.31 277 11.25

T Dx
$

1

x
$

2

x
$

3

x
$

4

T + Dx1

x2

x3

x4

T = D0
0
0
0

T

y0 = a
4

j = 1

Cj £j
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(d)10-7E
3.34 5.73 5.35 3.14 106.7
5.73 14.4 15.2 9.31 302.9
5.35 15.2 20.1 13.2 401.1
3.14 9.31 13.2 12.5 263.4
5.35 15.2 20.1 13.2 794.3

U E
x
$

1

x
$

2

x
$

3

x
$

4

x
$

5

U + E
x1

x2

x3

x4

x5

U = E
0
0
0
0
0

U

(a)

(b)

0.1867

0.5263

0.5523
0.7720

–0.0203

–0.4413

0.6623

0.4561

(c)

0.3044 0.2667

–0.0423

0.9120

(d)

0.7698

–0.6335

0.0155

–0.0764

(e)

FIGURE 8.12
(a) Four degree-of freedom
model of beam on floor of
industrial plants. (b) Mode
shape for first mode. (c) Mode
shape for second mode.
(d) Mode shape for third mode.
(e) Mode shape for fourth
mode.
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The eigenvalues of AM are

(e)

The natural frequencies are the reciprocals of the square roots of the eigenvalues

(f)

8.14.2 SIMPLIFIED SUSPENSION SYSTEM
The differential equations governing the free vibrations of the four degree-of-freedom
model suspension system illustrated in Figure 7.23 are

(a)

The system is proportionally damped with the damping matrix proportional to the stiff-
ness matrix with

(b)

Thus, the methods of Section 8.12 are applicable. The natural frequencies and mode shapes
for the undamped system are found by finding the square roots of the eigenvalues of

(c)* D    5.50 -0.48 -1.56 2.04
-0.48  2.4 -1.2 -1.2
-1.56 -1.2 11.2 0
   2.04 -1.2 0 11.2

T = D 244.4 -21.3 -69.3 90.7
-16   80.0 -40 -40

-624 -480 4480 0
816 -480    0 4480

T
M 

- 1K = 104 D4.44 * 10-3 0 0 0
0 3.33 * 10-3 0 0
0 0 4 * 10-2 0
0 0 0 4 * 10-2

T

a =

1200   N # s/m
12,000   N/m

= 0.1  s

+ 10-4D     5.50 -0.48 -1.56 2.04
-0.48   2.4 -1.2 -1.2
-1.56 -1.2      1.12 0
   2.04 -1.2 0   1.12

T D ux1

x2

x3

T = D0
0
0
0

T
D225 0 0 0

0 300 0 0
0 0 25 0
0 0 0 25

T D u
$

x
$

1

x
$

2

x
$

3

T + 10-3 D    5.50 -0.48   -1.56   2.04
-0.48    2.4 -1.2 -1.2
-1.56 -1.2     1.12 0
   2.04 -1.2 0  1.12

T D u
#

x#1
x#2
x#3

T

v5 =

1

2l1

= 4.17 * 103 rad/s

v3 =

1

2l3

= 1.56 * 103
 

 rad/s  v4 =

1

2l2

= 2.89 * 103
 

 rad/s

v1 =

1

2l5

= 35.5  rad/s  v2 =

1

2l4

= 494.1 rad/s

l4 = 4.10 * 10-6  l5 = 8.95 * 10-4

l1 = 5.77 * 10-8  l2 = 1.27 * 10-7  l3 = 4.11 * 10-7
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The eigenvalues and normalized mode shapes are obtained from MATLAB as

(d)

(e)

The natural frequencies are the square roots of the eigenvalues

(f)

The modal damping ratios are

(g)

The differential equations for the principal coordinates are given by Equation (8.73) that
when applied to this problem become

(h)

(i)

(j)

(k)

The solutions of Equations (h) through (k) are

(l)

(m)

(n)

(o)

The principal coordinates are related to the generalized coordinates by x=Pp where P is the
modal matrix, or the matrix whose columns are the normalized eigenvectors

(p)P = D0.0573       0.0064       0.0025 - 0.0005
0.0049       0.0134 - 0.1112       0.1656
0.0073 - 0.0090 -0.1660 -0.1110
0.0074 - 0.660        0.0003       0.0053

T

p4(t) = A5e
-10.23t

+ A6e
-440.7t

p3(t) = A3e
-10.22t

+ A4e
-438.7t

p2(t) = A2e
-11.950t sin (9.96t - f2)

p1(t) = A1e
-3.47t sin (7.58t - f1)

p
$

4 + 450.9p
#

4 + 4507p4 = 0

p
$

3 + 448.9p
#

3 + 4485p3 = 0

p
$

2 + 21.9p
#

2 + 218.7p2 = 0

p
$

1 + 6.94p
#

1 + 69.5p1 = 0

z4 =

a

2
v4 = 3.36

z1 =

a

2
v1 = 0.417  z2 =

a

2
v2 = 0.740  z3 =

a

2
v3 = 3.35

v4 = 2l4 = 67.1 rad>s
v1 = 2l1 = 8.33 rad >s v2 = 2l2 = 14.79 rad>s  v3 = 2l3 = 67.0 rad/s

X1 = D0.0573
0.0049
0.0073
0.0074

T X2 = D   0.0064
  0.0134
-0.0090
-0.660  

T X3 = D     0.0025
-0.1112
-0.1660

      0.0003

T X4 = D -0.0005
  0.1656
-0.1110
  0.0053

T
l1 = 69.5  l2 = 218.7  l3 = 4485  l4 = 4507
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8.15 FURTHER EXAMPLES

EXAMPLE 8 . 1 6
Reconsider the three degree-of-freedom model of the hand and upper arm of Example 7.21.
Dong et al. report the following data for the parameters in the model for the “grip” condition,

m1 � 5.0516 kg m2 � 1.4295 kg m3 � 0.887 kg m4 � 0.0229 kg
m5 � 0.0150 kg

k1 � 149,490 N/m k2 � 1726 N/m k3 � 12,075 N/m k4 � 29,898 N/m
k5 � 195,665 N/m

c1 � 87.2 N · s/m c2 � 64.9 N · s/m c3 � 36.3 N · s/m c4 � 74.8 N · s/m
c5 � 126.0 N · s/m

(a) Determine the natural frequencies of free undamped vibration and the normalized
mode shapes.

(b) Determine the general form of the solution for the damped response.

SOLUT ION
(a) Substituting the given values into Equation (i) of Example 7.21 leads to the following
differential equations as

(a)

The natural frequencies are the square roots of the eigenvalues of M�1K. They are calculated as

(b)

The mode-shape vectors are the corresponding eigenvectors. The eigenvectors are normal-
ized such that They are obtained as

(c)

(b) The damped system is written in the state-space formulation of Equation (8.82) with

(d)M
∼

= c 0 M
M C

d = F
0
0
0

5.0516
0
0

 

0
0
0
0

1.4295
0

 

0
0
0
0
0

0.887

 

5.0516
0
0

152.1
-64.9

0

 

0
1.4295
0

-64.9
176.0
-36.3

 

0
0
0.887
0

-36.3
111.1

V

X1 = C0.3233
0.5738
0.0381

S  X2 = C     0.3057
-0.6069
-0.0406

S  X3 = C7.3 * 10-4

-0.0439
   1.0603

S
XT

i MXi = 1.

v1 = 171.2   rad/s  v2 = 175.0   rad/s  v3 = 484.5   rad/s

+ C151,216     -1726            0
-1726     43,699 -12,075
         0 -12,075  207, 740

S C x1

x2

x3

S = C 0
74.8y# + 29,898y
126y# + 195,695y

S
C5.0516 0 0

0 1.4295 0
0 0 0.887

S C x
$

1

x
$

2

x
$

3

S + C 152.1 -64.9 0
-64.9 176.0 -36.3

0 -36.3 111.1
S C x

#

1

x#2
x#3

S
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(e)

The assumed solution is where The values of � are the eigenvalues of
. They are

(f)

The corresponding eigenvectors are

(g)

The general solution is

(h)

Equation (h) can be rewritten as

(i)+ C6[£5r
 sin 479.1t + £5i cos 479.1t]6

+ e-64.01t5C5[£5r
 cos 479.1t - £5i sin 479.1t]6

+ C4[£3r
 sin 162.3t + £3i sin 162.3t]6

+ e-63.176t5C3[£3r
 cos 162.3t - £3i sin 162.3t]

+ C2[£1r
 sin 171.1t + £1i cos 171.1t]6

y(t) = e-12.06t5C1[£1r
 cos 171.1t - £1i sin 171.1t]

+ e-64.01t5C5£5e
i479.1t

+ C2£5e
-i479.1t6

y(t) = e -12.06t5C1
1e
i171.7t

+ C2
1e
-i171.7t6 + e -63.176t5C3
3e

i162.3t
+ C4
3e

-i162.3t6


5,6 = 10-2F
0.2082e�2.4639i

6.841e<2.0931

98.763
0.0004e�0.7603i

0.0142e�2.486i

0.2064e<1.7036i

V

£1,2 = 10-2F
90.29

42.89e<0.126i

3.134e�0.2085i

0.5245e<1.641i

0.2489e<1.760i

0.0182e<1.360i

V  £3, 4 = 10-2F
12.76e�3.020i

98.98
6.255e�0.5439i

0.0731e�1.079i

0.5673e<1.941i

0.0359e<1.397i

V

g1, 2 = 12.06 � 171.7i g3,4 = 63.17 � 162.3i g1, 2 = 64.01 � 479.1i

M
∼

-1 K∼
y = cx

#

x
d .y = £e-gt

K
∼

= c -M 0
0 K

d = F
-5.0516 0 0 0 0 0

0 -1.4295 0 0 0 0
0 0 -0.887 0 0 0
0 0 0 151,216    -1726 0
0 0 0 -1726    43,699 -12,075
0 0 0 0 -12,075   207,740

V
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EXAMPLE 8 . 1 7
(a) Determine the natural frequencies for the three degree-of-freedom system shown in

Figure 8.13.
(b) Calculate and graphically illustrate the normalized mode shape vectors.
(c) Demonstrate mode shape orthogonality.

SO LU T I ON
The differential equations governing the system may be formulated using Newton’s law
or Lagrange’s equations (the full set or via influence coefficients as)

(a)

(a) The natural frequencies are the square roots of the eigenvalues of M�1K,

(b)

where . Evaluation of the determinant in Equation (b) leads to

(c)

The smallest toot of Equation (c) is � � 0. The system is unrestrained. The other roots
are obtained by solving

(d)

The solutions of Equation (b) are

(e)

from which the natural frequencies are obtained as

(f)

(b) The mode shape vectors are determined from

(g)C4f - l -4f 0
-4f 6f - l -2f

0 -f f - l

S CX1

X2

X3

S = C0
0
0
S

v1 = 0  v2 = A
1.725k

2m
= 0.928A

k
m
  v3 = A

9.275k

2m
= 2.15A

k
m

l = 0, 1.725f, 9.275f

l2
- 11fl + 16f2

= 0

-l3
+ 11fl2

- 16f2l = 0

f =

k
2m

= C4f - l -4f 0
-4f 6f - l -2f

0 -f f - l

S

 det (M-1K - lI) = 0 Q F
1
m

0 0

0
1
m

0

0 0
1

2m

V C 2k -2k 0
-2k 3k -k

0 -k k
S - lC1 0 0

0 1 0
0 0 1

S

Cm 0 0
0 m 0
0 0 2m

S C x
$

1

x
$

2

x
$

3

S + C 2k -2k 0
-2k 3k -k

0 -k k
S C x1

x2

x3

S = C0
0
0
S
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The first equation gives

(h)

while the third equation gives

(i)

When evaluated for the values of � which are the eigenvalues of M�1K and keeping
X2 � C, arbitrary Equations (h) and (i) yield

(j)

The mode shapes are normalized by requiring (X
i
, X

i
)

M
� X T

i
MX

i
� 1. For example, the

normalization of X
2

chooses C such that

XT
2  

MX2 = 1 Q 1 = C [1.758 1 -1.3679]Cm 0 0
0 m 0
0 0 2m

SC C 1.758
1

-1.379
S

X1 = C C  

1
1
1
S  X2 = C  C    1.758

1
-1.379

S  X3 = C  C -0.758
1

-0.121
S

X3 =

f

f - l
X2

X1 =

4f

4f - l
X2

(b)

0.5

0.587
0.334

–0.461

0.790

–0.096

–0.599

X
2 

  m
X

1 
  m

X
3 

  m
FIGURE 8.13
System of Example 8.17.

x1 x2 x2

(a)
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(k)

or Similar calculations are performed yielding the normalized mode-shape vec-
tors as

(l)

The normalized mode shapes are illustrated in Figure 8.12(b). The first mode is a rigid-
body mode corresponding to the natural frequency of zero. There is a node for the
second mode in the spring connecting the second and third masses. Two nodes mark
the third mode. One is in the spring connecting the first two masses; the second is in
the spring connecting the second and third mass, but not in the same location as the
node for the second mode.

(a) Mode-shape orthogonality implies (Xi, Xj)M � X T
j MXi � 0 for i j. The demon-

stration of this relation follows

(m)

(n)= -0.599(0.587) + 0.790(0.334) - 0.096(-0.922) = 0

=

1
m

 [-0.599 0.790 -0.096]C0.587m
0.334m
0.922m

S
(X2,  X3)M = XT

3 MX2 =

1

2m
[-0.599 0.790 -0.096]Cm 0 0

0 m 0
0 0 2m

S 1

2m
C    0.587

   0.334
-0.461

S
= 0.587(0.5) + 0.334(0.5) - 0.461(1) = 0

=

1
m

 [0.587 0.334 -0.461]C0.5m
0.5m

m
S

(X1, X2)M = XT
2 M  X1 =

1

2m
 [0.587 0.334 -0.461]Cm 0 0

0 m 0
0 0 2m

S 1

2m
C0.5

0.5
0.5
S

Z

X1 =

1

2m
C0.5

0.5
0.5
S  X2 =

1

2m
C    0.587

   0.334
-0.461

S  X3 =

1

2m
C -0.599

   0.790
-0.096

S
C =

0.334
1m .

= C 2[1.758(1.758m) + 1(m) - 1.479(-2.758m)] = C 2(8.939m)

= C 2[1.758 1 -1.3679]C    1.758m
m

-2.758m
S
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(o)

= 0.5(-0.599) + 0.5(0.790) + 0.5(-0.192) = 0

=

1
m

[0.5 0.5 -0.5]C -0.599m
  0.790m
-0.192m

S
(X3, X1)M = XT

2  
MX1 =

1

2m
 [0.5 0.5 -0.5]Cm 0 0

0 m 0
0 0 2m

S 1

2m
C -0.599

  0.790
-0.096

S

8.16 SUMMARY

8.16.1 IMPORTANT CONCEPTS
• A nDOF system is governed by n differential equations and has n natural frequencies.
• The natural frequencies of a nDOF system are the square roots of the eigenvalues of M�1K.
• The natural frequencies of a nDOF system are the reciprocals of the square roots of the

eigenvalues of AM.
• The mode-shape vectors are the corresponding eigenvectors.
• The general solution for the free response is a linear combination of the modes.

The constants in the linear combination are determined by application of the initial
conditions.

• A degenerate system has repeated natural frequencies.
• An unrestrained system has its lowest natural frequency equal to zero.
• Mode shapes corresponding to distinct frequencies of a MDOF system are mutually

orthogonal with respect to the kinetic energy scalar product as well as the potential
energy scalar product.

• All eigenvalues of M�1K are real.
• If K is positive definite, then all eigenvalues of M�1K are positive.
• Any n-dimensional vector can be expanded in a series of mode-shape vectors of a nDOF

system.
• Mode-shape vectors are normalized with respect to the kinetic-energy scalar product.
• Principal coordinates are coordinates which uncouple the differential equations.
• The principal coordinates are a linear transformation from the original generalized

coordinates.
• The differential equations for a system with proportional damping are uncoupled by the

same principal coordinates that uncouple the corresponding undamped system.
• The n second-order equations governing a system with viscous damping are reformu-

lated as 2n first-order differential equations for solution.
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8.16.2 IMPORTANT EQUATIONS
Normal mode solution

(8.4)

Equations defining mode shapes

(8.7)

Natural frequencies from the stiffness matrix

(8.9)

Equations defining mode shapes from flexibility matrix

(8.10)

General solution

(8.16)

Potential-energy scalar product

(8.25)

Kinetic-energy scalar product

(8.26)

Mode-shape orthogonality

(8.45)

(8.46)

Expansion theorem

(8.49)

(8.52)

Normalized mode shapes

(8.53)

(8.54)

Rayleigh’s quotient

(8.62)

Principal coordinates

(8.70)

(8.71)x = Pp

p
$

j + v2
j pj = 0

R ( X ) =

( X, X )K

( X,X )M

(Xi , Xi )K = v2
i

(Xi , Xi )M = 1

cj =

(Xj , y )M

(Xj Xj )M

y = a
n

i = 1

ci Xi

(Xi, Xj )K = 0

(Xi, Xj )M = 0

(y, z )M = zT My

(y, z )K = zT Ky

x (t ) = a
n

i = 1

Xi Ai sin (vi t - fi )

(-v2A M + I ) X = 0

 det | M-1K - v2I | = 0

(M-1K - v2I)X = 0

x (t ) = X e ivt
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Proportional damping

(8.73)

Principal coordinates for proportional damping

(8.78)

PROBLEMS

SHORT ANSWER PROBLEMS
For Problems 8.1 through 8.18, indicate whether the statement presented is true or false.
If true, state why. If false, rewrite the statement to make it true.

8.1 The natural frequencies of a MDOF system are the eigenvalues of M�1K.
8.2 An n degree-of-freedom system has n � 1 natural frequencies.
8.3 The mode-shape vector is the solution of 
8.4 A node for a mode is a particle that has zero displacement when the vibrations

are solely at that frequency.
8.5 The mode-shape vectors are orthogonal with respect to the standard inner

product. That is, 
8.6 The mode-shape vector corresponding to a natural frequency � for a MDOF

system is unique.
8.7 The eigenvectors are normalized by requiring that the kinetic-energy inner

product of a mode-shape vector with itself is one.
8.8 The modal matrix is the transpose of the matrix whose columns are the

normalized mode-shape vectors.
8.9 Proportional damping occurs when the damping matrix is proportional to the

flexibility matrix.
8.10 The natural frequencies of a nDOF system are the roots of a nth-order

polynomial.
8.11 PTMP � I where P is the modal matrix and I is the identity matrix.
8.12 If Xi is a normalized mode shape corresponding to a natural frequency �i, then 

.
8.13 The lowest natural frequency when det K � 0 is zero.
8.14 The flexibility matrix does not exist for an unrestrained system.
8.15 Rayleigh’s quotient can be applied to obtain a lower-bound on the lowest natural

frequency.
8.16 The damping ratio for a proportionally damped system where the proportional

damping is proportional to the stiffness matrix is inversely proportional to the
natural frequency.

8.17 Matrix iteration is a method used to determine natural frequencies of a MDOF
system iteratively.

8.18 If [1 2]T is a mode-shape vector corresponding to a natural frequency of 100 rad/s
for a two non-degenerate system, then [2 6]T is also a mode-shape vector
corresponding to 100 rad/s.

(Xi, Xi )K = v2
i

XT
j Xi = 0.

(AM -
1
v2 I )X = 0.

p
$

j + 2zjvj p
#

j + v2
j pj = 0

C = aK + bM
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Problems 8.19 through 8.39 require a short answer.

8.19 What is the normal mode solution?
8.20 What is the dynamical matrix?
8.21 The natural frequencies of an nDOF system are the ________________ of the

eigenvalues of AM.
8.22 The natural frequencies and mode-shape vectors for a nDOF system have been

determined. How is the free response of the system determined?
8.23 What is the name for the mode corresponding to a natural frequency equal to zero?
8.24 How many linearly independent mode-shape vectors correspond to a natural

frequency that is a double root of the characteristic equation?
8.25 Define the potential-energy scalar product.
8.26 What does the term “kinetic energy” refer to in the kinetic-energy scalar product?
8.27 How is the property of commutivity of scalar products satisfied for the kinetic-

energy scalar product?
8.28 What is meant by mode-shape orthogonality?
8.29 What is a normalized mode-shape vector?
8.30 Define Rayleigh’s quotient for an arbitrary n-dimensional vector.
8.31 When is Rayleigh’s quotient stationary?
8.32 Why is the modal matrix nonsingular?
8.33 State the expansion theorem.
8.34 What are the principal coordinates for an undamped, linear MDOF system?
8.35 How is matrix iteration used to approximate the lowest natural frequency of a

MDOF system?
8.36 What is the modal damping ratio?
8.37 Why can the principal coordinates of an undamped system be used as principal

coordinates for a viscously damped system with proportional damping?
8.38 If the lowest natural frequency of a system is zero, what is det M�1K?
8.39 How many nodes located in the system should be expected for the third mode

of a seven degree-of-freedom system?

Problems 8.40 through 8.51 require a short calculation.

8.40 The eigenvalues of M�1K are 20, 50, and 100. What are the eigenvalues of AM?
8.41 The eigenvalues of M�1K are 16, 49, 100, and 225. What are the natural

frequencies of the system?
8.42 For the system of Figure SP8.42, calculate (x, y)K for x � [3  2  �1]T and 

y � [1  �2  3]T.

8.43 For the system of Figure SP8.42, calculate Rayleigh’s quotient for x � [3  2  �1]T.

FIGURE SP 8.42

5000 N/m 3000 N/m
3 kg 2 kg 1 kg

1000 N/m
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8.44 A mode shape vector of a two degree-of-freedom system is [1 2]T. The mass matrix

for the system is . Calculate the second mode-shape vector.

8.45 A mode-shape vector of a two degree-of-freedom system is [1 2]T. Is this the mode-
shape vector for the first mode, which corresponds to the lowest natural frequency,
or the higher mode? Why?

8.46 A mode-shape vector of a two degree-of-freedom system is [1 2]T. The mass matrix

for the system is Normalize the mode-shape vector.

8.47 A normalized mode-shape vector for a two degree-of-freedom system is [0.1   0.3]T.

The stiffness matrix for the system is Calculate the natural

frequency corresponding to this mode.

8.48 Can the vectors [1  2  2.5]T and [1  2  �2]T be mode shape vectors of a system
with a diagonal mass matrix with all three diagonal elements equal?

8.49 A three degree-of-freedom undamped system has natural frequencies of 10 rad/s,
25 rad/s, and 50 rad/s. What are the differential equations satisfied by the principal
coordinates for the system for free vibration?

8.50 A three degree-of-freedom system with viscous damping that is proportional to
the stiffness matrix has natural frequencies of 10 rad/s, 25 rad/s, and 50 rad/s.
The modal damping ratio for the first mode is 0.1.
(a) What are the modal damping ratios for the higher modes?
(b) Write the differential equations satisfied by the principal coordinates for free

vibrations of the system.
8.51 A system has the differential equations

Write the system of differential equations as six first-order differential equations.
8.52 Lagrange’s equations are used to derive the differential equations for a three

degree-of-freedom system resulting in

where x1 and x2 are linear displacements and � is an angular coordinate. The
damping matrix is such that the system has proportional damping. What are
possible units (in SI) for each of the following quantities.
(a) The third natural frequency �3
(b) The modal damping ratio 
2
(c) The constant of proportionality between the damping matrix and the stiffness

matrix 	

Cm11 m12 m13

m21 m22 m23

m31 m32 m33

S  C x$1

x$2

u
$

S + C c11 c12 c13

c21 c22 c23

c31 c32 c33

S  C x#1
x#2
u
#

S + C k11 k12 k13

k21 k22 k23

k31 k32 k33

S  C x1

x2

u

S = CF1

F2

F3

S

C5 0 0
0 3 0
0 0 2

S  C x$1
x$2
x$3

S + C 3 -1 0
-1 4 -3
0 -3 3

S  C x#1
x#2
x#3

S + C 50 -20 0
-20 100 -80

0 -80 120
S  C x1

x2

x3

S = C0
0
0
S

K = c 200 -100
-100 300

d .

M = c2 0
0 3

d .

M = c2 0
0 3

d
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(d) The third element of the normalized mode-shape vector for the first mode
(e) The second element of the normalized mode-shape vector for the third mode
(f ) The principal coordinate p1
(g) The element of the modal matrix in the first row and second column
(h) The element of the modal matrix in the third row and third column
(i) The constant of proportionality between the mass matrix and the damping

matrix

CHAPTER PROBLEMS
8.1–8.7 Calculate the natural frequencies and mode shapes for the system shown in

Figures P8.1 through P8.7 by calculating the eigenvalues and eigenvectors of
M�1K. Graphically illustrate the mode shapes. Identify any nodes.

FIGURE P8.6
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8.8 Two machines are placed on the massless fixed-pinned beam of Figure P8.8.
Determine the natural frequencies for the system.

8.9 Determine the natural frequencies and mode shapes for the system of Figure P7.2
if k � 3.4 � 105 N/m, L � 1.5 m and m � 4.6 kg.

8.10 Determine the natural frequencies of the system of Figure P7.5 if k � 2500 N/m,
m1 � 2.4 kg, m2 � 1.6 kg, I � 0.65 kg · m2, and L � 1 m.

8.11 Determine the natural frequencies and mode shapes for the system of Figure P7.17
if k � 10,000 N/m, m � 3 kg, I � 0.6 kg · m2, and r � 80 cm.

8.12 Determine the natural frequencies and mode shapes of the system of Figure P7.19
if k � 12,000 N/m and each bar is of mass 12 kg and length 4 m.

8.13 A 400 kg machine is placed at the midspan of a 3-m-long, 200-kg simply supported
beam. The beam is made of a material of elastic modulus 200 � 109 N/m2 and
has a cross-sectional moment of inertia of 1.4 � 10�5 m4. Use a three degree-of-
freedom model to approximate the system’s lowest natural frequency.

8.14 A 500 kg machine is placed at the end of a 3.8-m-long, 190-kg fixed-free beam.
The beam is made of a material of elastic modulus 200 � 109 N/m2 and has a
cross-sectional moment of inertia of 1.4 � 10�5 m4. Use a three degree-of-freedom
model to approximate the two lowest natural frequencies of the system.

8.15 Determine the two lowest natural frequencies of the railroad bridge of Chapter
Problem 7.84 if k1 � 5.5 � 107 N/m, k2 � 1.2 � 107 N/m, m � 15,000 kg,
I � 1.6 � 106 kg · m2, l � 6.7 m, and h � 8.8 m.

8.16 Determine the natural frequencies of the system of Chapter Problem 7.89. The
beam is of length 5 m, made of a material of elastic modulus 200 � 109 N/m2,

FIGURE P8.8
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1 m 1 m 0.5 m
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and has a cross-sectional moment of inertia of 1.4 � 10�5 m4. The total mass of
the beam is 320 kg. The mass of the winch is 115 kg. The winch cable is made
of a material of elastic modulus 200 � 109 N/m2 and has a cross-sectional area of
3.4 � 10�2 m2. The length of the cable is 5.5 m and the mass being lifted is
715 kg.

8.17 Determine the free vibration response of the railroad bridge of Chapter
Problem 8.14 if a ground disturbance initially leads to �1 � 0.8° with
�2 � �3 � 0.

8.18 A robot arm is 60 cm long, made of a material of elastic modulus 200 � 109 N/m2,
and has the cross section of Figure P8.18. The total mass of the arm is 850 g. A tool
of mass 1 kg is attached to the end of the arm. Assume one end of the arm is
pinned and the other end is free. Use a three degree-of-freedom model to determine
the arm’s natural frequencies.

8.19 A 30,000 kg locomotive is coupled to a fully loaded 20,000 kg boxcar and moving
at 6.5 m/s. The assembly is coupled to a stationary and empty 5,000 kg cattle
car. The stiffness of each coupling is 5.7 � 105 N/m.
(a) What are the natural frequencies of the three-car assembly?
(b) Mathematically describe the motion of the cattle car after coupling.

8.20 Determine the natural frequencies and mode shapes for the three degree-of-
freedom model of an airplane of Chapter Problem 7.87. Assume m � 3.5 m.

8.21 Determine the natural frequencies and mode shapes of the torsional system of
Problem 7.81.

8.22 Use a four degree-of-freedom model to approximate the two lowest nonzero
natural frequencies of a free-free beam.

8.23 A pipe extends from a wall as shown in Figure P8.23. The pipe is supported at
A to prevent transverse displacement, but not to prevent rotation. Under what
conditions will the pipe’s lowest natural frequency of transverse vibrations
coincide with its frequency of free torsional vibrations?

FIGURE P8.23
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8.24 Show that Rayleigh’s quotient R(X) is stationary if and only if X is a mode shape
vector.

8.25 Use Rayleigh’s quotient to determine an upper bound on the lowest natural
frequency of the system of Figure P8.7. Use at least four trial vectors.

8.26 An alternative method to derive the uncoupled equations governing the motion
of the free vibrations of a nDOF system in terms of principal coordinates is to
introduce a linear transformation between the generalized coordinates x and
the principal coordinates p as x � Pp, where P is the modal matrix, the matrix
whose columns are the normalized mode shapes. Follow these steps to derive the
equations governing the principal coordinates:
(a) Rewrite Equation (8.3) using the principal coordinates as dependent variables

by introducing the linear transformation in Equation (8.3).
(b) Premultiply the resulting equation by PT.
(c) Use the orthonormality of mode shapes to show that PT MP and PT KP are

diagonal matrices.
(d) Write the uncoupled equations for the principal coordinates.

8.27 Use the method of Chapter Problem 8.26 to derive the uncoupled equations
governing the principal coordinates for a system with proportional damping.

8.28 Determine the free vibration response of the system of Figure P8.28 if the
system is released from rest after the 3 kg block is displaced 5 mm.

8.29 If the modal damping ratio for the lowest mode of Chapter Problem 8.13 is
0.03, determine the modal damping ratio for the higher modes and determine
the response of the system if the machine is displaced 2 mm and released.

8.30 Determine the free-vibration response of the bar of Figure P8.30 is the mass
center is displaced 1 cm from equilibrium while the bar is held horizontal and
the system released from this position.

FIGURE P8.30

4 × 105 N/m 500 N · s/m 4 × 105 N/m 500 N · s/m

Uniform bar
m = 120 kg
I = 1.5 kg · m2

1.5 m 0.5 m

FIGURE P8.28
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k = 4 × 105 N/m

c = 1600 N · s/m
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8.31 Determine the free-vibration response of the system of Figure P8.31.

8.32 Determine the free-vibration response of the system of Figure P8.32.

8.33 Determine the free-vibration response of the system of Chapter Problem 7.87 when
E � 200 � 109 N/m2, I � 1.5 � 10�6 m4, L � 0.8 m, k � 1.5 � 105 N/m,
c � 250 N · s/m, m1 � 4 kg, m2 � 6.1 kg.

FIGURE P8.32
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C h a p t e r 9

FORCED VIBRATIONS
OF MDOF SYSTEMS

9.1 INTRODUCTION
The forced response of a linear multiple degree-of-freedom (MDOF) system, as for a linear
single degree-of-freedom (SDOF) system, is the sum of a homogeneous solution and a par-
ticular solution. The homogeneous solution depends on system properties, while the par-
ticular solution is the response due to the particular form of the excitation. The
free-vibration response is often ignored for a system whose long-term behavior is impor-
tant, such as a system subject to a periodic excitation. The free-vibration solution is impor-
tant for systems in which the short-term behavior is important, such as a system subject to
a shock excitation.

Several methods are available to determine the forced response of a MDOF system. The
method of undetermined coefficients can be applied to any system subject to a periodic exci-
tation. However, because of algebraic complexity, its usefulness is restricted to systems with
only a few degrees of freedom. The Laplace transform method can be applied to determine
system properties, but its usefulness is limited because its application requires the solution
of a system of simultaneous equations whose coefficients are functions of the transform vari-
able. Both the method of undetermined coefficients and the Laplace transform method can
be used to determine the forced response of a system with a general damping matrix.

The method of undetermined coefficients and the Laplace transform method were
introduced in Chapter 6 to solve forced-vibration problems involving two degree-of-
freedom systems. Their application is the same, except that matrix methods are used in
this chapter.
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The most useful method for determining the forced-vibration response of a linear
MDOF system is modal analysis, which is based on using the principal coordinates to
uncouple the differential equations governing the motion of an undamped or propor-
tionally damped system. The uncoupled differential equations are solved by the standard
techniques for solution of ordinary differential equations. A more general form of modal
analysis involving complex algebra is developed for systems with a general damping
matrix.

Often the differential equations cannot be solved in closed form. Modal analysis can
still be used to uncouple the differential equations. The differential equations for 
the principal coordinates can be solved by numerical integration of the convolution inte-
gral or direct numerical simulation of the differential equation by a method such as a
Runge-Kutta method.

9.2 HARMONIC EXCITATIONS
The response of a MDOF system due to a harmonic excitation is the sum of the homoge-
neous solution and the particular solution. Even if damping is not included, the homoge-
neous solution is often ignored. In a real situation, damping is present, causing the
homogeneous solution to decay with time. The long-time or steady-state solution is only
the particular solution.

The method of undetermined coefficients can be adapted to find the particular solu-
tion for a MDOF system subject to a harmonic excitation. The method of undetermined
coefficients can be used for damped or undamped systems. Its application for an nDOF
system requires the solution of at least one set of n simultaneous equations.

The differential equations governing the motion of an nDOF undamped system sub-
ject to a single-frequency excitation with all excitation terms at the same phase are of the
form

(9.1)

where F is an n-dimensional vector of constants. The method of undetermined coefficients
is used and assumes a particular solution of the form

(9.2)

where U is an n-dimensional vector of undetermined coefficients. Substituting
Equation (9.2) in Equation (9.1) leads to

(9.3)

Equation (9.3) represents a set of n simultaneous algebraic equation to solve for the com-
ponents of the vector U. A unique solution of Equation (9.3) exists unless

(9.4)

Equation (9.4) is satisfied only when the excitation frequency coincides with one of the
system’s natural frequencies. When this occurs, the use of Equation (9.2) is inappropriate.
The response grows linearly with time, producing a resonance condition.

When a solution of Equation (9.3) exists, it can be written as

(9.5)U = (-v2M + K)-1F

| -v2M - K | = 0

(-v2M + K)U = F

x(t) = U sin vt

M x
$

+ Kx = F sin vt
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Determine the forced response of the three degree-of-freedom system shown in
Figure 9.1(a)

SO LU T I ON
The differential equations governing the system of Figure 9.1 are

(a)

A steady-state solution is assumed as

(b)

which upon substitution into Equation (a) leads to

(c)J 500 -1000 0
-1000 500 -700

0   -700 -700
K  JU1

U2

U3

K = J 0
0
20
K

J x1

x2

x3

K = JU1

U2

U3

K  sin 10t

J10 0 0
0 12 0
0 0 14

K  J x
$

1

x
$

2

x
$

3

K + J 1500 -1000 0  
-1000 1700 -700

0   -700 700
K  J x1

x2

x3

K = J 0
0

20  sin 10t
K

EXAMPLE 9 . 1

0.05

Node

0.025

0

–0.0576

(a)

(b)

500 N/m 1000 N/m 700 N/m

x1 x2 x3

20 sin10t10 kg 12 kg

(a)

14 kg

FIGURE 9.1
(a) Three degree-of-freedom system of Example 9.1. (b) Steady-state response of system is deter-
mined using the method of undetermined coefficient. The plot is of the steady state amplitudes of the
masses versus the position of the mass.



596 CHAPTER 9

The solution to Equation (c) is

(d)

The vector of solutions is plotted against equilibrium position of the masses as in a mode-
shape diagram in Figure 9.1(b). In the steady state, there is a node in the spring between
the 12 kg mass and the 14 kg mass. The third mass is out of phase with the excitation.

The differential equations governing the motion of a nDOF system with viscous
damping subject to a single-frequency harmonic excitation are of the form

(9.6)

where F is an n-dimensional vector of constants. The constants could be complex if each
generalized force is not of the same phase and are of the form

(9.7)

The solution of Equation (9.6) is assumed as

(9.8)

where U is an n-dimensional vector of complex constants. Substitution of Equation (9.8)
in Equation (9.6) leads to

(9.9)

The solution of Equation (9.9) is obtained as

(9.10)

Determine the steady-state amplitudes of the system of Figure 9.2.

SO LU T I ON
The differential equations governing the motion of the system shown in Figure 9.2 are

(a)

+ J    1500 -1000    0
-1000     1700 -700
         0 -700     700

K  J x1

x2

x3

K =

D10 sin a10t +

p

4
b

0
20 sin 10t

T
J10 0 0

0 12 0
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K  J x
$

1

x
$

2

x
$

3
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K  J x
#

1

x#2
x#3
K

U = (-v2M + ivC + K)-1F

(-v2M + ivC + K )U = F

x(t) = Im  (Ue ivt
 )

Fi = f ie
if

M x
$

+ C x
$

+ Kx = Im  (Fe ivt )

JU1

U2

U3

K = J 0.05    
 0.025  

-0.0536
K

EXAMPLE 9 . 2
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A solution of Equation (a) is assumed to be

(b)

Only the imaginary part is used as the solution. Substitution of Equation (b) into Equation (a)
leads to

(c)

whose solution is

(d)

The imaginary part of the solution is

(e)= 10-3J7.92 sin(10t - 1.26)
10.1 sin(10t + 2.93)
15.5 sin(10t + 2.81)

K

J
x1

x2

x3
K = Im ±10-3J 2.43 + 7.54i

-9.63 - 3.08i
-14.65 - 5.09i

Ke i10t≤
= 10-3J 2.43 sin 10t + 7.54 cos 10t

-9.63 sin 10t - 3.08 cos 10t
-14.65 sin 10t - 5.09 cos 10t

K

JU1

U2

U3

K = 10-3J 2.43 + 7.54i
-9.63 - 3.08i
-14.65 - 5.09i

K

J500 + 500i -1000 0
-1000 500 + 1000i -700 - 1000i

0 -700 - 1000i -700 + 1000i
K  JU1

U2

U3

K = J
10e i p4

0
20
K

J x1

x2

x3

K = JU1

U2

U3

Ke i10t

500 N/m 1000 N/m 700 N/m
20 sin 10t

10 sin ×
(10t + p/y) 100 N · s/m50 N · s/m

x1 x2 x3

10 kg 12 kg 14 kg

FIGURE 9.2
Three degree-of-freedom system of Example 9.2.
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Determine the frequency response of the system of Figure 9.3.

SO LU T I ON
The differential equations governing the motion of the system shown in Figure 9.3 are

(a)= J
0
0

F0sin vt
K+ J 1500 -1000 0

-1000 1700 -700
0 -700 700

K  J x1

x2

x3

K

J
10 0 0
0 12 0
0 0 14

K  J x
$

1

x
$

2

x
$

3

K + J50 0 0
0 100 -100
0 -100 100

K  J x
#

1

x#2
x#3
K

FIGURE 9.3
(a) There degree-of-freedom system of Example 9.3. (b) – (d) Frequency-response curves of Example 9.3.

EXAMPLE 9 . 3
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A solution of Equation (a) is assumed to be

(b)

Only the imaginary part is used as the solution. Substitution of Equation (b) into
Equation (a) leads to

(c)

For a given �, Equation (c) is solved and the imaginary part of fe i�t taken. This leads to
the amplitudes of being |U0|. The frequency response curves are given in Figures 9.3(b)
through (d).

9.3 LAPLACE TRANSFORM SOLUTIONS
Let X(s) be the vector of Laplace transforms of the generalized coordinates for an nDOF
system. Taking the Laplace transform of the differential equations governing forced vibra-
tions of a linear nDOF system and using linearity of the transform and the property of
transform of the first and second derivatives gives

(9.11)

where F(s) is the vector of Laplace transforms of F(t). If x(0) � 0 and ,
Equation (9.11) becomes

(9.12)

where
(9.13)

is called the impedance matrix. Pre-multiplying Equation (9.13) by Z�1(s) yields
(9.14)

The elements of Z�1(s) are the transfer functions Gk, j(s), which represent the transform of the
response of xk due to a unit impulse applied at the location described by xj.

The response of the system x(t) is obtained by inversion of Equation (9.14). If F(t) is
a vector of harmonic forces as fj(t) � Fj sin �jt, the sinusoidal transfer functions can be
used to obtain the response. The solution for the ith component of X(s) is

(9.15)Xk(s) = a
n

j = 1

Gk,j(s)Fj(s)

X(s) = Z-1(s)F(s)

Z(s) = s2M + s C + K

Z(s)X(s) = F(s)

x# (0) = 0

(s2M + s C + K)X(s) = F(s) + (s M + K)x(0) + Mx# (0)

= J 0
0
F0

K
J 1500 - 10v2

+ 50vi -1000 0
-1000 1700 - 12v2

+ 100i -700 - 100vi
0 -700 - 100vi 700 - 14v2

+ 100i
K  JU1

U2

U3

K

J x1

x2

x3

K = JU1

U2

U3

Ke ivt
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which is inverted as

(9.16)

where and

(9.17)

Determine the steady-state response of the 10 kg block of Figure 9.4 for the following. 
(a) F1(t) is given in Figure 9.4(a), F2(t) � 0, and F3(t) � 0 

(b) F1(t) � 20 sin 10t, F2(t) � 0, and F3(t) � 30 sin 20t

SO LU T I ON
The differential equations governing the motion of the three degree-of-freedom system of
Figure 9.4 are

(a)= J
F1(t)
F2(t)
F3(t)
K+ J 1500 -1000 0  

-1000 1700 -700
0   -700 700

K  J x1

x2

x3

K
J

10 0 0
0 12 0
0 0 14

K  J x
$

1

x
$

2

x
$

3

K + J50    0    0
  0    100 -100
  0 -100    100

K  J x
#

1

x#2
x#3
K

fk,j = tan-1
Im3Gk,j(ivj  

)4
Re3Gk,j(ivj  

)4

i = 2-1

xk(t) = a
n

j = 1

| Gk,j(ivj) |Fj sin(vjt + fk,j)

EXAMPLE 9 . 4

500 N/m
1000 N/m

700 N/m

100 N · s/m50 N · s/m

x1 x2 x3

10 kg 12 kg

20

1

14 kg

(a)

(b)

F1(t) (N)

F1(t) F2(t)

F3(t)

t (s)

FIGURE 9.4
(a) System of Example 9.4. (b) F1(t) for part a.
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Taking the Laplace transform of Equation (a) and using all initial conditions as zero leads to

(b)

The matrix in Equation (b) is Z(s).
(a) Taking the Laplace transform of the excitation leads to

(c)

The inverse of Z(s) is obtained as

(d)

where

(e)

The roots of D(s) are obtained as

(f)s = -3.278 � 13.95i,   -  6.550 � 7.67i,   -0.4097 � 3.13i

+ 1,062,500s + 4,375,000

D(s) = 21s6
+ 430s5

+ 8800s4
+ 81,375s3

+ 578,750s2

1250s + 8750
25s3

+ 300s3
+ 4625s + 26,250

3s4
+ 40s3

+ 1000s2
+ 58,755 + 38,750 K

175s4
+ 1250s + 8750

7s4
+ 85s3

+ 1650s2
+ 9250s + 52,500

25s3
+ 300s3

+ 4625s + 26,250

=

1
D(s)
J2.1s4

+ 32.5s3
+ 402.5s2

+ 1250s + 8750
175s2

+ 1250s + 8750
1250s + 8750

Z- 1(s)

= J
1
s (1 - e- 0.5s)

0
F0>s K

J10s2
+ 50s + 1500 -1000 0

-1000 12s2
+ 100s + 1700 -100s - 700

0 -100s - 700 14s2
+ 100s + 700

K  JX1(s)
X2(s)
X3(s)
K

= JF1(s)
F2(s)
F3(s)
K

J10s2
+ 50s + 1500 -1000 0

-1000 12s2
+ 100s + 1700 -100s - 700

0 -100s - 700 14s2
- 100s + 700

K  JX1(s)
X2(s)
X3(s)
K
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Multiplying F(s) by Z�1(s) and solving for X1(s) leads to

(g)

A partial fraction decomposition of Equation (g) leads to

(h)

Inversion of the transform yields

(i)

(b) From Equation (9.16) for the given forces

(j)

where

(k)

and

(l)=

8.75 * 103
+ 2.5 * 104i

-1.671 * 108
+ 7.463 * 108i

= 2.94 * 10-5
- 1.83 * 10-5i

=

1250(20i ) + 8750

21(20i )6
+ 430(20i )5

+ 8800(20i )4
+ 81,375(20i )3

+ 578,750(20i )2
+ 1,062,500(20i ) + 4,375,000

G1,3(20i )

=

-1.05 * 104
- 2.00 * 104i

1.26 * 107
- 2.775 * 107i

= 4.55 * 10-4
- 5.85 * 10-4i

=

2.1(10i )4
+ 32.5(10i )3

+ 402.5(10i )2
+ 1250(10i ) + 8750

21(10i )6
+ 430(10i )5

+ 8800(10i )4
+ 81,375(10i )3

+ 578,750(10i )2
+ 1,062,500(10i ) + 4,375,000

G1,1(10i )

x1(t) = 20| G1,1(10j ) |sin(10t + f1,1) + 30| G1,3(20j ) |sin(20t + f1,3)

+ 1.40sin14.32(t - 0.5)]}}

+ 2.36sin10.08(t - 0.5)] + e-3.28(t -  0.5)[-3.53cos14.32(t - 0.5)

+ 4.081sin3.16(t - 0.5]e -6.56(t -  0.5)[-2.93cos10.08(t - 0.5)

- u(t - 0.5){20 + e -0.409(t -  0.5)[-14cos3.16(t - 0.5)

+ e -3.28(-3.53cos14.32t + 1.40sin14.32t)

+ e -6.56t(-2.93cos10.08t + 2.46sin10.08t)

x1(t) = 10-4{20 + e -0.409t(-14cos3.16t + 4.081sin3.16t)

+

-3.53s + 13

s2
+ 6.54s + 205.2

b (1 - e -0.5s)

X1(s) = 10-4a20
s

+

-14s + 16
s2

+ 0.820s + 9.96
+

-2.93s + 19

s2
+ 13.71s + 101.73

X1(s) =

(2.1s4
+ 32.5s3

+ 402.5s2
+ 1250s + 8750)(1 - e -0.5s)

s(21s6
+ 430s5

+ 8800s4
+ 81,375s3

+ 578,750s2
+ 1,062,500s + 4,375,000)
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The steady-state solution is

(m)

9.4 MODAL ANALYSIS FOR UNDAMPED SYSTEMS
AND SYSTEMS WITH PROPORTIONAL DAMPING
The differential equations governing the forced vibrations of an undamped linear nDOF
system are

(9.18)

The method of modal analysis uses the principal coordinates of the system to uncouple the
differential equations of Equation (9.18).

Let be the natural frequencies of the system whose equations
are given by Equation (9.18). Let P be the system’s modal matrix, the matrix whose
columns are the normalized mode shapes, P � [X1 X2 Xn]. Using the expansion the-
orem, as in Section 8.8, the response at any instant of time can be expanded as

(9.19)

where pi(t) are the system’s principal coordinates. Equation (9.19) is equivalent to a linear
transformation between the original generalized coordinates and the principal coordinates

(9.20)

Substitution of Equation (9.19) in Equation (9.18) leads to

(9.21)

Taking the standard scalar product of Equation (9.21) with Xj for an arbitrary j leads to

(9.22)

On the basis of the definitions of energy scalar products, Equation (9.22) becomes

(9.23)

Application of mode-shape orthogonality leads to only one nonzero term in each summa-
tion, the term corresponding to i � j. Since the mode shapes are normalized,
Equation (9.23) leads to

(9.24)

where

(9.25)gj(t) = (Xj 
, F)

p
$

j + v2
j pj = gj(t )

a
n

i = 1

p
$

i(Xj 
, Xi 

)M + a
n

i = 1

pi 
(Xj 

, Xi 
)K = (Xj 

, F)

a
n

i = 1

p
$

i(Xj , MXi ) + a
n

i = 1

pi(Xj , KXi ) = (Xj , F)

a
n

i = 1

p
$

i 
MXi + a

n

i = 1

pi 
KXi = F

x = Pp

x(t ) = a
n

i = 1

pi(t )Xi

Á

v1 … v2 …
Á

… vn

Mx
$

+ Kx = F

= 0.0148 sin(10t - 0.910) + 0.00106 sin(20t - 0.557)

x1(t) = 20(7.414 * 10-4) sin(10t - 0.910) + 30(3.463 * 10-5) sin(20t - 0.557)
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An equation of the form of Equation (9.24) can be written for each j � 1, 2, . . . , n.
This shows that the principal coordinates that are used to uncouple the differential equa-
tions governing free vibrations can also be used to uncouple the differential equations gov-
erning forced vibrations. The differential equations of Equation (9.24) can be solved by any
useful means. If the initial conditions for pi are pi(0) � 0 and i(0) � 0, then the convo-
lution integral solution of Equation (9.24) is

(9.26)

Once the solutions for each pi have been obtained, Equation (9.19) is used to determine
the original generalized coordinates.

The modal analysis procedure to determine the forced response of an undamped linear
nDOF system is summarized below.

1. A set of generalized coordinates is chosen. The differential equations governing the
motion of the system are derived using Lagrange’s equations. The differential equations
are written in the matrix form of Equation (9.18).

2. The natural frequencies and normalized mode shapes are obtained. The natural fre-
quencies are the square roots of the eigenvalues of M�1K and the mode shapes are the
corresponding eigenvectors. The mode shapes are normalized by requiring that the
kinetic energy scalar product of a mode shape with itself be equal to one.

3. The elements of the column vector G are obtained by using Equation (9.25). An alter-
native method to obtain G is

(9.27)

4. Equations of the form of Equation (9.24) are solved to obtain the time-dependent
form of the principal coordinates. Equation (9.26) gives the convolution integral solu-
tion of Equation (9.24).

5. The time-dependent form of the original generalized coordinates is obtained by using
Equation (9.19) or Equation (9.20).

Use modal analysis to determine the time-dependent response of the system of Figure 9.5(a)
subject to the excitation of Figure 9.5(b).

SO LU T I ON
The differential equations governing the motion of the system of Figure 9.5(a) are

(a)

where from Figure 9.5(b)

(b)

where t is in seconds.

F  (t ) = 4000[1 - u (t - 1.2)] N

Jm 0 0
0 m 0
0 0

m
2
K  J x

$

1

x
$

2

x
$

3

K + J 3k -2k 0
-2k 3k -k

0 -k 3k
K  J x1

x2

x3

K = J 0
0

 F  (t)
K

G = PT F

pi(t) =

1
viL

t

0
gi(t) sin[vi(t - t)]dt

p#

EXAMPLE 9 . 5
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The natural frequencies for this system are determined in Example 8.2 and the nor-
malized mode shapes are determined in Example 8.10. Substituting m � 10 kg and
k � 1000 N/m in these results leads to natural frequencies of

(c)

and a modal matrix of

(d)

The vector G(t) is then calculated by using Equation (9.27)

(e)

The differential equations satisfied by the principal coordinates are written by using
Equation (9.24)

(f)

(g)

(h)

The convolution integral is used to solve for p1 as

(i)= 4.418 {cos 8.936t - 1 + u(t - 1.2)[1 - cos 8.936(t - 1.2)]}

p1(t) =

1
8.936L

t

0
352.8 [1 - u(t - 1.2)] sin 8.936(t - t)dt

p
$

3 + 674.6p3 = 1535.2 [1 - u(t - 1.2)]

p
$

2 + 445.5p2 = -848.0 [1 - u(t - 1.2)]

p
$

1 + 79.852p1 = 352.8 [1 - u(t - 1.2)]

G(t ) = PT F = J    0.0882
-0.2120
   0.3838

K  F  (t )

P = J0.2085    0.2252    0.0765
0.2295 -0.1638 -0.1432
0.0882 -0.2120    0.3838

K (kg)-1>2

v1 = 8.936   rad/s   v2 = 21.107   rad/s   v3 = 25.974   rad/s

FIGURE 9.5
(a) Three degree-of-freedom system of Example 9.5. (b) Excitation for system of Example 9.5.

k 2k

x1 x2

m m m/2
k 2k

x3

F(t)

(a)

m = 10 kg
k = 1000 N/m

4000

1.2

(b)

F (N)

t (s)
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The convolution integral is also used to solve for p2 and p3, yielding

(j)

(k)

The solution in terms of the original generalized coordinates is obtained by using
Equation (9.20)

(l)

which leads to

(m)

(n)

(o)

where

(p)

(q)

(r)

A machine of mass 150 kg is placed as shown on the simply supported beam of Figure 9.6.
The machine has a rotating unbalance of 0.965 kg . m and operates at 1250 rpm. The
beam has a total mass of 280 kg, a cross-sectional moment of inertia of 1.2 � 10�4 m4, a
length of 3 m, and an elastic modulus of 210 � 109 N/m2. Model the beam with three
degrees of freedom and use modal analysis to predict the steady-state amplitude of displace-
ment for the point where the machine is attached.

SO LU T I ON
The beam is modeled as three particles with a mass of 70 kg, as shown in Figure 9.6(b).
The mass matrix for this model is

(a)

Flexibility influence coefficients are used to determine the flexibility matrix as

(b)A = 10-9J12.53 15.33   9.75
15.33 22.29 15.33
  9.75 15.33 12.53

K    m/N

M = J 70   0    0  
  0 70    0  

  0   0 220
K    kg

b3(t) = cos 25.974t - 1 + u(t - 1.2)[1 - cos 25.974(t - 1.2)]

b2(t) = cos 21.107t - 1 + u(t - 1.2)[1 - cos 21.107(t - 1.2)]

b1(t) = cos 8.936t - 1 + u(t - 1.2)[1 - cos 8.936(t - 1.2)]

x3(t) = 0.390b1(t) + 0.403b2(t) + 0.874b3(t)

x2(t) = 1.014b1(t) + 0.312b2(t) - 0.326b3(t)

x1(t) = 0.921b1(t) - 0.429b2(t) + 0.174b3(t)

J x1

x2

x3

K = J0.2085    0.2252    0.0765
0.2295 -0.1638 -0.1432
0.0882 -0.2120    0.3838

K J p1(t)
p2(t)
p3(t)
K

p3(t) = 2.276 {cos 25.974t - 1 + u(t - 1.2)[1 - cos 25.974(t - 1.2)]}

p2(t) = -1.903 {cos 21.107t - 1 + u(t - 1.2)[1 - cos 21.107(t - 1.2)]}

EXAMPLE 9 . 6
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The governing differential equations are

(c)

where

(d)

The natural frequencies and normalized mode shapes are determined as the reciprocals of
the square roots of the eigenvalues of AM. They are

(e)

The normalized eigenvectors comprise the modal matrix P, which is

(f)

The vector G(t) is calculated as

(g)= J    821.8
   687.0
-300.3

K  sin130.9t    N  (kg)-1>2

J 0
0

16,500 sin130.9t
KG(t) = PTF = J    0.0453    0.0666    0.0498

-0.0851 -0.4000    0.0416
-0.0707    0.0908 -0.0182

K

P = J0.0453 -0.0851 -0.0707
0.0666 -0.4000    0.0908
0.0498    0.0416 -0.0182

K

v1 = 455.8   rad/s v2 = 1.735 * 103
 

 
 rad/s v3 = 4.474 * 103

  

 rad/s

F(t) = J 0
0

16,500 sin 130.9t
K    N

AM x
$

+ x = AF

FIGURE 9.6
(a) Machine with rotating unbalance is attached to pinned-pinned beam. (b) Three degree-of-freedom
model of beam.

0.75 m 0.75 m 0.75 m 0.75 m

2.25 m

m3 = 220 kg

m = 150 kg

m2 = 70 kgm1 = 70 kg

(b)

(a)

0.75 m

w = 1250 rpm
m0e = 0.965 kg · m
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The differential equations for the principal coordinates are written by using Equation (9.24)

(h)

(i)

(j)

The steady-state solution of

(k)

is

(l)

The steady-state solution for the principal coordinates is

(m)

Equation (9.20) is used to determine x3(t) as

x3(t) � 0.0498p1(t) � 0.0416p2(t) � 0.0182p3(t) � 2.25 � 10�4 sin130.9t m (n)

Thus, the maximum steady-state displacement of the point on the beam where the
machine is placed is 0.225 mm.

The differential equations governing the forced vibrations of a linear system with vis-
cous damping are

(9.28)

If the system is proportionally damped, the damping matrix is a linear combination of the
mass matrix and the stiffness matrix.

Modal analysis using the principal coordinates of the undamped system can be used to
uncouple the differential equations of a system with proportional damping. Substitution of
Equation (9.19) into Equation (9.28) and following a procedure similar to that used for
the undamped system leads to the differential equations for the principal coordinates as

(9.29)

where the modal damping ratio �i is defined in Equation (8.79).
The convolution integral solution of Equation (9.29) for Ji � 1 is

(9.30)

The procedure for application of modal analysis to a system with proportional damping is
the same as that for an undamped system with the addition of the determination of the

pi(t ) =

1

vi21 - z2
i
L

t

0
gi(t)e

-zivi(t -  t) sin cvi21 - z2
i (t - t) dd t

p
$

i + 2zi 
vi p

#

i + v2
i 
pi = gi(t)

M x
$

+ Cx# + Kx = F

J p1

p2

p3

K = 10-5J432.0
   22.93
 -1.501

K sin130.9t    (kg)1>2

pi(t) =

Fi

v2
i - v2

i

 sin vt

p
$

i + v2
i pi = Fi sin vt

p
$

3 + (4474)2p3 = -300.3 sin130.9t

p
$

2 + (1736.5)2p2 = 687.0 sin130.9t

p
$

1 + (455.8)2p1 = 821.8 sin130.9t
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modal damping ratios to step 2 and the use of Equation (9.30) as the convolution integral
solution.

Damping in structural systems is mostly hysteretic and hard to quantify. Lacking a
better model, proportional damping is often assumed. The modal damping ratios are usu-
ally determined experimentally. The equivalent damping ratio for a harmonically excited
SDOF system with hysteretic damping is proportional to the natural frequency, and
inversely proportional to the excitation frequency. This model fits proportional damping
where the damping matrix is proportional to the stiffness matrix. In these cases, the higher
modes are damped more than the lower modes. The natural frequencies in stiff structural
systems are usually greatly separated. The effect of the higher modes in the total response
is less than the modes with lower natural frequencies. For these reasons, damping ratios are
often specified only for the lower modes.

If proportional damping is assumed, the higher modes are damped more than the
lower modes and have a lesser effect on the overall solution. Modes with higher damping
ratios die out more quickly when the system is subject to any short-term or shock excita-
tion. If the system is subject to a harmonic excitation, the modes with higher frequencies
have lesser effect because their amplitudes are inversely proportional to the square of their
frequencies. Thus, fewer modes can be calculated without losing significant accuracy.
Hence, in practice, Equation (9.19) is often replaced by

(9.31)

for some m � n. Equation (9.31) is often used in situations where the mode shapes are
determined experimentally and an experimental modal analysis method is used to deter-
mine the response of a system.

The three degree-of-freedom system of Example 9.5 is modified by the addition of dash-
pots, as shown in Figure 9.7 Determine the forced response of the damped system.

SO LU T I ON
The damping matrix is

(a)

and is proportional to the stiffness matrix with

(b)

Thus, the modal damping ratios are given by

(c)z1 =

a

2
v1 = 0.178 z2 =

a

2
v2 = 0.422 z3 =

a

2
v3 = 0.520

a =

c
k

=

40   N # s/m
1000   N/m

= 0.04   s

C = J    3c -2c 0
-2c    3c - c
   0   - c 3c

K

x(t) = a
m

i = 1

pi Xi

EXAMPLE 9 . 7
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FIGURE 9.7
(a) Three degree-of-freedom system with the damping matrix proportional to the stiffness matrix.
(b) System response for � � 0.04 s. (c) System response for � � 0.

k

c

x1 x2 x3

m

2k

2c

m

k

c

m/2

2k

2c

F(t)

c = 40 N · s/m(a)

(b)

(c)

–10
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 
(m

)

–4

–8

–6

–2

0

2

4

t (s)

×10–3

x1
x2
x3

–0.02
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 
(m

)

–0.015

–0.01
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All modes are underdamped. The differential equations governing the principal coordinates
are

(d)

(e)

(f)

The solution for the principal coordinates is obtained from the convolution integral. It is
noted that

(g)

Application of the convolution integral to the first equation leads to

(h)

The convolution integral solution of Equation (g) is evaluated for the other principal coor-
dinates. The original generalized coordinates are calculated by x � Pp. The resulting plots
for � � 0.04 and � � 0 are shown in Figure 9.7(b) and (c).

9.5 MODAL ANALYSIS FOR SYSTEMS
WITH GENERAL DAMPING
The differential equations governing the forced vibrations of a linear nDOF system

(9.32)

can be rewritten as a system of 2n linear first-order equations

(9.33)

where , and are defined in Equation (8.83) and

(9.34)F
∼

= c0
F
d

K
∼

y, M
∼

M
∼

y# + K
∼

y = F
∼

M x
$

+ Cx# + Kx = F

+ 0.181 sin (8.79t - 10.55)]}

- 4.43u(t - 1.2){1 - 6.77e -1.60t [cos (8.79t - 10.55)

p1(t) = 4.43 [1 - e -1.60t(cos 8.79t + 0.181 sin (8.79t)]

+

z

21 - z2
 sin vd(t - 1.2) d f d

- u(t - 1.2)e1 - e -zvn(t -  1.2) ccos vd(t - 1.2)

= -

1 - z2

vd

 c1 - e -zvnt ccos vd 
t +

z

21 - z2
 sin vd 

t d
L

t

0
[1 - u(t - 1.2)]  e -zvn(t -  t) sin vd(t - t)dt

p
$

3 + 13.49p#3 + 674.6p3 = 0.3838F  (t)

p
$

2 + 8.91p#2 + 445.5p2 = -0.2120F  (t)

p
$

1 + 1.60p#1 + 79.85p1 = 0.0882F  (t)
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The homogeneous solution of Equation (9.33) is obtained in Section 8.13. The solu-
tion uses eigenvalues and eigenvectors of Eigenvalues occur in complex conjugate
pairs. Eigenvectors satisfy the orthogonality relation of Equation (8.84). The eigenvectors
can be normalized by requiring

(9.35)

The modal matrix is the matrix whose columns are the normalized eigenvectors of
The principal coordinates are defined by

(9.36)

Substituting Equation (9.36) in Equation (9.33) leads to

(9.37)

Premultiplying Equation (9.37) by leads to

(9.38)

Use of mode shape orthonormality in Equation (9.38) results in

(9.39)

where is a diagonal matrix with the eigenvalues of along the diagonal. Thus, the
differential equations represented by Equation (9.39) are uncoupled and written as

(9.40)

The convolution integral solution of Equation (9.40) is

(9.41)

Application of modal analysis to systems with general damping is very similar to its
application to systems with proportional damping. The procedure is summarized below.

1. The differential equations governing the forced vibrations of the system are derived
in terms of a chosen set of generalized coordinates and written in the form of
Equation (9.32).

2. The differential equations are reformulated in the form of Equation (9.33), using
Equations (8.83) and (9.34).

3. The eigenvalues and eigenvectors of are obtained. The eigenvectors are normal-
ized by using Equation (8.87). The modal matrix is formed as the matrix whose
columns are the normalized mode shapes.

4. The vector is determined.

5. Differential equations of the form of Equation (9.40) are written for each principal
coordinate.

6. The differential equations are solved by any convenient method. The convolution
integral solution is given by Equation (9.41).

7. The time-dependent behavior of the chosen generalized coordinates is obtained by
using Equation (9.36).

G
∼

= P
∼ TF

P
∼

M
∼

-1K
∼

p∼i =

L

t

0
g∼i(t)e

-gi(t -  t)dt

p
#∼
i + gi p

∼
i = g∼i(t)  i = 1, 2, . . . , 2n

M
∼

-1K
∼

¶

p
.∼

+ ¶p = G

P
∼ T M

∼
P
∼
p
#∼ 

+ P
∼ T K

∼
P
∼
p∼ = P

∼ T F
∼

= G
∼

P
∼ T

M
∼

P
∼
p∼
#

+ K
∼

P
∼
p∼ = F

∼

y = P
∼
p∼

M
∼

-1K
∼

.
P
∼

£
T
i  M

∼
£i = 1

M
∼

-1K
∼

.



Forced Vibrations of MDOF Systems 613

Determine the response of the system of Figure 9.8(a) when F(t) � 50e�1.5t N.

SO LU T I ON
The differential equations governing the motion of the system are

(a)

The differential equations are written in the form of Equation (9.33) as

(b)

where y = [x#1 x#2 x1 x2]
T.

≥
0 0 m 0
0 0 0 2m
m 0 0 0
0 2m 0 c

¥  ≥
y#1
y#2
y#3
y#4

¥ + ≥
-m 0 0 0

0 -2m 0 0
0 0 3k -2k
0 0 -2k 2k

¥  ≥
y1

y2

y3

y4

¥ = ≥
0
0
0

F (t)

¥

cm 0
0 2m

d cx
$

1

x
$

2

d + c0 0
0 c

d cx
#

1

x#2
d + c 3k -2k

-2k 2k
d cx1

x2

d = c 0
F (t)
d

EXAMPLE 9 . 8

FIGURE 9.8
(a) Two degree-of-freedom system with external excitation and general damping. (b) System response.

k
m

c

2k
2m

x1 x2
F(t) k = 1000 N/m

m = 20 kg
c = 80 N · s/m

(a)

–6
0 0..5 1 1.5

x 
(m

)

–2

–4

2

0

4

6

8

t (s)

(b)

×10–3

x1(t)
x2(t)



614 CHAPTER 9

A MATLAB program is written to evaluate the forced response for this problem. The
free vibration response is calculated first with the eigenvlaues and mode shapes, as in
Example 8.16. The modal matrix is formed, and the vector is calculated. The
differential equation for each principal coordinate is written and solved symbolically by the
convolution integral. The response for the original generalized coordinates are obtained
from The plot of the output is given in Figure 9.8(b).

9.6 NUMERICAL SOLUTIONS
An exact solution for the forced response of an nDOF linear system is not always possible.
The excitation may be such that the convolution integral cannot be evaluated in closed
form or the excitation may be known exactly only at discrete values of time. While a closed-
form solution is always preferable to a numerical solution, it may be easier to obtain a
numerical solution. Even when a closed-form solution is available, it must be evaluated
numerically to plot the response.

Numerical difficulties may arise if a direct numerical simulation of Equation (9.18) is
used. An nDOF system has n natural frequencies and n natural periods. Hence, there are
n time scales implicit in the response. The time step in a numerical simulation must be
chosen such that a sufficient number of time steps are taken over each natural period.
Thus, the natural periods should be determined before any numerical simulation is
attempted.

Since the natural frequencies should be determined before a numerical simulation is
attempted, it is suggested that modal analysis be applied before a numerical simulation
is attempted. Numerical solutions for the modal equations can be obtained, and
Equation (9.20) can be used to obtain the response in terms of the chosen generalized
coordinates. This approach has several advantages over direct numerical simulation of
Equation (9.18):

1. The natural frequencies and mode shapes are known before the numerical solution
begins. This makes it easier to determine an appropriate time step in a numerical
approximation.

2. The use of modal analysis provides a choice of numerical solutions. Numerical inte-
gration of the convolution integral may be employed or numerical integration of the
modal equations based on a method like Runge-Kutta may be used.

3. The numerical solution of n uncoupled equations is simpler and quicker than the
numerical solution of n coupled equations.

4. It is not necessary to include all modes in the forced response. If the system is propor-
tionally damped, the higher modes are more highly damped and will contribute less
to the overall response. If a large number of degrees of freedom are used in modeling
a structural system in order to assure high accuracy for the lowest modes, it is not
desirable to include the higher modes in the response, since they provide inaccurate
approximations.

x = P
∼
pI .

G
∼

= PT∼
   FP

∼



Forced Vibrations of MDOF Systems 615

9.7 BENCHMARK EXAMPLES

9.7.1 MACHINE ON FLOOR OF INDUSTRIAL PLANT
The differential equations used to model the vibrations of the machine on the floor of the
industrial plant using four degrees of freedom to model the vibrations of the floor and
another to model the vibrations of the machine and isolator are derived in Section 7.9.
Using F(t) � 20,000 sin 80t, they are

(a)

A steady-state solution is assumed as

(b)

which when substituted into Equation (a) leads to

(c)

Simultaneous solution of Equation (c) gives

(d)

The amplitude of the force transmitted to the beam is

(e)k | U5 - U3 | = (3.93 * 104
  lb>ft ) | -0.1257   ft + 0.00647  ft | = 4660   lb

E
U1

U2

U3

U4

U5

U = E
-0.00173
-0.00490
-0.00647
-0.00426
-0.1257   

U

E
0.9979 -0.0037 -0.0034 -0.0020 -0.683      

-0.0037      0.9908 -0.0098 -0.0060 -0.1939
-0.0034 -0.0097      0.9871 -0.0084 -0.2567
-0.0020 -0.0060 -0.0084      0.9920 -0.1686
-0.0034 -0.0097 -0.0129 -0.0084 -4.0835

U E
U1

U2

U3

U4

U5

U = E
0.0069
0.0195
0.0258
0.0169
0.5708

U

E
x1

x2

x3

x4

x5

U = E
U1

U2

U3

U4

U5

U sin 80t

10-7E
3.34 5.73 5.35 3.14 106.7
5.73 14.4 15.2 9.31 302.9
5.35 15.2 20.1 13.2 401.1
3.14 9.31 13.2 12.5 263.4
5.35 15.2 20.1 13.2 794.3

U E
x
$

1

x
$

2

x
$

3

x
$

4

x
$

5

U + E
x1

x2

x3

x4

x5

U = 2 * 10-3E
3.43
9.74

12.9
8.47

255.1

U sin  80t
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Since the transmitted force is less than 5,000 lb, the force transmitted through the isolator
is still acceptable.

Table 9.1 shows the models of the machine on the floor of the industrial plant with
an isolator of stiffness 3.93 � 104 lb/ft. The table includes the natural frequencies of the
model as well as the transmitted force between the isolator and the beam. The finite-element
model presented in Chapter 11 is included for comparison. The transmitted force predicted
using a rigid model for the beam is the largest at 5000 N. The transmitted force in all other
models is less. Thus, the SDOF approximation is sufficient for the vibration isolation prob-
lem. The lowest natural frequency ranges from 34.6 rad/s for the two DOF model to 35.7
for the SDOF model.

9.7.2 SIMPLIFIED SUSPENSION SYSTEM
The differential equations governing the motion of the vehicle are derived in Section 7.7
as

(a)

The system has proportional damping. Modal analysis is used to solve for the forced
response. The natural frequencies, modal damping ratios, and modal matrix are calculated

+ 104D 5.50 3.60 -1.56 2.04
-1.08 2     -1.2  -1.2  
-1.56 -1.2  1.12 0     

2.04 -1.2  0     1.12

T D ux1

x2

x3

T = D 0
0

1 * 104y# + 1 * 105y
1 * 104z# + 1 * 105z

T
D225 0  0 0

0  300 0 0
0  0  25 0
0  0  0 25

T  D u
$

x
$

1

x
$

2

x
$

3

T + 103D 5.50 3.60 -1.56 2.04
-1.08 2.4   -1.2  -1.2  
-1.56 -1.2  1.12 0     

2.04 -1.2  0     1.12

T  D u
#

x#1
x#2
x#3

T

T A B L E 9 . 1

Model of machine attached to beam with Natural frequencies (rad/s)
isolator of stiffness

SDOF model, assumes beam is rigid 5000 35.6

2DOF model, uses equivalent mass and 4576 34.6, 329
stiffness of beam

5DOF model, uses flexibility matrix 4660 35.5, 494.1, 1.56 � 103, 2.83 �
with lumped masses to model beam 103, 4.186 � 103

Four-element finite-element model
of beamresults in a 10DOF system 4610 34.7, 381.7, 1.01 � 103, 2.13 �

103, 3.69 � 103, 6.12 � 103,
9.04 � 103, 1.32 � 104,
1.80 � 104, 2.44 � 104

3.93 * 104 lb/ft
FT (N )
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in Section 8.14. The components of the right-hand side vector for the modal equations are
calculated as

(b)

The vehicle travels over a bump in the road at speed of v, which is given in Section 5.10 as

(c)

from which

(d)

The rear wheels traverse the bump at a time later, giving the equation
for z(t) as

(e)

from which

(f)

The differential equations for the modal responses are

(g)

(h)p
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y (t ) = 0.02 c1 - cos2a10pv
6

tb d c1 - u a t -

0.6
v
b d
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G = PTF = D0.0169     0.0645  -0.00028      0.00450

0.0560 -0.00140 -0.002313  -0.00046
0.00709      0.00664      0.1664  -0.1105
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(i)

(j)

Convolution integral solutions of Equations (h) through (j) are available for
Equations (g) through (j).

(k)

(l)

(m)

(n)

The response of the system in terms of the original generalized coordinates is given by

(o)

The third and fourth modes are overdamped and will not have much effect on the response
of the system. Thus, only the first two modes are used in the response

(p)

Numerical integration of the convolution integral with piecewise constants is used to deter-
mine the time dependence of the principal coordinates. The results are given in Figure 9.9
for v � 15 m/s and v � 60 m/s.

D ux1
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0.00709      0.00664
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0.00262 -0.0118    0.1106    0.1661
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FIGURE 9.9
Numerical integration of convolution integral is used to determine displacement of vehicle traveling over a bump in the road.
(a) Displacement of the wheels at v � 15 m/s. (b) Displacement of the body of the vehicle and its angular rotation at v � 15 m/s.
(c) Displacement of the wheels at v � 60 m/s. (d) Displacement of the body of the vehicle and its angular rotation at v � 60 m/s.
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9.8 FURTHER EXAMPLES

Reconsider the three degree-of-freedom model of the hand of Example 7.21 and Example 8.16.
The mathematical model is repeated as

(a)

(a) Determine the steady-state amplitudes when the hand is gripping a power tool that
has a vibration of

(b)

(b) Determine the response of the system when the hand is gripping an object that
expands according to

(c)

SO LU T I ON
(a) Substituting for the displacement of the tool into the differential equations leads to

(d)

A solution to Equation (c) is assumed to be

(e)C x1

x2

x3

S = CU1

U2

U3

Se i100t

+ C151,216 -1726 0      
-1726 43,699 -12,075

0      -12,075 207,740
S  C x1

x2

x3

S = C 0
1.536sin(100t + 0.254)
9.80sin(100t + 0.0644)

S
C5.0516 0 0

0 1.4295 0
0 0 0.887

S  C x
$

1

x
$

2

x
$

3

S + C 152.1 -64.9 0   
-64.9 176.0 -36.3

0   -36.3 111.1
S C x#1

x#2
x#3

S

y(t) = 5 * 10-5(1 - e -50t )

y(t) = 5 * 10-5sin100t

+ C151,216 -1726 0     
-1726 43,699 -12,075

0     -12,075 207,740
S  C x1

x2

x3

S = C 0
74.8y# + 29,898y
126y# + 195,695y

S
C5.0516 0 0

0 1.4295 0
0 0 0.887

S C x
$

1

x
$

2

x
$

3

S + C 152.1 -64.9 0   
-64.9 176.0 -36.3

0    -36.3 111.1
S C x#1

x#2
x#3

S
EXAMPLE 9 . 9
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Only the imaginary part of the solution is used for the response. Substitution of Equation (d)
into Equation (c) using complex notation for the trigonometric terms leads to

(f)

The solution of Equation (f ) is

(g)

The steady-state solution for the system is

(h)

(b) Substituting for the displacement of the object, we have

(i)

The system has damping, but it is not proportionally damped. Thus, the state–space for-
mulation and a general modal analysis are required. Thus, a six-dimensional vector is

+ C151,216 -1726 0     
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S C x1
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defined as The eigenvalues and eigenvectors of the
matrix are calculated in Example 8.16. The force vector is defined as

(j)

The mode shape vectors are normalized according to For eigenvalues

(k)

the modal matrix is

(l)

The vector of generalized forces is calculated from

(m)

The differential equations for the principal coordinates become

(n)

(o)

(p)

(q)p#4 + (63.17 - 162.3i )p4 = -0.0172 + 0.0168i + (0.0162 - 0.0157i )e -50t

p#3 + (63.17 + 162.3i )p3 = -0.0172 - 0.0168i + (0.0162 + 0.0157i )e -50t

p#2 + (64.01 - 479.1i )p2 = -0.2313 + 0.2438i + (0.2241 - 0.2357i )e -50t

p#1 + (64.01 + 479.1i )p1 = -0.2313 - 0.2438i + (0.2241 + 0.2375i )e -50t

G
∼

= P
∼ TF

∼
= F 

-0.2313 - 0.2438i + (0.2241 + 0.2375i )e -50t

-0.2313 + 0.2438i + (0.2241 - 0.2357i )e -50t
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 V
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+ 6.668 * 10-4i 2.777 * 10-3
- 6.668 * 10-4i

 V

P = F 
0.034 - 8.126 * 10-3i 0.034 + 8.126 * 10-3i -2.609 + 3.047i

-0.435 - 1.05i -0.435 + 1.05i -1.41 + 1.279i
-10.104 + 13.131i -10.014 - 13.131i -0.058 + 0.126i

7.458 * 10-6
+ 7.114 * 10-7i 7.458 * 10-6

- 7.114 * 10-7i -0.017 - 0.016i
2.272 * 10-3

- 6.039 * 10-4i 2.272 * 10-3
- 6.039 * 10-4i -6.835 * 10-3

- 8.69 * 10-3i
-0.024 - 0.024i -0.024 + 0.024i -7.085 * 10-4

- 3.85 * 10-4i

g1,2 = 64.01 � 479.1i, g3,4 = 12.06 � 171.7i, g3,4 = 63.17 � 162.3i
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y = [x#1 x#2 x#3 x1 x2 x3]
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(r)

(s)

Equations (n) through (s) are first-order nonhomogenous differential equations. The
solution of

(t)

subject to p(0) � 0 is

(u)

The solutions to Equations (n) through (s) are

(v)

(w)

(x)

(y)

(z)

(aa)

The original generalized coordinates and their velocities are obtained by multiplying the modal
matrix times the vector of principal coordinates The values of the original general-
ized coordinates are x1 � y4, x2 � y5, and x3 � y6.

9.9 CHAPTER SUMMARY

9.9.1 IMPORTANT CONCEPTS
• The method of undetermined coefficients can be used to determine the steady-state

response of a system with harmonic input.
• The Laplace transform method leads to a set of algebraic equations in terms of the trans-

form parameter. The elements of the inverse of the impedance matrix are the transfer

y = P
∼
p∼ .

+ 34.67 + 41.39i + (-19.52 + 45.57i )e -50t ]

p6(t) = 10-5[(-15.14 + 4.189i )e -(12.06 - 171.6i )t

+ 34.67 - 41.39i + (-19.52 - 45.57i )e -50t ]

p5(t) = 10-5[(-15.14 - 4.189i )e -(12.06 + 171.6i )t

+ 10.42 + 9.13i + (5.407 - 12.70i )e -50t ]

p4(t) = 10-5[(-15.82 + 3.575i )e -(63.17 - 162.3i )t

+ 10.42 - 9.13i + (5.407 + 12.70i )e -50t ]

p3(t) = 10-5[(-15.82 - 3.575i )e -(63.17 + 162.3i )t

- 56.33 - 40.75i + (50.89 + 45.28i )e -50t ]

p2(t) = 10-5[(5.435 - 4.535i )e -(64.01 - 479.1i )t

- 56.33 + 40.75i + (50.89 - 45.28i )e -50t ]

p1(t) = 10-5[(5.435 + 4.535i )e -(64.01 + 479.1i )t

p(t) = - aA
l

+

B
l - 50

be -lt
+

A
l

-

B
l - 50

e -50t

p# + lp = A + Be -50t

p#6 + (12.06 - 171.6i )p6 = 0.0752 - 0.0545 + (-0.0708 + 0.0508i )e -50t

p#5 + (12.06 + 171.6i )p5 = 0.0752 + 0.0545i + (-0.0708 - 0.0508i )e -50t
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functions Gi,j(s). The concept of the sinusoidal transfer function can be used to find the
steady-state response.

• Modal analysis is a method where principal coordinates are used to uncouple the differ-
ential equations and can be applied to systems that are undamped or have proportional
damping.

• A modal analysis exists for systems with proportional damping.
• Modal analysis is used to uncouple the differential equations when a numerical integra-

tion method is used.
• Numerical methods, such as Runge-Kutta methods or numerical integration of the con-

volution integral, can be applied to determine the response of a MDOF system.

9.9.2 IMPORTANT EQUATIONS
Steady-state solution of an undamped system using the method of undetermined coeffi-
cients

(9.5)

Steady-state solution of a damped system using the method of undetermined coefficients

(9.10)

Impedance matrix

(9.13)

Solution of equations by Laplace transform method

(9.14)

Use of sinusoidal transfer function to determine response of system due to harmonic input

(9.16)

Expansion of response in terms of principal coordinates

(9.19)

Differential equations that the principal coordinates satisfy for an undamped system

(9.24)

(9.25)

Differential equations that the principal coordinates satisfy for a system with proportional
damping

(9.29)

Convolution integral solution for principal coordinates

(9.30)pi(t) =

1

vi21 - z2
i
L

t

0
gi(t)e

-zi vi (t -  t)sin cvi21 - z2
i (t - t) ddt

p
$

i + 2zi 
vi p

#

i + v2
i pi = gi(t )

gj(t) = (Xj 
, F)

p
$

j + v2
j pj = gj(t )

x(t ) = a
n

i = 1

pi(t )Xi

x k(t ) = a
n

j = 1

| Gk,j (ivj 
) |Fj sin(vj t + fk,j 

)

X(s) = Z-1(s)F(s)

Z(s) = s2M + s C + K

U = (-v2M + ivC + K)-1F

U = (-v2M + K)-1F
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Principal coordinates for system with general damping

(9.40)

Convolution integral solution for principal coordinates for system with general damping

(9.41)

PROBLEMS

SHORT ANSWER PROBLEMS
For Problems 9.1 through 9.7, indicate whether the statement presented is true or false. If
true, state why. If false, rewrite the statement to make it true.

9.1 The Laplace transform method cannot be used to determine the response of a
system with proportional damping.

9.2 The principal coordinates are used to uncouple the differential equations for
forced vibrations.

9.3 For a system with a damping matrix that is proportional to the stiffness matrix,
the higher modes are more highly damped and therefore have less of an effect
on the forced response.

9.4 The elements of the impedance matrix are the transfer functions Gi,j(s).
9.5 The principal coordinates are only used to determine the steady-state response

of a system.
9.6 The vector of forces for the right-hand side of the equations defining the

principal coordinates is calculated by G � PTF.
9.7 The kth component of G, which is the vector on the right-hand side of the

equations defining the generalized coordinate, is calculated by taking the kinetic-
energy scalar product of the forced vector with the kth normalized mode shape.

Problems 9.8 and 9.9 require a short answer.

9.8 The determinant of the impedance matrix of an nDOF system is a polynomial
of what order?

9.9 The lowest natural frequency of a five degree-of-freedom system is 30 rad/s.
Select the differential equation which could be the equation for the principal
coordinate.

(a)
(b)
(c)
(d)

Problems 9.10 through 9.13 are fill-in-the-blank questions regarding the derivation of
modal analysis for an undamped system or a system with proportional damping.

p
$

1 = g1(t )
p
$

1 + 900p#1 = g1(t )
p
$

1 + 30p#1 = g1(t )
p
$

1 + p#1 = g1(t )

p∼i =

L

t

0
g∼i(t)e

-gi (t  -   t)dt

p#i + gi p
∼
i = g∼i(t )
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9.10 To derive modal analysis, the ___________ is used to write the general solution
as a linear combination of the principal coordinates.

9.11 The ___________ scalar product is taken with both sides of the equation after
the linear combination is substituted into the differential equations.

9.12 The equations are ___________ using mode shape ___________ with respect
to ___________ and ___________.

9.13 The ___________ integral can be used to solve the resulting nonhomogenous
differential equations.

Problems 9.14 through 9.18 are fill-in-the-blank questions regarding the derivation of
modal analysis for a system with a general damping matrix.
9.14 For systems with a general damping matrix, the differential equations governing

the nDOF system is written as ___________ first-order differential equations.
9.15 The vector is defined as the 2n � 1 vector ___________.
9.16 The modal matrix is defined as the matrix whose columns are normalized 

by ___________.
9.17 The differential equations governing the principal coordinates of the system

are___________.
9.18 The differential equations have a solution, called

the ___________.
9.19 Give two reasons why modal analysis is convenient to use before solving a

system using the Runge-Kutta method.
9.20 Give two reasons why modal analysis should be used before using numerical

integration of the convolution integral.

Problems 9.21 through 9.23 require short calculations.

In Problems 9.21 and 9.22, spectral analysis shows that the natural frequencies for a fifth-
order system are 20 rad/s, 41 rad/s, 55 rad/s, 93 rad/s, and 114 rad/s. Experimental modal
analysis is used to determine that its modal matrix is

9.21 If the system is undamped and subject to a force vector equal to
determine the following.

(a) Write the differential equation for the first principal coordinate.
(b) What is the steady-state solution of this differential equation?
(c) Which mode do you expect will have the largest contribution to the

response?
(d) What is the relation between the fifth generalized coordinate and the

principal coordinates?

F = [0 0 sin54t 0 0]T,

P = E
1.3 1.0  0.7 0.5 0.1
1.8 1.5  1.0 0.4 -0.3
2.4 0.5  -0.4 -0.3 0.2
2.9 -0.2  -0.7 0.5 -0.5
2.0 -0.15 0.2 -0.6 0.4

U

p∼i = 1
t

0  g∼i(t)e
-gi(t -  t)dt,

P
∼

F
∼
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9.22 If the system is damped with modal damping ratios of 0.3, 0.615, 0.825, 1.395,
and 1.71, and has a forcing vector equal to 
determine the following.

(a) Write the differential equation for p4.
(b) What is the steady-state solution of this differential equation?
(b) Which modes are overdamped and which are underdamped?
(c) What is the constant(s) of proportionality between the damping matrix and

the stiffness and mass matrices?

9.23 The differential equations governing a three degree-of-freedom system are

What is the impedance matrix for this system?

CHAPTER PROBLEMS
9.1 Determine the steady-state amplitudes of vibration of each of the masses of the

system in Figure P9.1. Use the method of undetermined coefficients.

C2 0 0
0 2 0
0 0 3

S C x
$

1

x
$

2

x
$

3

S C1 0 0
0 0 0
0 0 2

S C x#1
x#2
x#3

S + C 5 -3 0
-3 7 -4
0 -4 4

S C x#1
x#2
x#3

S = C 0
0

0.1 sin 60t
S

F = [0 0 sin 54t 0 0]T,

FIGURE P9.1

FIGURE P9.2

1000 N/m 2000 N/m 3000 N/m

x1 x2 x3

10 sin20t2 kg 4 kg 6 kg

9.2 Determine the steady-state amplitude for the mass hanging from the end of the
bar in the system in Figure P9.2. Use the method of undetermined coefficients.

L
2

L
2

k1 2k1

k2

m2

m1, I

m1 = 30 kg
m2 = 20 kg
k1 = 4 × 105 N/m
k2 = 3 × 105 N/m
I = 1.8 kg · m2

L = 80 cm
M0 = 20 N · m
ω  = 45 rad/s

M(t) = M0 sinω t

y

x
θ
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9.3 Determine the steady-state amplitude of vibration of the mass m3 of the system
in Figure P9.3. Use the method of undetermined coefficients.

2r

No slip
r

m1
k1

k2

m2

m3

k3

Ip
k1 = 3 × 104 N/m
k2 = 4.5 × 104 N/m
k3 = 1 × 104 N/m
r = 25 cm
IP = 1.4 kg · m2

m1 = 18 kg
m2 = 20 kg
m3 = 45 kg
F0 = 25 N
ω = 35 rad/s

F0 sinωt
y

x

θ

FIGURE P9.6

FIGURE P9.5

FIGURE P9.4

FIGURE P9.3

9.4 Determine the steady-state amplitudes of vibration of each of the masses of the
system in Figure P9.4. Use the method of undetermined coefficients.

9.5 Determine the steady-state amplitudes of vibration of each of the masses of the
system in Figure P9.5. Use the method of undetermined coefficients.

F0 sinωtm 2m
2kk

m
c

k = 1 × 104 N/m
c = 100 N · s/m
m = 10 kg

F0 = 20 N
ω = 15 rad/s

x1 x2 x3

200 N/m 100 N/m 100 N/m

30 N · s/m30 N · s/m

x1 x2 x3

6 kg 4 kg 4 kg

20 N · s/m

20 sin15t N

1000 N/m 3000 N/m

60 N · s/m

x1 x2 x3

20 kg 20 kg 10 kg

80 N · s/m

40 sin30t

9.6 Determine the steady-state amplitudes of vibration of each of the masses of the
system in Figure P9.6. Use the method of undetermined coefficients.



Forced Vibrations of MDOF Systems 629

9.7 Determine the steady-state responses of each of the masses of the system in
Figure P9.7. Use the method of undetermined coefficients.

500 N/m 100 N/m 200 N/m

30 N · s/m20 N · s/m

x1 x2 x3

5 kg 7 kg 5 kg

20 N · s/m

20 sin50t10 sin50t

FIGURE P9.9

FIGURE P9.8

FIGURE P9.7

9.8 Determine the steady-state responses of each of the masses of the system in
Figure P9.8. Use the method of undetermined coefficients.

1000 N/m 2000 N/m

100 N · s/m50 N · s/m

x1 x2 x3

2 kg 3 kg 2 kg

100 N · s/m

20 sin30t

20 sin(30t + p/4)

9.9 Determine the steady-state response of the hanging mass in the system of Figure
P9.9. Use the method of undetermined coefficients.

9.10 Determine the steady-state amplitudes of vibration of each of the masses in the
system of Figure P9.1. Use the Laplace transform method.

9.11 Determine the steady-state amplitudes of vibration of the hanging mass in the
system of Figure P9.2. Use the Laplace transform method.

9.12 Determine the steady-state amplitude of vibration of the mass m3 of the system
in Figure P9.3. Use the Laplace transform method.

9.13 Determine the steady-state amplitudes of vibration of each of the masses of the
system in Figure P9.4. Use the Laplace transform method.

9.14 Determine the steady-state amplitudes of vibration of each of the masses of the
system in Figure P9.5. Use the Laplace transform method.

L
2

L
2

M0 sinω t

m2

k2

k1 c1 2k1 2c1

m1, I

m1 = 30 kg
m2 = 20 kg
k1 = 4 × 105 N/m
k2 = 4 × 105 N/m
I = 1.8 kg · m2

L = 80 cm
M0 = 20 N · m
ω = 45 rad/s
c1 = 1 × 103 N · s/m

x

y

θ
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9.15 Determine the response of the 2 kg mass of Figure P9.1 if the sinusoidal force is
replaced by the triangular pulse of Figure P9.15. Use the Laplace transform
method.

FIGURE P9.16

FIGURE P9.17

0.1 s

20 N

0.2 s t (s)

FIGURE P9.15

9.16 Determine the response of the 6 kg mass of Figure P9.1 if the sinusoidal force is
replaced by the rectangular pulse of Figure P9.16. Use the Laplace transform
method.

0.5

20 N

t (s)

9.17 Determine the response of the system of Figure P9.2 if the sinusoidal force is
replaced by the force of Figure P9.17. Use the Laplace transform method.

0.1

200 N

t (s)

9.18 Repeat Chapter Problem 9.1 using modal analysis.
9.19 Repeat Chapter Problem 9.2 using modal analysis.
9.20 Repeat Chapter Problem 9.3 using modal analysis.
9.21 Repeat Chapter Problem 9.15 using modal analysis
9.22 Repeat Chapter Problem 9.16 using modal analysis.
9.23 Repeat Chapter Problem 9.7 using modal analysis.
9.24 Repeat Chapter Problem 9.9 using modal analysis.
9.25 Figure P9.25 shows a machine attached to a fixed-pinned beam through an

isolator. Design an isolator of damping ratio 0.1 such that the force transmitted
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to the beam is 2000 N when the machine is subject to a harmonic excitation
with an amplitude of 12,000 N at a frequency of 300 rad/s. Use a three degree-
of-freedom lumped-mass model for the beam.

L
2

L
2

m

F(t)

m = 120 kg
L = 4 m
E = 150 × 109 N/m2

A = 1.5 × 10–3 m2

r = 7000 kg/m3

I = 4.6 × 10–6 m4

k c

FIGURE P9.25

FIGURE P9.25

9.26 Design an isolator with a damping ratio of 0.4 for the system of Figure P9.25
when it is subject to the pulse of Figure P9.26. The maximum force transmitted
to the beam should be 500 N.

0.01

10,000 N

t (s)
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C h a p t e r 1 0

VIBRATIONS OF
CONTINUOUS SYSTEMS

10.1 INTRODUCTION
All solid objects are made of deformable materials. Often a solid is assumed to be rigid.
This allows for simpler modeling and leads to information about essential vibrational char-
acteristics. The validity of a rigid-body assumption in modeling the vibrations of a system
depends on many factors such as geometry and frequency range. For example, consider a
machine mounted on springs and operating in an industrial plant. The floor of the indus-
trial plant is often assumed to be rigid and the vibrations of the machine considered by ana-
lyzing a one-degree-of-freedom system. However, if the forces developed in the springs are
large, then since the floor is really deformable, vibrations are excited in the floor and per-
haps the entire structure. In this case, the vibrations of the machine are coupled to the
structural vibrations. 

Examples of continuous systems are shown in Figure 10.1. All structural elements such as
beams, columns, and plates are continuous systems. This includes the suspended piping system
of Figure 10.1(a), simply supported at locations along its length. Vibrations of the pipeline are
excited by the fluid flowing through the pipe, the operation of pumps, or structural vibrations.
The vibrations are analyzed by considering a continuous beam with simple supports.

All elements of the frame structure of Figure 10.1(b) are continuous structural ele-
ments. Often the columns of a frame structure are much more flexible than the girders, and
the girders are considered rigid, resulting in the model shown.

The spring of Figure 10.1(c) is a simple continuous system. As one end of the spring
is moved relative to the other, a compression wave is generated and travels throughout the
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spring. If the excitation frequency is near the frequency of the compression waves, a phe-
nomenon called surge develops. Surge can be a problem in mechanical systems where one
end of a spring is given a harmonic displacement.

The free and forced vibrations of a rigid body attached to a continuous system are
approximated by using one degree of freedom in Chapters 2 through 5. The inertia effects
of a continuous element are approximated by adding a particle of a calculated equivalent
mass at the location of the rigid body. Multiple degree-of-freedom approximations are con-
sidered in Chapters 6 through 9.

A variable x, measured along the axis of the bar, is introduced for the analysis of the
vibrations in each of the continuous systems in Figure 10.2. The displacement w is measured

(a)

u

(b)

(c)

FIGURE 10.1
Examples of continuous
systems: (a) simply supported
piping system; (b) one-story
frame structure; (c) helical
coil spring.

(a)
x

u(x, t)

(c)

x

(b)

x

q (x, t)

w (x, t)

FIGURE 10.2
(a) A coordinate x, measured from the left end
of the bar along the axis of the bar, is intro-
duced for the analysis of vibrations of the bar.
The displacement of the bar is a function of
both x and time t as u(x, t). (b) The angular dis-
placement is a function of x and t as � (x, t) .
(c) The transverse displacement of the beam
is a function of x and t as w(x, t), where x is
measured along the beam’s neutral axis.
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as a function of the variable x as well as time as w(x, t). Since w depends upon two inde-
pendent variables, a governing partial differential equation is derived.

The ordinary differential equations obtained by using a discrete model of the contin-
uous system are easier to solve than the governing partial differential equation. Thus dis-
crete approximations are often used, but have limitations. A continuous system has an
infinite, but countable, number of natural frequencies and corresponding mode shapes. A
discrete approximation predicts only a finite number of modes. Often a large number of
degrees of freedom are needed to attain accurate approximations for higher natural fre-
quencies. Consider, for example, the cantilever beam of Figure 10.3 with a concentrated
mass at its end. Figure 10.4 shows the nondimensional lowest natural frequency as a func-
tion of �, the ratio of the concentrated mass to the mass of the beam. Figure 10.4 shows
natural frequencies calculated using up to six degrees of freedom, as well as a one degree-
of-freedom approximation.

The methods used in this chapter are analogous to those used for multiple degree-of-
freedom systems. The separation-of-variables method used to determine the natural fre-
quencies is analogous to the normal-mode solution used in Chapter 8. The method used
for the analysis of forced vibrations is a direct result of an expansion theorem and is directly
analogous to modal analysis. The approximate methods presented are based on energy
methods. Indeed, similar notation using energy scalar products can be used. The continu-
ous functions used in the analysis of continuous systems are analogous to the column vec-
tors of generalized coordinates used for discrete systems. Energy scalar products are defined
for continuous systems using definite integrals.

A general method for determining the free and forced solutions to continuous vibra-
tions problems is presented in Section 10.2. This method is applied to systems that are

m

FIGURE 10.3
Discrete approximation works well when m is
large compared to the mass of the beam.

1.0
0

n = 1

0.5

First mode

1 1.5 2

w

2.0

1.5

2.5

3.5

3.0

4.0

b

n = 3
n = 4
n = 5
n = 6

n = 2

FIGURE 10.4
As the ratio of the concen-
trated mass to the mass of
the beam grows larger, the
approximation for the lowest
natural frequency using a dis-
crete model with n degrees
of freedom improves.
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governed by partial differential equations whose highest-order spatial derivative is of
second order (second-order systems). Examples of such systems are strings, bars, and shafts.
The general method is then applied to systems that are governed by partial differential
equations whose highest-order spatial derivative is of fourth order (fourth-order systems).
An example of a fourth-order system is a beam. Finally, an energy method is presented as
a means of approximating the natural frequencies and mode shapes for second-order and
fourth-order systems.

10.2 GENERAL METHOD
This section presents an outline of an exact closed-form method for analyzing vibra-
tions of continuous systems. The method is applied to analyze the torsional oscillations
of a circular shaft and the transverse vibrations of a beam in Sections 10.3 and 10.4
respectively. This chapter is intended only as an introduction to vibrations of continu-
ous systems. Thus, it is assumed that the dependent displacement is a function of only
one spatial variable and time, all material properties are constant, and all geometries are
uniform.

The analysis procedure is broken into three parts: problem formulation, free-vibration
analysis, and forced-vibration analysis. The mathematical theory underlying the analysis of
vibrations of continuous systems is developed by using an infinite-dimensional vector
space, while the mathematical foundation for a MODF is developed by using a finite-
dimensional vector space. Many of the concepts developed for finite-dimensional spaces
have direct extension to infinite-dimensional spaces.

Part I: Problem Formulation
1. An independent spatial variable is chosen, call it x. This independent spatial variable

represents the displacement of a particle from a reference position when the system is
in its equilibrium position. A continuous system has an infinite number of degrees of
freedom and hence an infinite number of generalized coordinates are required. These
are chosen as the displacement of the particles in the system. They can be summarized
by a single dependent variable w(x, t).

2. Free-body diagrams (FBDs) of a representative differential element are drawn at an
arbitrary instant. The usual assumptions of mechanics of materials are used including
plane sections remain plane. Thus, the differential element can be assumed to be
undergoing planar motion. Two FBDs are drawn; one showing the external forces
acting on the differential element and the second showing the effective forces for that
element. The external forces include forces on the surface of the element that are
resultants of stress distributions.

3. The appropriate form of Newton’s law is applied to the free-body diagrams.
Appropriate kinematic conditions and constitutive equations are applied to derive a
partial differential equation governing w(x, t).

4. Appropriate boundary conditions, dependent on the end supports of the structural
member, are formulated.

5. Appropriate initial conditions are formulated.
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6. An optional step is to nondimensionalize the governing equation and boundary con-
ditions by introducing nondimensional forms of the independent and dependent
variables. This leads to the formulation of dimensionless parameters which are impor-
tant in the physical understanding of the results. Assume for the remainder of this
discussion that nondimensional variables are introduced and all variables referred to
are nondimensional. Also assume that the nondimensional spatial variable x ranges
from 0 to 1.

The governing equations and boundary conditions can also be derived by energy
methods. Kinetic and potential energy scalar products directly analogous to those
formed for multiple degree-of-freedom systems can be defined.

Part II: Free-Vibration Solution A free-vibration problem is one where w(x, 0) or
are nonzero and the partial differential equation and all boundary conditions

are homogeneous. The initial potential or kinetic energy drives the vibrations, during
which no external forces are applied.

As for MDOF systems, the free-vibration problem is considered to determine the
system’s natural frequencies and mode shapes. The method presented to solve free vibra-
tions problems for continuous systems is called separation of variables. Application of this
method requires that the partial differential equation be of an appropriate form, called sep-
arable. The governing partial differential equations for torsional vibrations of a uniform
shaft, longitudinal vibrations of a uniform elastic bar, and transverse vibrations of a uni-
form beam are all separable.

1. The dependent variable is assumed to be a product of functions of the independent
variables,

(10.1)

Equation (10.1) is substituted into the governing partial differential equation. If the
governing partial differential equation is separable, the resulting equation can be writ-
ten in the form of where Lx and Lt are linear ordinary
differential operators. Note that the left-hand side of this equation is a function of x
only and the right-hand side is a function of t only. Since x and t are independent, this
can only be true if both sides are equal to the same constant, call it ��. This argu-
ment is called the separation argument. Its application leads to ordinary differential
equations for X(x) and T(t), both in terms of �, called the separation constant.

2. Equation (10.1) is applied to the boundary conditions to obtain homogeneous bound-
ary conditions for X(x).

3. If the system is undamped, the differential equation for T(t) is

(10.2)

from which the natural frequencies are deduced to be the square roots of the values
of �. The mode shapes, which are the spatial representation of the solution, are the
forms of X(x) corresponding to an appropriate value of �.

4. The problem for X(x) is

(10.3)LxX + lX = 0

d  
2T

dt 
2 + lT = 0

[LxX (x)]>X (x) = [LtT (t )]>T (t )

w (x, t ) = X(x)T (t )

0w>0t (x, 0)
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which is a homogeneous, ordinary differential equation with homogeneous boundary
conditions. This is called a differential eigenvalue problem. A nontrivial solution is
available only for certain values of the separation constant. Standard solution tech-
niques for ordinary differential equations are applied to determine X(x) in terms of
arbitrary constants of integration.

5. Application of the boundary conditions leads to a solvability condition of the form
f (�) � 0. Nontrivial solutions of the eigenvalue problem exist only for values of �
such that f (�) � 0. This results in an infinite (but countable) number of solutions

. Corresponding to each �k, there is an Xk(x), which is
unique only to a multiplicative constant.

If only the natural frequencies and mode shapes are necessary, the solution
ends here.

6. An energy scalar product, (Xi , Xj)T , is defined such that (Xi, Xi)T is proportional to the
kinetic energy of the ith mode at any instant. It can be shown that for systems governed
by the wave equation (torsional vibrations of shafts, longitudinal vibrations of bars) and
for uniform beam vibrations, mode shapes for distinct modes are mutually orthogonal
with respect to this energy scalar product. For a uniform continuous system (in the
absence of discrete masses) the appropriate kinetic energy scalar product is

(10.4)

If the system has discrete masses, additional terms are added to the integral of
Equation (10.4) to account for the kinetic energy of the discrete masses. The mode
shapes are normalized by requiring

(10.5)

7. If the mode shapes are normalized with respect to a scalar product for which they are
also mutually orthogonal, then an expansion theorem exists which states that any con-
tinuous function, f (x), can be expanded in a series of the mode shapes as

(10.6)

The expansion converges to f (x) at all x except perhaps at x � 0 and x � 1. The expan-
sion converges at the boundaries if f (x) satisfies the boundary conditions.

If a forced-vibration solution is required, the expansion theorem of Equation (10.6)
is noted and the solution proceeds to step 1 of the forced response. If a free-vibration
solution is required, the solution continues as follows.

8. The general solution is formed by taking a linear combination over all modes

(10.7)

Two arbitrary constants for each mode are present from the solution for Tk(t). These
constants are determined from application of initial conditions. Often the functions
involved in the initial conditions must be expanded by the expansion theorem,
Equation (10.6). For example, if w(x, 0) is nonzero and is equal to f (x), then f (x) is

w (x, t ) = a
q

k = 1

Xk(x )Tk(t )

f (x ) = a
q

k = 1

(  f, Xk )T Xk

(Xi 
, Xi 

)T = 1

(Xi 
, Xj )T =

L

1

0
Xi(x)Xj (x)dx

l1 6 l2 6
Á

6 lk 6
Á
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expanded by Equation (10.6) and compared to w(x, 0) obtained from Equation (10.7),
in terms of arbitrary constants. The linear independence of each Xk(x) is used to deter-
mine the constants.

Part III: Forced-Vibration Solution As for discrete systems, there are several methods
available to determine the forced response of continuous systems. These include applica-
tion of the method of undetermined coefficients for harmonic excitations, the Laplace
transform method, and modal analysis. Modal analysis is the most powerful and most often
used and is described here. 

Let f (x, t) represent the nondimensional nonhomogeneous term arising in the partial
differential equation as a result of the external forcing. Nonhomogeneous terms can also
occur in the boundary conditions.

1. The expansion theorem, Equation (10.6) is used to expand f (x, t) as

(10.8)

where

(10.9)

2. The expansion theorem is also used to expand

(10.10)

where the pk(t) are called the principal coordinates for the continuous system.
Equations (10.8) and (10.10) are substituted into the governing partial differential
equation.

3. The scalar product of the resulting partial differential equation is taken with Xj(x) for
an arbitrary j. For a problem whose appropriate scalar product is given by 
Equation (10.4), this is equivalent to multiplying the equation by Xj(x) and integrat-
ing from 0 to 1. Application of the orthogonality condition leads to uncoupled differ-
ential equations for the principal coordinates.

4. The uncoupled differential equations are solved to determine each pk(t).

10.3 SECOND-ORDER SYSTEMS: TORSIONAL
OSCILLATIONS OF A CIRCULAR SHAFT

10.3.1 PROBLEM FORMULATION
The circular shaft of Figure 10.5 is made of a material of mass density � and shear modu-
lus G and has a length L, cross-sectional area A, and polar moment of inertia J. Let x be the
coordinate along the axis of the shaft, measured from its left end. The shaft is subject to a
time-dependent torque per unit length, T(x, t). Let �(x, t) measure the resulting torsional
oscillations where � is chosen positive clockwise.

w (x, t) = a
q

k = 1

pk(t )Xk(x)

Ck(t ) = (  f  (x, t ), Xk(x))

f  (x, t ) = a
q

k = 1

Ck(t )Xk(x)
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Figure 10.6 shows free-body diagrams of a differential element of the shaft at an arbi-
trary instant of time. The element is of infinitesimal thickness dx and its left face is a dis-
tance x from the left end of the shaft. The assumptions of mechanics of materials imply that
sections do not warp thus the problem run be treated assuming the differential element
undergos planar motions and the effective-external force method can be used.

The free-body diagram of the external forces shows the time-dependent torque load-
ing as well as the internal resisting torques developed in the cross sections. The internal
resisting torques are the resultants of the shear stress distributions. If Tr(x, t) is the resisting
torque acting on the left face of the element, then a Taylor series expansion truncated after
the linear terms gives

(10.11)

The directions of the torques shown on the free-body diagram are consistent with the
choice of � positive clockwise.

Since the disk is infinitesimal, the angular acceleration is assumed constant across the
thickness. Thus, the free-body diagram of the effective forces simply shows a moment equal to
the mass moment of inertia of the disk, which is �Jdx, times its angular acceleration, .

Summation of moments about the mass center of the disk

gives

T (x, t)dx - Tr(x, t ) + Tr(x, t ) +

0Tr

0x
 (x, t )dx = rJdx  

0
2u

0t 
2  (x, t)

aaMb
ext

= aaMb
eff

0
2
u

0t 2

Tr(x + dx, t ) = Tr(x, t ) +

0Tr

0X
 (x, t )dx

q(x, t)
T(x, t)

x

T(x, t) dx

Tr

dx
∂TrTr +

=

External forces Effective forces

∂x

dx
∂ 2qrJ ∂t2

FIGURE 10.5
Circular shaft is subject to tor-
sional loading T(x, t). �(x, t)
measures angular displace-
ment of the shaft.

FIGURE 10.6
FBDs of differential element
of shaft at an arbitrary
instant. Tr(x, t) is the resisting
torques in the shaft.
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or

(10.12)

From mechanics of materials,

(10.13)

which, when substituted in Equation (10.12) for a uniform shaft, leads to

(10.14)

The following nondimensional variables are introduced:

(10.15)

and

(10.16)

where Tm is the maximum value of T. Introduction of Equations (10.15) and (10.16) in
Equation (10.14) leads to

(10.17)

where the ∗ has been dropped from the nondimensional variables.
Boundary conditions are formulated at each end of the shaft. At a free end the

shaft is restrained from rotation, thus � at that end is zero. At a free end there is no
torque acting on the free end which implies there is no shear stress distribution at the
free end. A linear shear stress-shear strain relation is assumed and the shear strain is
given by Thus at a free end If there is a disk at an end, a moment balance
on a FBD of the disk is performed with the resultant of the shear stress distribution
from the end of the shaft as the external moment and the inertia of the disk providing
the effective moment. Other end conditions such as discrete torsional springs, discrete
torsional viscous dampers and applied torques have boundary conditions developed
using a moment balance at the end of the shaft. A differential element at the end of
the shaft is considered. The sum of the external moments is zero which include the
resultant moment form the shear stress distribution. Table 10.1 provides nondimensional
boundary conditions for different types of shaft ends. 

The problem formulation is completed by specifying appropriate initial conditions of
the form

(10.18)

and

(10.19)

Consider the homogeneous form of Equation (10.17),

(10.20)
0

2u

0x 
2 =

0
2u

0t 
2

0u

0t
(x, 0) = g2(x)

u(x, 0) = g1(x)

0u
0x = 0.0u

0x.

aL2Tm

JG
bT (x, t) +

0
2u

0x 2 =

0
2u

0t 2

T 
*(x *, t *) =

T (x, t)

Tm

x *
=

x
L
  t  *

= A
G
r

 
t
L

T (x, t) + JG 
0

2u

0x 2 = rJ 
0

2u

0t 2

Tr(x, t) = JG 
0u

0x
(x, t)

T (x, t) +

0Tr

0x
(x, t) = rJ 

0
2u

0t 
2
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Equation (10.20) is a hyperbolic partial differential equation, called the wave equation. The
wave equation also governs such variables as the axial displacement during the longitudi-
nal motion of a bar, the axial displacement of a particle on a coil spring during a compres-
sion wave, and the free vibrations of a taut string. Applications in areas other than
vibrations include propagation of surface waves on the interface of two fluids and the veloc-
ity potential for supersonic flow in an ideal fluid.

Solutions of the wave equation are rich in physical phenomena. It can be shown that
the solutions of the wave equation represent waves propagating through the medium. The
speed of propagation is determined from the governing partial differential equation in
dimensional form or in the definition of t*. In general, to arrive at a partial differential
equation of the form of Equation (10.20) in which no parameters appear, we have

(10.21)

where c is the wave speed. Thus, for torsional oscillations, the wave speed is 
Table 10.2 gives the wave speed for other situations governed by the wave equation.

10.3.2 FREE-VIBRATION SOLUTIONS
The application of the method discussed in Section 10.2 for calculating the natural fre-
quencies and mode shapes and determining the free response due to non-zero initial con-
ditions for second-order systems is illustrated in the following examples.

2G>r.
t *

=

c
L

t

Boundary conditions for
torsional oscillations of
a circular shaft

T A B L E 1 0 . 1

Boundary
End Condition Condition Remarks

� � 0

0u

0x
= -b

0
2u

0t 
2

0u

0x
= b

0
2u

0t 
2

0u

0x
= -b

0u

0t

0u

0x
= b

0u

0t

0u

0x
= -bu

0u

0x
= bu

0u

0x
= 0

Fixed,
x � 0 or x � 1

Free,
x � 0 or x � 1

Torsional spring,
x � 0

Torsional spring,
x � 1

Torsional damper,
x � 0

Torsional damper,
x � 1

Attached disk,
x � 0

Attached disk,
x � 1 b =

ID

rJL

b =

ID

rJL

b = ctA
J

rG

b = ctA
J

rG

b =

kt 
L

JG

b =

kt 
L

JG
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Physical problems governed by the wave equationT A B L E 1 0 . 2

Nondimensional
Problem Schematic Wave Equation Wave Speed

Torsional
oscillations
of circular
cylinder

Longitudinal
oscillations
of bar

Transverse
vibrations of
taut spring

Pressure waves
in an ideal
gas

Waterhammer
waves in rigid
pipe p(x, t)

p(x, t)

y(x, t)
x

w(x, t)

q

0
2r

0x 2 =

0
2r

0t 2

0
2r

0x 2 =

0
2r

0t 2

0
2y

0x 2 =

0
2y

0t 2

0
2w

0x 2 =

0
2w

0t 2

0
2u

0x 2 =

0
2u

0t 2

c = A
k
r

c = 1kRT

c = A
T
m

c = A
E
r

c = A
G
r

G � shear modulus
� � mass density

E � elastic modulus
� � mass density

T � tension
� � linear density

k � ratio of specific hears
R � gas constant
T � temperature

k � bulk modulus of fluid
� � mass density

EXAMPLE 1 0 . 1

A moment M is statically applied to the end of a circular shaft, fixed at x � 0 and free at
x � 1, causing the angle of twist to vary linearly over the length of the shaft. Determine
the resulting free torsional response when the moment is suddenly removed.

SO LU T I ON
The free torsional oscillations are governed by Equation (10.20). The boundary condition
corresponding to a fixed end at x � 0 is

(a)

and corresponding to a free end at x � 1 is

(b)

Static application of the moment M leads to the initial condition

(c)

Since the shaft is released from rest a second initial condition is

(d)

A separation-of-variables solution is assumed as

(e)u(0, t) = X (x)T (t)

0u

0t
(x, 0) = 0

u(x, 0) =

M
JG

 x = gx

0u

0x
(1,   t) = 0

u(0, t) = 0
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Substituting Equation (e) into Equation (10.20) and rearranging leads to

(f)

The left-hand side of Equation (f ) is a function of x only, while the right-hand side is a
function of t only. However, x and t are independent. Thus, Equation (f ) is true only if
both sides are equal to the same constant, call it �� , where � is called the separation con-
stant. Then Equation (f ) leads to

(g)

and

(h)

The solution of Equation (g) is

(i)

where A and B are arbitrary constants of integration. From Equation (i) it is obvious that
the natural frequencies are the square roots of the separation constant.

The solution of Equation (h) is

(j)

Application of Equation (a) to Equation (e) yields

(k)

and its subsequent application to Equation (j) gives C � 0.
Application of Equation (b) to Equation (e) yields

(l)

Application of Equation (l) to Equation (j) with C � 0 leads to

(m)

Choosing either D � 0 or � � 0 leads to the trivial solution. Thus a nontrivial solution is
obtained only when

(n)

or

(o)

There are an infinity of solutions of Equation (n), but as evidenced by Equation (o),
they are countable. The mode shape corresponding to �k is

(p)Xk(x) = Dk sin c (2k - 1)
p

2
x d

Xk 
= c (2k - 1)

p

2
d2  k = 1, 2, . . .

 cos 2l = 0

D2l cos 2l = 0

dX
dx

(1) = 0

X(0) = 0

X(x) = C cos 2lx + D sin 2lx

T (t) = A cos 2lt + B sin 2lt

d 2X
dx 2 + lX = 0

d 2T
dt 

2 + lT = 0

1

X (x)
 
d 2X
dx 2 =

1
T (t )

 
d 2T
dt 

2
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for any Dk. The mode shapes are orthogonal with respect to the scalar product of
Equation (10.4) as follows:

(q)
The mode shapes are normalized by requiring

(r)

which leads to

(s)

The first three normalized mode shapes are shown in Figure 10.7
The general solution to the free-vibration problem is formed using Equation (10.7)

(t)

Application of the initial condition, Equation (d), yields Bk � 0. Application of Equation (c)
then gives

(u)

The expansion theorem, Equation (10.6), is used to expand

(v)gx = a
q

k = 1

(gx, Xk 
)T Xk

gx = a
q

k = 1

Ak22 sin c (2k - 1)
p

2
x d

u(x, t) = a
q

k = 1

22 sin c (2k - 1) 

p

2
x d eAk 

cos c (2k - 1) 

p

2
t d + Bk 

sin c (2k - 1)
p

2
t d f

Xk(x) = 22 sin c (2k - 1)
p

2
x d

1 = (Xk , Xk )T =

L

1

0
D 2

k  sin 2 c (2k - 1)
p

2
x ddx =

D 
2
k

2

 = 0

 =

DjDk

p
c 1

j - k
 sin ( j - k)p -

1
j + k + 1

 sin ( j + k + 1)p d

 (Xk(x), Xj 
(x))T =

L

1

0
Dj 

Dk sin c (2k - 1) 

p

2
x d  sin c (2j - 1) 

p

2
x ddx
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X
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FIGURE 10.7
Normalized mode shapes corresponding to three lowest natural frequencies of a fixed-free shaft.
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where

(w)

Comparison of Equations (u) and (v) yields

(x)

Equation (t) becomes

(y)

The time-dependent angles of twist at four locations along the axis of the shaft,
obtained by numerical evaluation of Equation (y), are plotted in Figure 10.8.

u(x, t) =

8g

p2a
q

k = 1

 (-1)k + 1 1

(2k - 1)2  sin c (2k - 1)
p

2
x d  cos c (2k - 1) 

p

2
t d

Ak = (gx, Xk)T =

4g22(-1)k + 1

p2(2k - 1)2

 =

4g22

p2(2k - 1)2  (-1)k + 1

 =

4g22

p2(2k - 1)2   sin(2k - 1)
p

2

 (gx, Xk 
)T =

L

1

0
gx22 sin c (2k - 1) 

p

2
x ddx

–1.5
0

x = 1/4

2 4 6 8 10

–0.5

–1.0

0.0

1.0

0.5

1.5

Time

x = 3/4
x = 1

x = 1/2

p2 q (
x,

 t)
8g

FIGURE 10.8
Time-dependent torsional oscillations of circular fixed-free shaft at different locations on the shaft of
Example 10.1.

EXAMPLE 1 0 . 2
The circular shaft of Figure 10.9 is fixed at x � 0 and has a thin disk of mass moment of
inertia I attached at x � 1. Determine the natural frequencies for this system, identify the
orthogonality condition satisfied by the mode shapes, and determine the normalized mode
shapes.



Vibrations of Continuous Systems 647

SO LU T I ON
The partial differential equation governing, this system is Equation (10.20). It is subject to
Equation (a) of Example 10.1 and from Table 10.1, giving

(a)

where

(b)

The solution procedure is similar to that of Example 10.1. Separation of variables is
assumed and applied to the partial differential and the boundary conditions leading to the
eigenvalue problem

(c)

subject to

(d)

and

(e)

The solution satisfying Equations (c) and (d) is

(f)

Application of Equation (e) to Equation (f ) yields

(g)

or

(h)

A graphical solution of the transcendental equation, Equation (h), is shown in
Figure 10.10. The values of � where the curves tan and intersect are the solu-
tions of Equation (h), and are the values of the separation constant for which nontrivial
solutions for X(x) occur. Figure 10.10 shows that there are infinite, but countable, values

1>b1l1l

tan1l =

1

b1l

1l cos1l = bl sin1l

X (x) = D sin1lx

dX
dx

(1) = blX (1)

X (0) = 0

d  
2X

dx 
2 + lX = 0

b =

1

rJL

0u

0x
(1, t) = -b

0
2u

0t 2(1, t)

L

l

J, G, r

FIGURE 10.9
System of Example 10.2 is a shaft fixed at
one end and a disk with a moment of
inertia I attached at the other end.
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of � where these curves intersect. Figure 10.10 also shows that for large k, �k approaches
[(k � 1)�]2.

The natural frequencies are the square roots of the separation constants. Figure 10.11
shows the first four natural frequencies as a function of �. The first four mode shapes are
plotted in Figure 10.12 for � � 0.4.

f(z)

tan z

p/2
0 z

3p/2p 5p/22p 7p/23p 4p

1/(b z)

z = ÷ l

9p/2

FIGURE 10.10
Graphical solution of transcendental equation tan used to determine the natural frequencies
of the system of Example 10.2. Values of correspond to points of intersection of the two curves.1l

1l =
1
b1l

0
0

w 1
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8

12

b

w 3
w 4

w 2

FIGURE 10.11
Nondimensional natural frequencies of Example 10.2 as functions of nondimensional parameter �.
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Let �i and �j be distinct solutions of Equation (g) with corresponding mode shapes
Xi(x) and Xj(x), respectively. The mode shapes satisfy the following problems

(i)

(j)

Multiplying Equation (i) by Xj(x) and integrating from 0 to 1 leads to

(k)

Using integration by parts on the first integral leads to

(l)

Application of the boundary conditions Equations (d) and (e) in Equation (l) leads to

(m)

Multiplying Equation (j) by Xi(x), integrating from 0 to 1, and performing algebra similar
to that leading to Equation (m) gives

(n)

Subtracting Equation (n) from Equation (m) leads to

(o)(li - lj )abXi(1)Xj(1) +

L

1

0
Xi Xjdxb = 0

blj Xj (1)Xi(1) -

L

1

0

dXi

dx
 
dXj

dx
dx + ljL

1

0
Xi Xjdx = 0

bli Xi(1)Xj (1) -

L

1

0

dXi

dx
 
dXj

dx
dx + liL

1

0
Xi Xjdx = 0

Xj (1)
dXi

dx
(1) - Xj (0)

dXi

dx
(0) -

L

1

0

dXi

dx
 
dXj

dx
dx + liL

1

0
Xi  

Xjdx = 0

L

1

0

d  
2Xi

dx 2 Xjdx + liL

1

0
Xi Xjdx = 0

d  
2Xj

dx 2 + lj Xj = 0  Xj (0) = 0  dXj

dx
(1) = blj Xj (1)

d  
2Xi

dx 2 + li Xi = 0  Xi (0) = 0  dXi

dx
(1) = bli Xi (1)
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FIGURE 10.12
Mode shapes of Example 10.2 with � � 0.4.
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Since �i ≠ �j, Equation (o) implies

(p)

If the scalar product of f and g is defined by

(q)

then
(r)

Equation (q) defines the energy scalar product with which the mode shapes are mutually
orthogonal. Taking (Xk, Xk ) gives the nondimensional form of the kinetic energy associated
with the mode shape Xk(x). The term is the kinetic energy of the attached disk
while is the kinetic energy of the shaft. Thus the scalar product is a kinetic
energy scalar product.

Normalization of the mode shape requires

(s)

Using the trigonometric identity

(t)

and replacing cos from Equation (g) leads to

(u)

where �k is the kth real solution of Equation (h).

10.3.3 FORCED VIBRATIONS
The application of undetermined coefficients for harmonic excitations is illustrated in the
following example. Modal analysis is illustrated with examples in Section 10.4. 

The thin disk of Example 10.2 and Figure 10.9 is subject to a harmonic torque,

Determine the steady-state response of the system.

SO LU T I ON
The torsional oscillations, in terms of nondimensional variables, are governed by Equa-
tion (10.20) with

(a)u(0, t ) = 0

T (t ) = T0 
sinvt

Dk = 12(1 + bsin21lk )-1>2
1lk

sin 21lk = 2 sin1lk cos1lk

 = D 
2
k c12 a1 -

1

21lk

 sin 21lkb + b  sin2 1lk d
 = D 

2
k cL

1

0

1
2

(1 - cos 21lk x)dx + b  sin2 1lk d
 1 = (Xk 

, Xk 
) =

L

1

0
D 

2
k sin2 1lk xdx + D  2

kb sin2 1lk

1
1

0 X  
2
k(x)dx

bX 
2
k(1)

(Xi 
, Xj ) = 0

( f, g ) =

L

1

0
f  (x)g (x)dx + bf  (1)g (1)

bXi (1)Xj (1) +

L

1

0
Xi Xjdx = 0

EXAMPLE 1 0 . 3
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and

(b)

where

(c)

Since the external excitation is harmonic, the steady-state response is assumed as

(d)

Substituting Equation (d) into Equation (10.20) leads to

(e)

or

(f)

Substituting Equation (d) into the boundary conditions, Equations (a) and (b), leads to

(g)
and

(h)

The solution of Equation (f ) subject to Equations (g) and (h) is

(i)

Note that if is equal to any of the system’s natural frequencies, the denominator vanishes.
The assumed form of the solution, Equation (d),  must be modified to account for this res-
onance condition.

The steady-state solution is given by Equation (d), where u(x) is given in Equation (i).
The total solution is the steady-state solution plus the homogeneous solution, which is a
summation over all free-vibration modes. Initial conditions can then be applied to deter-
mine the constants in the linear combination.

10.4 TRANSVERSE BEAM VIBRATIONS

10.4.1 PROBLEM FORMULATION
The uniform beam of Figure 10.13 is made of a material of mass density � and elastic mod-
ulus E, and has a length L, cross-sectional area A, and centroidal moment of inertia I. Let
x be a coordinate along the neutral axis of the beam, measured from its left end. The beam

v∼

u(x) =

T0L

(v∼ cosv∼ - bv∼ 2sinv∼ )JG
  sin v∼ x

du
dx

(1) - bv∼ 2u (1) =

T0L

JG

u(0) = 0

d  
2u

dx 2 + v∼ 2u = 0

d  
2u

dx 2 sinv∼ t = -v∼ 2u sin v∼ t

u(x, t ) = u(x) sin v∼ t

v∼ = L A
r

G
v

0u

0x
(1, t ) = -b

0
2u

0t 2(1, t ) +

T0L

JG
sin v∼ t
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has an external load per unit length, f (x, t). Let w(x, t) be the transverse deflection of the
beam, measured from its equilibrium position.

Free-body diagrams of an arbitrary differential element of the beam at an arbitrary
instant of time are shown in Figure 10.14. The element is a slice of the beam of thickness
dx and its left face is a distance x from the beam’s left end. The external forces shown are
the external loading, the internal bending moment which is the resultant moment of the
normal stress distribution, and the internal shear force, which is the resultant of the shear
stress distribution. It is assumed that the resultant of the normal stress distribution is zero.
The effective force is the element mass times its acceleration. The element’s longitudinal
acceleration and angular acceleration are small in comparison to other effects and are thus
ignored.

Sum forces in the vertical direction are ( F )ext � ( F )eff, so

(10.22)

The mean value theorem implies that there is an such that

(10.23)

Since dx is infinitesimal, Equation (10.22) becomes

(10.24)f  (x, t ) -

0V
0x

= rA 

0
2w

0x 2

x∼ L x.

L

x + dx

x
f  (z, t )dz = f  (x∼, t )dx

x∼, x 6 x∼ 6 x + dx,

V - aV +

0V
0x

dxb +

L

x + dx

x
f  (z, t)d z = rA  

0
2w

dt 
2 dx

gg

dx

x

w(x, t)

f(x, t) FIGURE 10.13
The beam is undergoing transverse vibra-
tions with w(x, t) being the transverse
deflection of the beam measured from its
static equilibrium position.
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dx
∂ V
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V

FIGURE 10.14
FBDs of differential beam
element at an arbitrary time.
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Sum moments about the neutral axis of the left face of the element are 
( M0)ext � ( M0)eff , sogg

(10.25)

Since dx is infinitesimal, terms of order (dx)2 are negligible compared to terms of order dx.
When the mean value theorem is used on the integral and since � � x is less than dx over
the entire range of integration, it becomes apparent that the term is of order dx2. Then
Equation (10.25) simplifies to

(10.26)

From mechanics of materials and with the chosen sign conventions,

(10.27)

Substitution of Equations (10.26) and (10.27) into Equation (10.24) assuming uniform
properties leads to

(10.28)

Equation (10.28) is nondimensionalized by introducing

(10.29)

where fm is the maximum value of f. The resulting nondimensional form of Equation
(10.28) where the *s have been dropped from nondimensional variables is

(10.30)

Four boundary conditions, two at x � 0 and two at x � 1, must be specified. The
forms of the boundary conditions depend on the type of end supports. Nondimen-
sional boundary conditions associated with different support conditions are given in
Table 10.3.

The nondimensional spatial derivatives of the displacement have the physical meanings:

• is the slope of the deflection equation

• is the internal bending moment

• is the internal shear force
0

3w
0x 3

0
2w

0x 2

0w
0x

0
2w

0t 2 +

0
4w

0x 4
=

fmL3

EI
f (x, t )

x *
=

x
L
  t *

= tA
EI

rAL4
  w*

=

w
L
  f *

=

f

fm

rA 
0

2w
0t 2 + EI 

0
4w

0x 4
= f (x, t )

M = -EI 
0

2w
0x 2

V = -

0M
0x

M - aM +

0M
0x

d xb - aV +

0V
0x

d xbd x

    +

L

x + dx

x
(z - x)f (z, t)d z = rA

0
2w

0x 2 dx a d x
2
b
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A fixed end is restrained against deflection and slope. A pinned end is restrained against
deflection and cannot support an internal moment. There is no normal stress distribution
or shear stress distribution at a free end which implies there is no bending moment or shear
force. Discrete masses, springs and viscous dampers may be placed at an end of a beam or
the end may be subject to an applied force or moment. The appropriate boundary condi-
tions for these situations are developed from application of conservation laws to a FBD of
the discrete mass or a differential element at the end of the beam.

A fixed end, say at x � 0, is restrained against motion which implies w(0, t) � 0 and
rotation which implies A pinned end is restrained against vertical displacement.

The formulation of the mathematical problem is completed by specifying two initial
conditions.

Equation (10.30) is the governing nondimensional partial differential equation for
forced vibrations of a beam assuming no axial load, longitudinal effects are negligible,
rotary inertia and transverse shear are negligible, and other standard assumptions of beam
theory from mechanics of materials apply.

10.4.2 FREE VIBRATIONS
When the product solution

(10.31)w (x, t ) = X (x)T (t )

0v
0x (0, t) = 0.

Boundary conditions for transverse vibrations of beamT A B L E 1 0 . 3

Boundary Boundary
End Condition Condition A Condition B Remarks

Free, x � 0 or
x � 1

Pinned, x � 0 or
x � 1

Fixed, x � 0 or
x � 1

Linear spring,
x � 0

Linear spring,
x � 1

Viscous damper,
x � 0

Viscous damper,
x � 1

Attached mass,
x � 0

Attached mass,
x � 1

Attached inertia
element, x � 0

Attached inertia
element, x � 1 b =

J

rAL3

b =

J

rAL3

b =

m
rAL

b =

m
rAL

b =

cL

1rEI A

b =

cL

1rEI A

b =

kL3

EI

b =

kL3

EI

0
2w

0x 
2 = b

0
3w

0x 0t 
2

0
2w

0x 2 = -b
0

3w
0x 0t 

2

0
2w

0x 2 = 0

0
2w

0x 2 = 0

0
2w

0x 
2 = 0

0
2w

0x 
2 = 0

0
2w

0x 2 = 0

0
2w

0x 2 = 0

w = 0

w = 0

0
2w

0x 
2 = 0

0
3w

0x 
2 =

0
3w

0x 0t  
2

0
3w

0x 3 = 0

0
3w

0x 3 = b
0

2w
0t 2

0
3w

0x 3 = -b
0

2w
0t 2

0
3w

0x 3 = b
0w
0t

0
3w

0x 3 = -b
0w
0t

0
3w

0x 3 = bw

0
3w

0x 3 = -bw

0w
0x

= 0

0
2w

0x 2 = 0

0
3w

0x 
3 = 0
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is substituted into Equation (10.30) with f � 0, the result is

(10.32)

The usual separation argument is used to set both sides of Equation (10.32) equal to the
same constant, say ��. This leads to

(10.33)

and

(10.34)

The solution of Equation (10.33) is

(10.35)

from which it is obvious that the natural frequencies are the square roots of the separation
constants. The general solution of Equation (10.34) is

(10.36)

The solvability condition is determined by applying the homogeneous boundary con-
ditions to Equation (10.36). Table 10.4 on the next page summarizes the solvability condi-
tions for different types of end supports, provides the first five nondimensional natural
frequencies for each entry, their corresponding mode shapes, and specifies the scalar prod-
uct for which the mode shapes are orthogonal.

Free-free and pinned-free beams are unrestrained and thus their lowest natural fre-
quency is zero, corresponding to a rigid-body mode. The fixed-pinned beam has the same
characteristic equations as the pinned-free beam, and � � 0 is a solution of this equation.
However, � � 0 leads to a trivial mode shape for the fixed-pinned beam.

The free beam has a double natural frequency of zero and two rigid-body mode shapes.
One corresponds to a translation and one a rotation.

A carbon nanotube is a new engineering material that is made from a graphene sheet rolled
to form a tube as shown in Figure 10.15a on page 658. However, the radius of the tube is
the radius of a several carbon atoms. The radius of 1 carbon atom is 0.34 nm. If the nanotube
is long enough, the continuum assumption may be used and the tube can be modeled as a
beam. Determine the five lowest natural frequencies and their corresponding mode shapes of
a carbon nanotube with a mean radius of 2 nm and length of 100 nm. The elastic modulus
of a carbon nanotube is 1 GPa, and its mass density is 2.3 g/cm3. Assume the tube is fixed at
one end and free at the other.

SO LU T I ON
The characteristic equation for a fixed-free beam is given in Table 10.4 as

(a)cosh l1>4cos l1>4
= -1

X (x) = C1 cosl1>4x + C2 sinl
1>4x + C3 coshl1>4x + C4 sinhl1>4x

T(t ) = A cos1lt + B sin1lt

d 4X

dt 4
- lX = 0

d  
2T

dt 
2 + lT = 0

1

T (t)
 
d  

2T
dt 

2 = -

1
X (x)

 
d 4X

dx 4

EXAMPLE 1 0 . 4
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Natural frequencies and mode shapes for beamsT A B L E 1 0 . 4

End Conditions
X � 0 X � 1

Fixed-fixed

Pinned-pinned

Fixed-free

Free-free

Fixed-linear spring

Characteristic
Equation

cos cosh � 1

sin � 0

cos cosh � �1

cosh cos � 1

(cosh cos � 1)

� �(cos sin � cosh sin )
� 0

l1>4l1>4l1>4l1>4
l1>4l1>4l3 >4

l1>4l1>4

l1>4l1>4

l1>4

l1>4l1>4

Five Lowest
Natural
Frequencies

	1 � 22.37
	2 � 61.66
	3 � 120.9
	4 � 199.9
	5 � 298.6

	1 � 9.870
	2 � 39.48
	3 � 88.83
	4 � 157.9
	5 � 246.7

	1 � 3.51
	2 � 22.03
	3 � 61.70
	4 � 120.9
	5 � 199.9

	1 � 0
	2 � 22.37
	3 � 61.66
	4 � 120.9
	5 � 199.9

For � � 0.25
	1 � 3.65
	2 � 22.08
	3 � 61.70
	4 � 120.9
	5 � 199.9

vk = 2lk
Kinetic Energy
Scalar Product
(Xj(x), Xk (x))

Xj(x)Xk(x)dx

Xj(x)Xk(x)dx

Xj(x)Xk(x)dx

Xj(x)Xk(x)dx

Xj(x)Xk(x)dx1
1

0

1
1

0

1
1

0

1
1

0

1
1

0

Mode Shape

Ck Ccos l1>4
k x - coshl1>4

k x - ak A sin l1>4
k x - sinhl1>4

k x B D
ak =

 cos l1>4
k + coshl1>4

k

 sin l1>4
k + sinhl1>4

k

1,23x (k = 1)

Ck Ccoshl1>4
k x + cos l1>4

k x + ak A sinhl1>4
k x + sin l1>4

k x B D
ak =

coshl1>4
k -  cos l1>4

k

sinhl1>4
k -  sin l1>4

k

Ck Ccoshl1>4
k x - cos l1>4

k x - ak A sinhl1>4
k x - sin l1>4

k x B D
ak =

 cos l1>4
k + coshl1>4

k

 sin l1>4
k + sinhl1>4

k

Ck sin l1>4
k x

Ck Ccoshl1>4
k x - cos l1>4

k x - ak A sinhl1>4
k x - sin l1>4

k x B D
ak =

coshl1>4
k -  cos l1>4

k

sinhl1>4
k -  sin l1>4

k
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Pinned-linear
spring

Fixed-attached
mass

Pinned-free

Fixed-pinned

Fixed-attached
inertia element

cot coth �

(cos cosh � 1)

� �(cos sinh � cosh sin )
� 0

tan � tanh

tan � tanh

cos cosh

� �(sin cosh �cos sinh )
� �1

l1>4l1>4l1>4l1>4
l1>4l1>4

l1>4l1>4

l1>4l1>4

l1>4l1>4l1>4l1>4
l1>4l1>4l1>4

-
2b
l3>4l1>4l1>4 For � � 0.25

	1 � 0.8636
	2 � 15.41
	3 � 49.47
	4 � 104.25
	5 � 178.27

For � � 0.25
	1 � 3.047
	2 � 21.54
	3 � 61.21
	4 �120.4
	5 � 199.4

	1 � 0
	2 � 15.42
	3 � 49.96
	4 � 104.2
	5 � 178.3

	1 � 15.42
	2 � 49.96
	3 � 104.2
	4 � 178.3
	5 � 272.0

For � � 0.25
	1 � 4.425
	2 � 27.28
	3 � 71.41
	4 � 135.4
	5 � 219.2

Xj(x)Xk(x)dx

Xj(x)Xk(x)dx
� �Xj(1)Xk(1)

Xj(x)Xk(x)dx

Xj(x)Xk(x)dx

Xj(x)Xk(x)dx
� �Xj(1)Xk(1)

1
1

0

1
1

0

1
1

0

1
1

0

1
1

0

Ck Ccos l1>4
k x - coshl1>4

k x + ak A sin l1>4
k x - sinhl1>4

k x B D
ak =

 cos l1>4
k - coshl1>4

k

 cos l1>4
k + coshl1>4

k

Ck Ccos l1>4
k x - coshl1>4

k x - ak A sin l1>4
k x - sinhl1>4

k x B D
ak =

 cos l1>4
k - coshl1>4

k

 sin l1>4
k - sinhl1>4

k

23x, (k = 1)

Ck csin l1>4
k x +

 sin l1>4
k

sinhl1>4
k

sinhl1>4
k x d   (k 7 1)

Ck Ccos l1>4
k x - coshl1>4

k x + ak A sinhl1>4
k x - sin l1>4

k x B D
ak =

 cos l1>4
k + coshl1>4

k

 sin l1>4
k + sinhl1>4

k

Ck csin l1>4
k x +

 sin l1>4
k

sinhl1>4
k

sinhl1>4
k x d

The dimensional natural frequencies are obtained by multiplying the given nondimensional natural frequencies by ; for a given beam � is as defined in
Table 10.3.

2El>rAL4
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The nondimensional natural frequencies are the square roots of the solutions of this equa-
tion. If 	k is a nondimensional natural frequency, the corresponding dimensional natural
frequency is

(b)

where

(c)= 2.71 * 109
 

1
s

A
EI

rAL4
=

a

a1 * 1012 
  

N

m2 b  

p

4
[(2 * 10-9

  m)4
- (1.66 * 10-9

  m)4]

a2.3  

g

cm3 b a
1  kg

1000  g
b a100  cm

m
b3

p[(2 * 10-9
  m)2

- (1.66 * 10-9
  m)2](100 * 10-9

  m)4

v∼ k = vkA
EI

rAL4

(a)

–2.5
0 0.5 0.6 0.7 0.8 0.90.1 0.2 0.3 0.4 1

X

–1.5

–1

1.5

–2

2

–0.5
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1

0

2.5

x

(b)

FIGURE 10.15
(a) Carbon nanotube. (b) Five lowest mode shapes.
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The first five nondimensional natural frequencies are given in Table 10.4. They are
used to obtain the five lowest dimensional natural frequencies:

(d)

(e)

(f)

(g)

(h)

The corresponding mode shapes are also given in Table 10.4. For a fixed-free beam
they are

(i)

where

(j)

The first five nondimensional mode shapes are

(k)

(l)

(m)

(n)

(o)

The normalization of the mode shapes is with respect to the kinetic energy scalar product
which yields

(p)

Evaluation of the first five constants yields

(q)

The normalized mode shapes are shown in Figure 10.15(b).

C1 = 1.003, C2 = 1, C3 = 1, C4 = 1, C5 = 1

Ci =

1

211
0 [coshli x + cosli x - ai (sinhli x - sinli x)]2dx

X5(x) = C5[cosh 14.14x - cos 14.14x - sinh 14.14x + sin 14.14x]

X4(x) = C4[cosh 11.0x - cos11.0x - sinh 11.0x + sin 11.0x]

X3(x) = C3[cosh 7.86x - cos 7.86x - 0.999(sinh 7.86x - sin 7.86x)]

X2(x) = C2[cosh 4.69x - cos 4.69x - 1.02(sinh 4.69x - sin 4.69x)]

X1(x) = C1[cosh 1.87x - cos 1.87x - 0.73(sinh 1.87x - sin 1.87x)]

ak =

cos l1>4
+ cosh l1>4

sin l1>4
+ sinh l1>4

Xk(x) = Ck[cosh l1>4x - cos l1>4x - ak(sinh l1>4x - sin l1>4x)]

v∼ 5 = 199.9a2.71 * 1091
s
b = 5.41 * 1011 rad/s

v∼ 4 = 120.9a2.71 * 1091
s
b = 3.28 * 1011 rad/s

v∼ 3 = 61.70a2.71 * 1091
s
b = 1.67 * 1011 rad/s

v∼ 2 = 22.03a2.71 * 109
 

1
s
b = 5.97 * 1010 rad/s

v∼ 1 = 3.51a2.71 * 109
 

1
s
b = 9.51 * 109 rad/s
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Determine the natural frequencies and normalized mode shapes for a simply supported beam.

SO LU T I ON
The boundary conditions for a simply supported beam are

(a)

and

(b)

which when applied to Equation (10.36) gives
(c)

(d)

(e)

(f)

The first two of these equations imply C1 � C3 � 0. Then the last two equations become

(g)
and

(h)
These equations have a nontrivial solution if and only if

(i)
which is satisfied by

(j)

For these values of �, C4 � 0 and C2 remains arbitrary, leading to the mode shape

(k)

The mode shapes are orthogonal with respect to the scalar product of Equation (10.4),
as evidenced by

(l)

Normalization with respect to this scalar product yields 

Determine the first four natural frequencies for the beam of Figure 10.16

SO LU T I ON
From Table 10.3, the appropriate boundary conditions are

(a)w (0, t ) = 0  0w
0x

(0, t) = 0

Ck = 12.

L

1

0
CkCj   sinkpx sinjpxdx = 0  k Z j

Xk(x) = Ck sin kpx

lk = (kp)4  k = 1, 2, . . .

sin l1>4
= 0

 -C2 sin l1>4
+ C4 sinh l1>4

= 0

C2 sinl
1>4

+ C4 sinhl1>4
= 0

0 = - 1lC1 cosl1>4
- 1lC2 sinl

1>4
+ 1lC3 coshl1>4

+ 1lC4 sinhl1>4
0 = C1 cosl1>4

+ C2 sinl
1>4

+ C3 coshl1>4
+ C4 sinhl1>4

0 = - 1lC1 + 1lC3

0 = C1 + C3

w (1, t ) = 0  0
2w

0x 2 (1, t ) = 0

w(0, t ) = 0  0
2w

0x 2 (0, t ) = 0

EXAMPLE 1 0 . 5

EXAMPLE 1 0 . 6
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and

(b)

where

(c)

Application of the boundary conditions to Equation (10.36) gives

(d)

(e)

(f)

(g)

The solvability condition is obtained by setting the determinant of the coefficient matrix
obtained by writing Equations (d) through (g) in a matrix form to zero yielding

(h)

For � � 0.190 the first four roots of this equation are

(i)
The nondimensional natural frequencies are the square roots of the values of � that solve
the characteristic equation. The dimensional natural frequencies are obtained by noting the
relationship between the dimensional time and the nondimensional time and its applica-
tion to Equation (10.29),

(j)

The first four natural frequencies for this beam are

(k)
v1 = 829.2   rad/s      v2 = 5.05 * 103 rad/s
v3 = 1.41 * 104

  

 rad/s  v4 = 2.13 * 104 rad/s

v = Al
EI

rAL4
= 229.11l

l = 13.10, 486.2, 3807.0, 14161.6, . . .

l3>4(1 + cosl1>4 cosh l1>4) = -b(cosh l1>4 sinl1>4
- cos l1>4 sinhl1>4)

+ (l3>4 sinhl1>4
- b coshl1>4)C3 + (l3>4 coshl1>4

- b sinhl1>4)C4

0 = (l3>4 sin l1>4
- b cos l1>4)C1 + (-l3>4 cos l1>4

- b sin l1>4)C2

0 = -C1 cos l1>4
- C2 sin l1>4

+ C3 cosh l1>4
+ C4 sinh l1>4

0 = C2 + C4

0 = C1 + C3

b =

kL3

EI
=

(2 * 106
  

 N/m)(1 m)3

(210 * 109
  

 N/m2)(5 * 10-5 m4)
= 0.190

0
2w

0
2x

 (1, t ) = 0  0
3w

0x 3  (1, t ) = bw (1, t )

1 m

k = 2 × 106 N/mm = 200 kg
I = 5 × 10–5 m4

E = 210 × 109 N/m2

r = 7600 kg/m3

A = 2.63 × 10–2 m2

FIGURE 10.16
System of Example 10.6 is a beam that is fixed at one end and attached to a spring at its
other end.
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10.4.3 FORCED VIBRATIONS
The modal analysis method, described in Section 10.2, for analyzing the forced vibrations
of a continuous system is applied to the following examples.

The simply supported beam of Figure 10.17 is subject to a harmonic excitation over half
of its span. Determine the beam’s steady-state response.

SO LU T I ON
The nondimensional force per unit length is

(a)

where

(b)

The expansion theorem is used to expand f (x, t) in terms of the normalized mode shapes
of the corresponding free-vibration problem, which are determined in Example 10.5 as
Xk(x) = sin k�x. The expansion coefficients are determined using Equation (10.8),
with the scalar product defined by Equation (10.4),

= 12sinv∼ t
L

3>4

1>4
sin(kpx)dx

Ck =

L

1

0
f  (x, t)12sin(kpx)dx

12

v∼ = vA
rAL4

EI

f  (x, t) = sinv∼ t cuax -

1
4
b - uax -

3
4
b d

F0 sinw t

L
2

(a)

L
4

L
4

–0.12
0

w~ /p 2 = 1.2

0.2 0.4 0.6 0.8 1

f(
x) 0.00

–0.06

0.06

0.12

x

w~ /p 2 = 0.95
w~ /p 2 = 1.05

w~ /p 2 = 0.8

(b)

FIGURE 10.17
(a) System of Example 10.7 is a simply supported beam with a harmonic excitation over a portion of
its span. (b) Steady-state response for Example 10.7.

EXAMPLE 1 0 . 7
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(c)

The displacement is expanded as

(d)

Substituting for w and f in Equation (10.30) leads to

(e)

where

(f)

The preceding equation is multiplied by for an arbitrary j and integrated
from 0 to 1. This is equivalent to taking the scalar product of both sides of the equation
with Xj (x). The orthogonality condition, Equation (10.8), is used such that each sum col-
lapses to a single term, yielding

(g)

whose steady-state solution is

(h)

The steady-state response of the beam is

(i)

The function f (x) is shown in Figure 10.17(b) for several values of . Note that when is
close to �2 the steady-state amplitude is large at the midspan.

v∼v∼

w (x, t) =

212¶

p
 sinv∼ t c 1

p4
- v∼ 2

sin px

         -

1

3(81p4
- v∼ 2)

sin 3px -

1

5(625p4
- v∼ 2)

sin 5px

         +

1

7(150p4
- v∼ 2)

sin 7px +
Á d

    =

212¶

p
 f  (x)sinv∼ t

pj 
(t ) = c ¶

( jp)4
- v∼ 2

d 2

jp  
aj sinv∼ t

p
$

j + ( jp)4pj = ¶Cj  j = 1, 2, . . .

12 sin( j px)

¶ =

F0L
3

EI

a
q

k = 1

[ p
$

k + (k p)4pk ]12 sin(k px) = ¶a
q

k = 1

Ck(t)12 sin(kpx)

w (x, t ) = a
q

k = 1

12 sin(kpx)pk(t )

=

2

kp
ak sin v∼ t

=

2
kp

 sin v∼ t c 0 k = 2, 4, 6, Á

1 k = 1, 7, 9, 15, 17, 23, Á

-1 k = 3, 5, 11, 13, 19, 21, Á

=

12
kp

 sinv∼ t acosk  

p

4
- cosk  

3p
4
b



664 CHAPTER 10

A machine of mass 150 kg is attached to the end of the cantilever beam of Figure 10.18.
The machine operates at 2000 rpm and has a rotating unbalance of 0.965 kg · m. What is
the steady-state amplitude of vibration of the end of the beam?

SO LU T I ON
The nondimensional formulation of the governing mathematical problem is

(a)

subject to

(b)

(c)

where 

(d)

v∼ = vA
rAL4

EI

  = 209.4   

rad
s A

(280 kg)(3 m)3

(210 * 109
  

 N/m2)(1.2 * 10-4
  

 m4)
  = 3.63

0
3w

0x 3  (1, t ) = b
0

2w
0t 2  (1, t ) + a sinv∼ t

w (0, t ) = 0  0w
0x

 (0, t ) = 0  0
2w

0x 2  (1, t ) = 0

0
4w

0x 4
+

0
2w

0t 
2 = 0

EXAMPLE 1 0 . 8

(a)

3 m

m = 150 kg
w = 2000 rpm
m0e = 0.965 kg . m

m = 280 kg
E = 210 × 109 N/m2

I = 1.2 × 10–4 m4

(b)

=

m0eω 2 sinω t

External forces

(1, t)
î 3w

EI î x3

Effective forces

(1, t)
î 2w

m
î t2

FIGURE 10.18
(a) System of Example 10.8 is a fixed-free beam with a machine with a rotating unbalance at its free
end. (b) FBDs of the machine at an arbitrary instant are used to derive a boundary condition.
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(e)

and 

(f)

The boundary condition Equation (c) is developed by applying Newton’s law to a FBD of
the machine as shown in Figure 10.18.(b) The problem is nonhomogeneous due to this
boundary condition. From Table 10.4 the characteristic equation for the homogeneous
problem of a beam with a concentrated mass at its end is

(g)

The corresponding mode shapes for the homogeneous problem are

(h)

where Ck is chosen to normalize the mode shape with respect to the scalar product
defined by

(i)

The first six nondimensional natural frequencies and normalization constants are given
in Table 10.5.

The expansion theorem implies that the solution of the nonhomogeneous problem can
be expanded in a series of normalized mode shapes. To this end,

(j)w (x, t ) = a
q

k = 1

pk(t )Xk(x)

(Xj (x), Xk(x)) =

L

1

0
Xj (x), Xk(x)dx + bXj (1)Xk(1)

Xk(x) = Ck ccosl1>4x - coshl1>4x +

cosl1>4
+ coshl1>4

sinl1>4
+ sinhl1>4  (sinhl1>4x - sinl1>4x) d

l1>4(1 + cosl1>4coshl1>4) + b(cosl1>4 sinhl1>4
- coshl1>4 sinl1>4) = 0

a =

m0e v2L2

EI

  =

(0.965 kg # m)(209.4 rad/s)2(3 m)2

(210 * 109 
  N/m2)(1.2 * 10-4

 

 
 m4)

  = 0.010

b =

m
rAL

=

150 kg

280 kg
= 0.536

Free-vibration properties for
Example 10.8

T A B L E 1 0 . 5

Nondimensional Natural
Natural Frequency

�k Frequency �k(rad/s) Ck

6.71 2.59 149.55 0.715
443.5 21.06 1216.0 0.617
3682.1 60.68 3483.0 0.593

14,371.2 119.88 6922.0 0.584
39,533.3 198.83 11,480.0 0.582
88,513.2 297.51 17,178.0 0.434



666 CHAPTER 10

Substituting for w(x, t) into the governing partial differential equation, multiplying by Xj(x)
for an arbitrary j, and integrating from 0 to 1 leads to

(k)

The mutual orthonormality of the mode shapes implies

(l)

Use of this orthogonality condition leads to

(m)

Substituting for w(x, t) from the expansion theorem in the nonhomogeneous bound-
ary condition leads to

(n)

The mode shapes satisfy the boundary conditions for the nonhomogeneous problem.
Thus,

(o)

which when used in the preceding equation gives

(p)

and which when substituted into the previously derived differential equations for the prin-
cipal coordinates uncouples these equations and gives

(q)

The steady-state solution for each of the principal coordinates is now easily obtained
and the expansion theorem is used to write the steady-state solution as

(r)

The nondimensional steady-state amplitude of the end of the beam is

(s)

The dimensional amplitude is obtained using Equation (10.29) as 1.67 � 10�4 (3 m) �
4.0 mm.

aa
q

k = 1

X 2
k (1)

lk - v∼ 2 = 1.67 * 10-4

w (x, t) = ca
q

k = 1

aXk(1)

lk - v∼ 2  Xk(x ) d sin v∼ t

p
$

j + lj 
pj = a

 
Xj 

(1)sin v∼ t  j = 1, 2, . . .

a
q

k = 1

(p
$

k + lk pk )Xk(1) = a sin v∼ t

d 3X
d x 3 (1) = -lkbXk(1)

a
q

k = 1

d 3Xk

dx 3  (1)pk(t ) = a sin v∼ t + ba
q

k = 1

Xk(1)p
$

k(t )

p
$

j + lj  
pj = a

q

k = 1

(p
$

k + lk 
pk )bXj (1)Xk(1)

L

1

0
Xj (x)Xk(x)dx = djk - bXj (1)Xk(1)

a
q

k = 1

( p
$

k + lpk  
)
L

1

0
Xj (x)Xk(X )dx = 0
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10.5 ENERGY METHODS
Consider a differential element of the shaft of Figure 10.5. Assuming elastic behavior
throughout, a shear stress distribution is developed across the cross section of the shaft
according to

(10.37)

where Tr(x, t) is the resisting torque in the cross section and r is the distance from the center
of the shaft to a point in its cross section. The total strain energy in the element is

(10.38)

Substitution of Equations (10.37) and (10.13) into Equation (10.38) leads to

(10.39)

Noting that and integrating over the entire length of the shaft, the total strain
energy becomes

(10.40)

The kinetic energy of the differential element is

(10.41)

where � is the mass density of the shaft’s material. The total kinetic energy of the shaft is

(10.42)

For a conservative system, the maximum potential energy is equal to the maximum kinetic
energy. Thus, if the free oscillations of the shaft are described by

(10.43)
then

(10.44)

Introducing the nondimensional variables of Equation (10.29) into Equation (10.44) and
assuming the shaft is uniform leads to

(10.45)v∼ 2
=

L

1

0
a du

dx
b2

dx

L

1

0
u2dx

v2
=

L

L

0
JG a du

dx
b2

dx

L

L

0
rJu2dx

u(x, t) = u(x)sinvt

T =

1

2L

L

0
rJ a 0u

0t
b2

dx

dT =

1

2
 rJ a 0u

0t
b2

dx

V =

1

2L

L

0
JG a 0u

0x
b2

dx

J = 1A r 
2dA

dV =

G
2
a 0u

0x
b2a
LA

r 
2dAbdx

dV =

1

2G
a
LA
t2dAbd x

t =

T1r

J
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where 

(10.46)

For any function w(x) which satisfies the boundary conditions specified for the shaft,
we define

(10.47)

where R(w) is Rayleigh’s quotient for this continuous system. If w(x) is a mode shape, then
R(w) is equal to the square of the natural frequency of that mode. If w(x) is not a mode shape
but satisfies the boundary conditions for the system, then R(w) is a scalar function of w. As
for discrete systems, R(w) is a minimum when w is a mode shape. Hence Rayleigh’s quotient
can be used to approximate the lowest natural frequency for the continuous system.

Use Rayleigh’s quotient to approximate the lowest natural frequency of the tapered circu-
lar shaft of Figure 10.19.

SO LU T I ON
The polar moment of inertia varies over the length of the shaft is

(a)

A trial function which satisfies the boundary conditions and is

(b)

An upper bound and approximation on the lowest natural frequency is

(c)

(d)v1 … [R (w)]1>2
= 3767 rad/s

R (w) =

80 * 109
 

N
m2 
p

2 L

3

0
(0.2 - 0.05x)4ap

6
b2

cos2
 

p

6
x dx

7850 

kg

m3 
p

2 L

3

0
(0.2 - 0.05x)4 sin2 

 

p

6
x dx

w (x) = sin 

p

6
 x

dw>dx (3 m) = 0w (0) = 0

J(x) =

p

2
 (0.2 - 0.05x)4

R(w) =

L

L

0
JG a dw

dx
b2

dx

L

L

0
rJw 

2dx

v∼ = LA
r

G
v

EXAMPLE 1 0 . 9

3 m

5 cm

20 cm

FIGURE 10.19
Tapered circular shaft of Example 10.9.
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Rayleigh’s quotient can be generalized as the ratio of a potential energy scalar to a
kinetic energy scalar product, where the energy products are defined by integrals, perhaps
with additional terms to account for discrete masses or springs.

(10.48)

Rayleigh’s quotient can be applied to any continuous system. Table 10.6 gives the appro-
priate form of the scalar products for several continuous systems.

A method based on Rayleigh’s quotient, called the Rayleigh-Ritz method, can be used to
approximate a finite number of the lowest natural frequencies of a continuous system. Let
u1(x), u2(x), . . . , un(x) be n linearly independent functions, each of which satisfies the
boundary conditions for a specific continuous system. An approximation to the free-vibration
response of the continuous system is assumed as

(10.49)

Equation (10.49) is substituted into Rayleigh’s quotient which is rewritten as
(10.50)R (w)(w, w)T = (w, w)V

w (x) = a
n

i = 1

ciui (x)

R (w) =

(w, w)V

(w, w)T

Scalar products for Rayleigh-Ritz method.T A B L E 1 0 . 6

Structural
Element Case (u, v)T (u, v)V

Torsional
shaft

Longitudinal
bar

Beam

No added
disks or
springs

Added disk
at

Torsional spring
at

No added
masses or
springs

Added mass
at

Spring
at

No added
masses, disks,
or springs

Added mass
at

Added spring
at

Added disk
(ID) at x = x∼

x = x∼

x = x∼

x = x∼

x = x∼

x = x∼

x = x∼

L

L

0
rAu(x)v(x)dx + ID

du (x∼)

dx
 
dv(x∼)

dx

L

L

0
rAu(x)v(x)dx

L

L

0
rAu(x)v(x)dx + mu(x∼)v(x∼)

L

L

0
rAu(x)v(x)dx

L

L

0
rAu(x)v(x)dx

L

L

0
rAu(x)v(x)dx + mu(x∼)v(x∼)

L

L

0
rAu(x)v(x)dx

L

L

0
rJu(x)v(x)dx

L

L

0
rJu(x)v(x)dx + IDu(x∼)v(x∼)

L

L

0
rJu(x)v(x)dx

L

L

0

EI  

d  
2u

dx 2  
d  

2v
dx 2dx

L

L

0

EI  

d  
2u

dx 2  
d  

2v
dx 2  dx + ku (x∼)v(x∼)

L

L

0

EI  

d  
2u

dx 2  
d  

2v
dx 2  dx

L

L

0

EI 
d  

2u
dx 2  

d  
2v

dx 2dx

L

L

0

EA 
du
dx

 
dv
dx

dx + ku (x∼)v(x∼)

L

L

0

EA 
du
dx

 
dv
dx

 dx

L

L

0

EA 
du
dx

 
dv
dx

dx

L

L

0

GJ 
du
dx

 
dv
dx

dx + ktu (x∼)v (x∼)

L

L

0

GJ 
du
dx

 
dv
dx

dx

L

L

0
GJ 

du
dx

 
dv
dx

dx



670 CHAPTER 10

Since R(w) is stationary near a mode shape, the best approximation to the natural fre-
quencies and mode shapes using the functions u1(x), u2(x), . . . , un(x), is obtained by
setting

(10.51)

Differentiating Equation (10.50) with respect to ck for any k � 1, 2, . . . , n and using
Equation (10.51) gives

(10.52)

Developing Equation (10.52) for each k � 1, 2, . . . , n leads to n linear homogeneous
equations to solve for c1, c2 , . . . , cn in terms of the parameter R(w). Since the equations
are homogeneous, a nontrivial solution is available if and only if the determinant is set
equal to zero, yielding an nth-order polynomial equation for R(w). The roots of the poly-
nomial are the squares of the approximations to the lowest natural frequencies.
Approximations for the mode shapes can be obtained by returning to the homogeneous
equations. The method is illustrated in the following example.

Use the Rayleigh-Ritz method to approximate the two lowest natural frequencies of
Example 10.1.

SO LU T I ON
Two polynomials which satisfy the boundary conditions of Example 10.1 are

(a)

An approximation to the mode shape is developed as

(b)

Calculation of the energy scalar products gives

(c)

(d)

Application of Equation (10.52) leads to

(e)

(f)a5 -

61
30

Rbc1 + a48
5

-

136
35

Rbc2 = 0

a8
3

-

16
15

Rbc1 + a5 -

61
30

Rbc2 = 0

(w, w)V =

L

1

0
[c1(2 - 2x) + c2(3 - 3x 2)]2 dx =

4

3
c 2

1 + 5c1c2 +

24

5
c 2

2

(w, w)T =

L

1

0
[c1(2x - x 

2) + c2(3x - x 
3)]2 dx =

8
15

c 
2
1 +

61
30

c1c2 +

204
105

c 
2
2

w (x) = c1(2x - x 
2) + c2(3x - x 

3)

u1(x) = 2x - x 
2  u2(x) = 3x - x 

3

R (w) 

0(w, w)T

0ck

=

0(w, w)V

0ck

0R
0c1

=

0R
0c2

=
Á

=

0R
0cn

= 0

EXAMPLE 1 0 . 1 0
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A nontrivial solution of the preceding equations is obtained if and only if

(g)

Evaluation of the determinant leads to

(h)

whose roots are

(i)

The natural frequency approximations are

(j)

The approximation to the lowest natural frequency is excellent. The approximation to the
second natural frequency is also very good, being only 3.3 percent higher than the exact
value.

The mode shape approximations are obtained by solving for c2 in terms of c1 for each
R and then substituting into the expression for w(x) with c1 remaining arbitrary. This
leads to

(k)

(l)

The approximate mode shapes plotted in Figure 10.20 have been normalized such that
wi(1) � 1. These compare favorably to the first two mode shapes for a fixed-free torsional
shaft plotted in Figure 10.7.

w2(x) = 0.4295x - x 
2

+ 0.5235x 
3

w1(x) = 7.58x - x 
2

- 1.86x 
3

v1 L 1.571  v2 L 4.859

R = 2.467, 23.610

9.24R 2
- 241.0R + 538.0 = 0

 det ≥
8
3

-

16
15

R 5 -

61
30

R

5 -

61
30

R
48
5

-

136
35

R
¥ = 0

–1.5
0

w = 1.571

0.2 0.4 0.6 0.8 1

–0.5

–1.0

0.0

1.0

0.5

1.5

x

w
(x

)

w = 4.859

FIGURE 10.20
Rayleigh-Ritz approximations to the mode shapes corresponding to the two lowest natural frequen-
cies of a fixed-free torsional shaft.
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10.6 BENCHMARK EXAMPLES
The problem of the machine on the simply supported beam can be formulated using a con-
tinuous systems analysis. The problem of where the machine is directly mounted on the
beam is formulated such that the governing differential equation is

(a)

where 
(x � 12) is the Dirac delta function introduced in Appendix A. The boundary con-
ditions are those for a fixed-pinned beam, which are

(b)

The solutions of Equations (a) and (b) are beyond the scope of this book.
The approach instead is to use the Rayleigh-Ritz method and the scalar products

reported in Table 10.6. The energy formulation of Rayleigh’s quotient is

(c)

where It is desired to approximate the five lowest natural frequencies
of the system by

(d)

The mode shapes for a uniform fixed-free beam reported in Table 10.4 are used as the func-
tions in Equation (d). They are

(e)

(f)

(g)

(h)

(i)
The mode shaped of Equations (e) through (h) have been normalized. Thus,

(j)

Substituting Equations (e) through (h) into Equation (d) and using Equation (j) leads to

(k)K = E
237.8 0 0 0 0

0 2496.0 0 0 0
0 0 10857 0 0
0 0 0 31790 0
0 0 0 0 73984

U
L

1

0
ui(x)uj(x)dx = dij and 

L

1

0
a d  

2ui

dx 2 b a
d  

2uj

dx 2 bdx = v2
idij

u5(x) = cos 16.49x - cosh 16.49x - sin 16.49x + sinh 16.49x

u4(x) = cos 13.35x - cosh 13.35x - sin 13.35x + sinh 13.35x

u3(x) = cos 10.21x - cosh 10.21x - sin 10.21x + sinh 10.21x

u2(x) = cos 7.07x - cosh 7.07x - sin 7.07x + sinh 7.073x

u1(x) = cos 3.93x - cosh 3.93x - 0.998 sin 3.93x + 0.998 sinh 3.93x

w (x) = a
5

i = 1

ciui(x)

b =
1000  lb
600  lb = 1.67.

R(w) =

L

L

0
EI a d  

2w
dx 2 b

2

dx

L

L

0
rAw 2dx + m[w (12)]2

  or  R (w) =

L

1

0
a d  

2w
dx 2 b

2

dx

L

1

0
w 2dx + b[w (0.6)]2

            (dimensional form)               (nondimensional form)

w(0, t) = 0  0w
0x

 (0, t) = 0  w (1, t) = 0  0
2w

0x 
2  (1, t) = 0

rA 

0
2w

0t 
2 + m  

0
2w

0t 
2  d(x - 12) + EI  

0
4w

0x 4
= 0
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The mass matrix is determined as

(l)

The natural frequency approximations are the reciprocals of the square roots of the eigen-
values of AM. They are

(m)

The dimensional natural frequencies are obtained by multiplying the nondimensional fre-
quencies by

(n)

They are

(o)

The eigenvectors of AM are substituted into Equation (d) to provide the mode shape
approximations. They are given in Figure 10.21.

Now consider the forced vibrations of the machine when it is subject to a harmonic
force F(t) � 20,000 sin 80t 
(x � 12). Nondimensionalizing the force as in Equation
(10.29) leads to

(p)

The equations approximating the forced response are Equation (10.57) where the gen-
eralized force vector is given by Equation (10.58) and is calculated as

(q)

or

(r)f  (t) = E
-1.516

0.422
1.143

-1.297
-0.438

U0.132 sin 80t

f i (t) =

L

1

0
ui (x)[0.132 sin 80t   d(x - 0.6)]dx = 0.132ui (0.6) sin 80t

fmL2

EI
=

(20,000   lb)(240 in)2

(30 * 106
  

 lb/in2)(291 in4)
= 0.132

v1 = 144.37 rad/s  v2 = 972.43   rad/s  v3 = 1.709 * 103
  

 rad/s  
v4 = 3.363 * 103

 

 rad/s  v5 = 5.544 * 103 rad/s

A
EI

rAL4
=

a30 * 106 lb
in2 b (291 in4)

a30 lb

ft
b a 1 ft

12 in b
386  in

s2

(20 ft)4a12 in
1 ft b

4

= 20.16 rad/s

v1 = 7.161   v2 = 48.245   v3 = 84.806   v4 = 166.82   v5 = 275.07

M = E
   4.854 -1.057 -2.899    3.256    1.108

-1.057    1.298    0.807 -0.857 -0.309
-2.899    0.807    3.182 -2.591 -0.836

  3.256 -0.857 -2.591    3.826    1.066
   1.108 -0.309 -0.836    1.066    1.320

U

R
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–1.5
0 0.5

(a)

0.6 0.7 0.8 0.90.1 0.2 0.3 0.4 1

w

–1

–0.5

0.5

1

0

1.5

x

Mode 1
Mode 2

–2.5

–1.5

0 0.5

(b)

0.6 0.7 0.8 0.90.1 0.2 0.3 0.4 1

w

–1

–2

–0.5

0.5

1

2

0

2.5

1.5

x

Mode 3
Mode 4
Mode 5

FIGURE 10.21
Mode shape approximations
to beam with machine:
(a) first and second modes
and (b) modes 3, 4, and 5.
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The right-hand side of the equation is written in dimensional form, while the left-hand
side is written in nondimensional form. The nondimensionalization of time is

The nondimensional equations become

(s)

where the * has been dropped on nondimensional variables. It is noted that the frequency
of the excitation is near the natural frequency of a uniform fixed-pinned beam, but it is
away from the natural frequency of the beam with the machine on it. A steady-state solu-
tion to Equation (s) is assumed to be

(t)

When Equation (t) is substituted into Equation (s), we have

(u)

The solution of Equation (u) is

(v)E
C1

C2

C3

C4

C5

U = E
-1.142 * 10-3

3.033 * 10-5

1.884 * 10-5

-6.439 * 10-6

-1.057 * 10-6

U

E
176.7 16.64 45.64 -45.67 -17.44
16.64 2476 12.71 12.71 4.86
45.64 -12.71 10857 34.43 13.16

-45.67 12.71 34.43 31790 -13.19
-17.40 4.86 13.16 -13.19 73984

U E
C1

C2

C3

C4

C5

U = 0.132 E
-1.516
   0.422
   1.143
-1.297
-0.438

U

= E
C1

C2

C3

C4

C5

U  sin 3.968tE
c1

c2

c3

c4

c5

U

= E
-1.516

  0.422

  1.143
-1.297
-0.438

U  sin 3.968tE
c1

c2

c3

c4

c5

U+ E
237.8 0 0 0 0

0 2496.0 0 0 0
0 0 10857 0 0
0 0 0 31790 0
0 0 0 0 73984

U

E
c
$

1

c
$

2

c
$

3

c
$

4

c
$

5

UE
   4.854 -1.057 -2.899    3.256    1.108

-1.057    1.298    0.807 -0.857 -0.309
-2.899    0.807    3.182 -2.591 -0.836

  3.256 -0.857 -2.591    3.826    1.066

   1.108 -0.309 -0.836    1.066    1.320

U
t *

= tA
EI

rAL4
= 20.16t.
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The coefficients are substituted into Equation (d) to approximate the steady-state response
of the beam. A plot of the steady-state response at a given time is shown in Figure 10.22.
The displacement of the machine is 1.77 � 10�4 ft.

10.7 CHAPTER SUMMARY

10.7.1 IMPORTANT CONCEPTS
• A continuous system is governed by a partial differential equation. The independent

variables are a spatial coordinate and time.
• Torsional oscillations of a shaft, longitudinal vibrations of a bar, and transverse vibra-

tions of a string are all governed by the wave equation.
• Transverse vibrations of a beam are governed by a partial differential equation that is of

the fourth order in the spatial variable and second order in time.
• The method-of-separation of variables is used to solve the free-vibrations problem.
• A continuous system has an infinite but countable number of natural frequencies 	k

and corresponding mode shapes Xk for k � 1, 2, 3, . . . .
• The natural frequencies and mode shapes are determined by solving a differential eigen-

value problem consisting of a homogeneous differential equation and an appropriate
number of homogeneous boundary conditions. The eigenvalue is a parameter in the dif-
ferential equation for which a non-trivial solution exists only for certain values of the
parameter.

0 0.2 0.4 0.6 0.8 1
w

w
(x

)

FIGURE 10.22
Plot of the steady-state
response mode shape of the
beam as a function of posi-
tion along the beam.
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• Rayleigh’s quotient is the ratio of the potential energy to the kinetic energy if the system
has a specified mode shape. It is stationary when the function that it is evaluated for is
a mode shape of the system. Rayleigh’s quotient has an absolute minimum when the
mode shape corresponds to the lowest natural frequency.

• The Rayleigh-Ritz method assumes a solution as a finite, linear combination of n func-
tions which satisfy the boundary conditions of a system. The assumed solution is sub-
stituted into Rayleigh’s quotient and minimized to approximate the lowest n frequencies
and mode shapes of the system.

10.7.2 IMPORTANT EQUATIONS
Product solution for free-vibrations problems

(10.1)

Separated equations

(10.2)

(10.3)

Kinetic-energy scalar product

(10.4)

Normalized mode shapes

(10.5)

Expansion theorem

(10.6)

General free-vibrations solution

(10.7)

Solution of forced-vibration problem with forcing function f (x)

(10.8)

(10.9)

Wave equation for torsional oscillations of a shaft

(10.20)

Nondimensional partial differential equation governing the transverse forced vibrations of
a uniform beam

(10.30)
0

2w
0t 2 +

0
4w

0x 4
=

fmL3

EI
 f  (x, t)

0
2u

0x 2 =

0
2u

0t 2

Ck(t ) = ( f  (x, t ), Xk(x))

f  (x) = a
q

k = 1

Ck(t )Xk(x)

w (x) = a
q

k = 1

Xk(x)Tk(t)

f  (x) = a
q

k = 1

( f, Xk)T Xk(x)

(Xi , Xj )T = 1

(Xi , Xj )T =

L

1

0
Xi(x)Xj (x)dx

LxX + lX = 0

d  
2T

dt 
2 + lT = 0

w (x, t) = X (x)T (t)
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Solutions of separated equations when the product solution is assumed for free vibrations
of a uniform beam

(10.35)

(10.36)

Rayleigh’s quotient

(10.48)

Rayleigh-Ritz method

(10.49)

Equations to solve for the coefficients in a Rayleigh-Ritz solution

(10.52)

PROBLEMS

SHORT ANSWER PROBLEMS
For all problems, the bar, shaft, string, or beam specified is assumed to be linear, elastic,
uniform, and homogoenous.

For Problems 10.1. through 10.10, indicate whether the statement presented is true or
false. If true, state why. If false, rewrite the statement to make it true.

10.1 A continuous system is also referred to as a distributed parameter system.
10.2 A continuous system has an infinite number of natural frequencies.
10.3 The longitudinal vibrations of a bar and the transverse vibrations of a beam are

both governed by the wave equation.
10.4 A free-free beam is an example of a degenerate system.
10.5 Rayleigh’s quotient defined for a system is stationary for any function that

satisfies the boundary conditions of that system.
10.6 Four initial conditions are necessary to determine the forced-vibration response

of a fixed-free beam.
10.7 The Rayleigh-Ritz method can be used to approximate natural frequencies and

forced responses of continuous systems.
10.8 Mode shapes corresponding to distinct natural frequencies of a continuous

system are orthogonal with respect to the potential-energy scalar product.
10.9 The mode shape reported in Table 10.4 for a pinned-free beam of is a

rigid-body mode.
10.10 The assumption that is used in the derivation of the differential

equation governing the transverse vibrations of a beam.
M = -EI 0

2w
0x 2

13x

R (w)
0(w, w)T

0ck

=

0(w, w)v

0ck

w(x ) = a
q

i = 1

ciui (x )

R (w) =

(w, w)V

(w, w)T

X(x) = C1cos l1>4x + C2sin l1>4x + C3cosh l1>4x + C4sinh l1>4x
T (t ) = A cos1lx + B sin1lx
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Problems 10.11 through 10.32 require a short answer.

10.11 What is the method where a product solution is assumed for the free vibrations
of a uniform bar called? Is the same method applicable to the free vibrations of
a beam?

10.12 What is the order of the highest spatial derivative in the wave equation? What is
the order of the highest spatial derivative of the beam equation?

10.13 What is the process of introducing the independent variables t* and x* and the
dependent variable w* called?

10.14 How many boundary conditions are required to determine the response of

(a) A beam undergoing transverse vibrations?
(b) A bar undergoing longitudinal vibrations?
(c) A shaft undergoing torsional oscillations?

10.15 What does the boundary condition mean physically when applied to a
torsional shaft.

10.16 What are the boundary conditions for the free vibrations of a longitudinal bar
fixed at x � 0 and free at x � L?

10.17 What are the boundary conditions for the free vibrations of a torsional shaft
fixed at x � 0 and attached to a thin disk with a mass moment of inertia I at
x � L?

10.18 What are the boundary conditions for the free vibrations of a torsional shaft
free at x � 0 and attached to a thin disk with a mass moment of inertia I and 
a torsional spring of stiffness kt at x � L?

10.19 What are the boundary conditions for the free vibrations of a string fixed at 
x � 0 and attached to a spring of stiffness k at x � L?

10.20 What is the relationship between a nondimensional natural frequency and the
corresponding dimensional natural frequency for a torsional shaft.

10.21 A bar with a length of L and cross-sectional area A is made of a material 
with an elastic modulus E and mass density � is fixed at x � 0 and has a 
rigid mass m attached at x � L. It has a longitudinal mode shape Xk(x) 
which corresponds to a natural frequency 	k. What is the normalization
condition for this mode?

10.22 A bar with a length of L and cross-sectional area A is made of a material with an
elastic modulus E and mass density � is fixed at x � 0 and is attached to a
spring with a stiffness of k at x � L. The bar also has a longitudinal mode shape
Xk(x) which corresponds to a natural frequency 	k. What is the normalization
condition for this mode?

10.23 The differential equation for the vibrations of a beam is

Explain the physical meaning of each term in the equation.
10.24 The characteristic equation for a fixed-free beam is cos �1/4 cosh �1/4 � �1.

This is an example of a ______________ equation to solve for �.
10.25 What are the boundary conditions for the free vibrations of a fixed-free beam?
10.26 What are the boundary conditions for the free vibrations of a free-free beam?

rA 
0

2w
0t 

2 + EI 
0

4w

0x 
4

= f  (x, t )

0u
0x(L, t )
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10.27 What are the boundary conditions for the free vibrations of a beam that is fixed
at x � 0 and has a rigid mass m attached at x � L?

10.28 The characteristic equation for the fixed-pinned beam is the same as the
characteristic equation for the pinned-free beam, yet their lowest natural
frequency is different. How is this possible?

10.29 A bar with a length of L and cross-sectional area A is made of a material with an
elastic modulus E and mass density � and has a normalized longitudinal mode
shape Xk(x) which corresponds to a natural frequency 	k.

(a) What is the potential energy of a system that vibrates with this mode shape?
(b) What is the kinetic energy of a system that vibrates with this mode shape?

10.30 For Short Answer Problem 10.29 what is the value of R(w)?
10.31 A beam with a length L cross-sectional area A, and moment of inertia I is made

of a material with an elastic modulus E and mass density � and has a
normalized transverse mode shape Xk(x) which corresponds to a natural
frequency 	k.

(a) What is the potential energy of a system that vibrates with this mode shape?
(b) What is the kinetic energy of a system that vibrates with this mode shape?

10.32 For Short Answer Problem 10.31 what is the value of R(w)?

Problems 10.33 through 10.47 require short calculations.

10.33 What is the wave speed for torsional oscillations in a circular shaft made from
steel? The shaft is of length 60 cm and has a radius of 3 cm.

10.34 Calculate the wave speed of longitudinal waves in a 3-m long steel bar
with a circular cross section of a 

20 mm radius.
10.35 Calculate the three lowest natural frequencies of a solid 20-cm radius steel shaft

with a length of 1.5 m that is fixed
at one end and free at its other end.

10.36 The characteristic equation for a fourth-order continuous system is cos � � 0.
What is the lowest natural frequency of the system?

10.37 What are the three lowest positive values of � that satisfy the equation 
tan �� 6/�?

10.38 What are the three lowest positive values of � that satisfy the equation 
tan �� 4�?

10.39 The nondimensional mode shape of a uniform bar is sin 5�x.

(a) Determine the potential energy of this mode.
(b) Determine the kinetic energy of this mode.
(c) What is the nondimensional natural frequency that corresponds to this

mode?

10.40 The nondimensional mode shape of a beam is 

(a) Determine the potential energy of this mode.
(b) Determine the kinetic energy of this mode.
(c) What is the nondimensional natural frequency that corresponds to this mode?

12 sin 3px.

(G = 80 * 109 N>m2, r = 7500 kg>m3)

(E = 210 * 109 N>m2, r = 7580 kg>m3)
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10.41 A circular bar with a length of 80 cm and radius of 3 cm is made of steel which
has an elastic modulus and mass density The
bar has a mode shape of X(x) 33.91 cos 13.74x.

(a) Determine the potential energy of this mode.
(b) Determine the kinetic energy of this mode. 
(c) What is the natural frequency that corresponds to this mode?

10.42 A carbon nanotube has a length of 200 nm and
radius of 5 nm. Using a fixed-free beam model for the nanotube, calculate its
first four natural frequencies.

10.43–10.45 Each of the beams of Figures SP10.43 through SP10.45 is made 
from a material of 
with A � 1.2 � 10�2 m2, I � 4.0 � 10�5 m4, and L � 1.4 m. Use 
Table 10.4 to calculate the beam’s three lowest natural frequency of
transverse vibrations.

E = 210 * 109  N>m2 and r = 7580 kg>m3

(E = 1  GPa, r = 2.3 g>cm3)

=

7600 kg>m3.200 * 109 N>m2

k = 3.5 × 105 N/m

FIGURE SP10.43 FIGURE SP10.44

FIGURE SP10.45

10.46 Find all non-trivial solutions to the boundary value problem

10.47 Find all non-trivial solutions to the boundary value problem

d 4X

dx 4
- lX = 0  X (0) = 0  X – (0) = 0  X (1) = 0  X – (1) = 0

d  
2X

dx 2 + lX = 0  X ¿(0) = 0  X ¿(1) = 0
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10.48 Specify the SI units of the given quantity.

(a) Wave speed of longitudinal vibrations in a bar, c
(b) Flexural rigidity of a beam, El
(c) Natural frequency of sixth mode, 	6
(d) Nondimensional natural frequency of first mode, 	1
(e) Rayleigh’s quotient, R(w)
(f ) Inertia term in the beam equation, 

(g) Kinetic energy of a bar, 

CHAPTER PROBLEMS
10.1 A 5000 N · m torque is statically applied to the free end of a solid 20-cm radius

steel shaft with a length of 1.5 m that
is fixed at one end and free at its other end. The torque is suddenly removed,
and torsional oscillations begin. Plot the time-dependent oscillations of the free
end of the shaft.

10.2 A 5000 N · m torque is statically applied to a the midspan of a solid 
20-cm radius steel shaft with 
a length of 1.5 m that is fixed at one end and free at its other end. The 
torque is suddenly removed, and torsional oscillations begin. Determine an
expression for the time-dependent angular displacement of the free end of 
the shaft.

10.3 A steel shaft with a inner radius of
30 mm, outer radius of 50 mm, and length of 1.0 m is fixed at both ends.
Determine the three lowest natural frequencies of the shaft.

10.4 A 10,000-N · m torque is applied to the midspan of the shaft of Chapter
Problem 10.3 and suddenly removed. Determine the time-dependent angular
displacement of the midspan of the shaft.

10.5 A motor of mass moment of inertia 85 kg · m2 is attached to the end of the
shaft of Chapter Problem 10.1. Determine the three lowest natural frequencies
of the shaft and motor assembly. Compare the lowest natural frequency to that
obtained by making a one-degree-of-freedom model and approximating the
inertia effects of the shaft.

10.6 Show the orthogonality of the two lowest mode shapes of the system in Chapter
Problem 10.5.

10.7 Operation of the motor attached to the shaft of Chapter Problem 10.5 
produces a harmonic torque of amplitude 2000 N · m at a frequency of 
110 Hz. Determine the steady-state angular displacement of the end of 
the shaft.

10.8 A 20-cm-diameter, 2-m-long steel shaft 
has rotors of mass moment of inertia 110 kg · m2 and 65 kg · m2 attached to its
ends. Determine the three lowest natural frequencies of the shaft. Compare the
lowest nonzero natural frequency to that obtained by using a two-degree-of-
freedom model, ignoring the inertia of the shaft. 

10.9 Determine an expression for the natural frequencies of the shaft of Figure P10.9.

( r = 7600   kg/m3, G = 80 * 109 N/m2)

( r = 7850   kg/m3, G = 85 * 109 N/m2)

(G = 80 * 109 N/m2, r = 7500   kg/m3)

(G = 80 * 109 N/m2, r = 7500   kg/m3)

T = 1
L

0 rA( 
0w  

0t )2dx

rA 0
2w

0t 
2
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10.10 An oil well drilling tool is modeled as a bit attached to the end of a long shaft,
unrestrained from rotation at its fixed end.

(a) Determine the equation defining the natural frequencies of the drilling tool.
(b) For a particular operation, the shaft 

is 20 m long with a 20-cm diameter. The tool operates at a speed of
400 rad/s. What are the limits on the moment of inertia of the drill bit
such that the two lowest nonzero natural frequencies of the tool are not
within 20 percent of the operating speed?

10.11 The shaft of Chapter Problem 10.1 is at rest in equilibrium when the time-
dependent moment of Figure P10.11 is applied to the end of the shaft.
Determine the time-dependent form of the resulting torsional oscillations.

10.12 The shaft of Chapter Problem 10.1 is at rest in equilibrium when it is 
subject to the uniform time-dependent torque loading per unit length of 
Figure P10.12. Determine the time-dependent form of the resulting torsional
oscillations.

(r = 7500   kg/m3, G = 80 * 109 N/m2)

L
kt

J, G, r
FIGURE P10.9

M

M0

t0 t

FIGURE P10.11

t0 2t0

M0

–M0

t

FIGURE P10.12

10.13 The elastic bar of Figure P10.13 is undergoing longitudinal vibrations. Let
u(x, t) be the time-dependent displacement of a particle along the centroidal
axis of the bar, initially a distance x from the left support.

(a) Draw free-body diagrams showing the external and effective forces acting on
a differential element of thickness dx, a distance x from the left end of the bar
at an arbitrary instant of time.

(b) Show that the governing partial differential equation is

(c) Introduce nondimensional variables to derive a nondimensional partial differ-
ential equation.

E 
0

2u
0x 2 = r

0
2u

0t 2
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10.14 Using the results of Chapter Problem 10.13, determine the natural frequencies
of longitudinal vibrations of a bar fixed at one end and free at the other.

10.15 Show the orthogonality of mode shapes of longitudinal vibration of a bar fixed
at one end and free at its other end.

10.16 A large industrial piston operates at 1000 Hz. The piston head has a mass of
20 kg. The shaft is made from steel .
For what shaft diameters will all natural frequencies be out of the range of 900
to 1100 Hz?

10.17 The free end of the piston of Chapter Problem 10.16 is subject to a force
1000 sin 	t N, where 	 � 100 Hz. If the diameter of the shaft is 8 cm,
determine the steady-state response of the piston.

10.18 Determine the five lowest natural frequencies of the system of Figure P10.18.

( r = 7500   kg/m3, E = 210 * 109 N/m2)

dx

x

u(x, t)

L

r, A, E

FIGURE P10.13

L

k2k1 r, E, A

r = 7500 kg/m3

E = 200 × 109 N/m2

A = 1.5 × 10–5 m2

L = 3 m
k1 = 1 × 106 N/m
k2 = 1.5 × 106 N/m

L

F0 sin wt
k r, E, A

r = 7500 kg/m3

E = 200 × 109 N/m2

A = 4.5 × 10–5 m2

k = 9 × 105 N/m
F0 = 800 N
w = 100 rad/s
L = 3.3 m

k

r = 7500 kg/m3

E = 200 × 109 N/m2

A = 4.5 × 10–5 m2

k = 9 × 105 N/m
m = 2.5 kg
L = 3.5 m
F0 = 600 N
w = 450 rad/s

L

r, E, A

F0 sin wt

m

FIGURE P10.18

FIGURE P10.19

FIGURE P10.20

10.19 Determine the steady-state response of the system of Figure P10.19.

10.20 Determine the steady-state response of the system of Figure P10.20.
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10.21 Draw frequency response curves for the response of the disk at the end 
of the shaft in Example 10.3. Plot the curves for � � 0.5, � � 2, and 
� � 20.0.

10.22 Determine the steady-state response of a circular shaft subject to a uniform
torque per unit length T0 sin 	t applied over its entire length.

10.23 Determine the steady-state response of the system of Figure P10.23.

L I

r, J, G
T0 sin wt k1

L r, A, E, I

F0 sin wt

r, A, E, I

F0 sin wt

L
2

L
2

FIGURE P10.23

FIGURE P10.30 FIGURE P10.31

10.24 Propeller blades totaling 1200 kg with a total mass moment of inertia 
of 155 kg · m2 are attached to a solid circular shaft 

of radius 40 cm and length 20 m. 
The other end of the shaft is fixed in an ocean liner. Determine

(a) The lowest natural frequency for torsional oscillations of the propeller.
(b) The lowest natural frequency for longitudinal motion of the propeller.

10.25 A pipe used to convey fluid is cantilevered from a wall. The steel pipe
has an inner

radius of 20 cm, a thickness of 1 cm, and a length of 4.6 m. For an empty pipe
determine

(a) The five lowest natural frequencies for torsional oscillation.
(b) The five lowest natural frequencies for longitudinal vibration.
(c) The five lowest natural frequencies for transverse motion.

10.26 Verify the characteristic equation given in Table 10.4 for a pinned-free beam.
10.27 Verify the characteristic equation given in Table 10.4 for a fixed-fixed beam.
10.28 Verify the orthogonality of the eigenfunctions given in Table 10.4 for a pinned-

free beam.
10.29 Verify the orthogonality of the eigenfunctions given in Table 10.4 for a fixed-

attached mass beam.
10.30–10.34 Determine the time-dependent displacement for the beam shown in

Figures P10.30 through P10.34.

( r = 7500   kg/m3, G = 80 * 109 N/m2, E = 200 * 109 N/m2)

E = 140 * 109 N/m2)G = 60 * 109 N/m2,
( r = 5000   kg/m3,
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10.35 A root manipulator is 60 cm long, made of steel 
and has the cross section of Figure P10.35. One end of the

manipulator is fixed and a 1-kg mass is attached to its opposite end. Determine
the three lowest natural frequencies for transverse vibration of the manipulator.

r = 7500   kg/m3)
(E = 210 * 109 N/m2,

r, A, E, I

F0 e
–at

L
2

L
2

FIGURE P10.32

k
L

F0 sin wt

L
4

F0 sin wt m

L
3

L
3

L
3

EI
rAL4w = 1.2

= 0.35m
rAL

FIGURE P10.33

FIGURE P10.34

10 mm

15 mm

t = 1.5 mm

FIGURE P10.35

5 m

Xl = 0.5 mm

0.5 sin w t mm 0.8 sin w t mmw = 150 Hz

r = 7500 kg/m3
E = 210 × 109 N/m2

Xr = 0.8 mm

r = 10 cm
t = 1 cm

r

t

FIGURE P10.36

10.36 The steam pipe of Figure P10.36 is suspended from the ceiling in an
industrial plant. A heavy machine with a rotating unbalance is placed on 
the floor above the machine causing vibrations of the ceiling. If the frequency 
of the oscillations is 150 Hz and the amplitude of displacement of the pipe’s 
left support is 0.5 mm and the amplitude of displacement of the pipe’s right
support is 0.8 mm, determine the maximum deflection of the center of the
pipe. The pipe is modeld as a simply supported beam of length 5 m and has the
cross section shown in Figure P10.36.

10.37 A simplified model of the rocket of Figure P10.37 is a free-free beam.

(a) Calculate the five lowest natural frequencies for longitudinal vibration.
(b) Calculate the five lowest natural frequencies for transverse vibration.
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10.38 Longitudinal vibrations are initiated in the rocket of Figure P10.38 when thrust
is developed. Determine the Laplace transform of the transient response U(x, s)
when the thrust of Figure P10.38 is developed. Do not invert the transform.

10.39 Determine the response of a cantilever beam when the fixed support is subject
to a displacement f (t) � A sin 	t. Use the Laplace transform method and
determine the transform W(x, s). Do not invert.

10.40 The tail rotor blades of a helicopter have a rotating unbalance of magnitude 
0.5 kg · m and operate at a speed of 1200 rpm. Modeling the tail section as a
cantilever beam of length 3.5 m with determine the
steady-state response of the tail section.

10.41 Determine the steady-state amplitude of the engine of Figure P10.41.

E = 31 * 106  N # m2,

F0

t0

FIGURE P10.37 FIGURE P10.38

4.1 m

Rotating
unbalance

m
r = 7800 kg/m3

E = 200 × 109 N/m2

I = 4.5 × 10–6 m4

A = 1.6 × 10–3 m2

m = 55 kg
k = 5 × 104 N/m
m0e = 1.8 × kg . m
w = 300 rpm

FIGURE P10.41

10.42 Show that the differential equation governing free vibration of a uniform beam
subject to a constant axial load, P, is

10.43 Determine the frequency equation for a simply supported beam subject to an
axial load.

10.44 Determine the frequency equation for a fixed-pinned beam subject to an axial
load.

10.45 A fixed-fixed beam is made of a material with a coefficient of thermal expansion
�. After installed, the temperature is decreased by �T. Determine the beam’s
frequency equation.

10.46 Show orthogonality of the mode shapes for a simply supported beam subject to
an axial load.

10.47 Use Rayleigh’s quotient to approximate the lowest natural frequency of a
torsional shaft fixed at both ends.

EI 
0

4w

0x 4
- P 

0
2w

0x 2 + rA 
0w
0t 2 = 0
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10.48 Use Rayleigh’s quotient to approximate the lowest natural frequency of a
torsional shaft with a disk of mass moment of inertia I placed at its midspan.
The shaft is fixed at both ends.

10.49 Use Rayleigh’s quotient to approximate the lowest natural frequency of a fixed-
free beam.

10.50 Use Rayleigh’s quotient to approximate the lowest natural frequency of a simply
supported beam with a mass m at its midspan. Use as the
trial function.

10.51 Use the Rayleigh-Ritz method to approximate the two lowest natural
frequencies of a fixed-free beam.

10.52 Use the Rayleigh-Ritz method to approximate the two lowest natural
frequencies of the system of Figure P10.52.

w (x) = sin(px>L)

r = 6000 kg/m3

E = 200 × 109 N/m2

2 m 20 mm

k = 1 × 106 N/m 35 mm

r = 4000 kg/m3

G = 60 × 109 N/m2

r = 35 mn

60 cm 40 cm

I = 7.1 kg . m2

E = 200 × 109 N/m2

I = 5.6 × 10–6 m4

A = 2.4 × 10–3 m2

mb = 200 kg

70 cm

80 kg

30 cm

FIGURE P10.52

FIGURE P10.53

FIGURE P10.56

10.53 Use the Rayleigh-Ritz method to approximate the two lowest natural
frequencies for the system of Figure P10.53.

10.54 Use the Rayleigh-Ritz method to approximate the three lowest natural frequencies
of a fixed-pinned beam. Use polynomial of order six or less as trial functions.

10.55 Use the Rayleigh-Ritz method to approximate the three lowest natural
frequencies and their corresponding mode shapes of a fixed-free beam. Use
polynomials of order six or less as trial functions.

10.56 Use the Rayleigh-Ritz method to approximate the two lowest frequencies of
transverse vibration of the system of Figure P10.56.



C h a p t e r 1 1

FINITE-ELEMENT
METHOD

11.1 INTRODUCTION
The finite-element method is a powerful numerical method that is used to provide approx-
imations to solutions of static and dynamic problems for continuous systems. The disci-
plines in which the finite-element method can be applied include stress analysis, heat
transfer, electromagnetics, fluid flow, and vibrations. Application of the finite-element
method to a continuous system requires the system be divided into a finite number of dis-
crete elements. Interpolations for the dependent variables are assumed across each element
and are chosen to assure appropriate interelement continuity. The interpolating functions
are developed in terms of the unknown values of the dependent variables at discrete points,
called nodes. The nodes for a one-dimensional system are located at element boundaries. A
variational principle is applied to derive equations whose solution leads to approximations
to the dependent variables at the nodes. The defined interpolations are used to provide
approximations to the dependent variables across the system. Lagrange’s equations, derived
using the application of calculus of variations, is applied for vibrations problems, resulting
in a set of differential equations for the dependent variables at the nodes.

The finite-element method for vibration problems could be derived by applying the
Rayleigh-Ritz method of Section 10.5 with the interpolating functions, u1(x),
u2(x), . . . , un(x), chosen to be defined piecewise over each element. Consider application
of the Rayleigh-Ritz method to approximate the natural frequencies and mode shapes of a
bar. The governing equation, the wave equation, has second-order spatial derivatives. Thus
the exact solution is at least twice differentiable. However, the energy scalar products used
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in evaluation of Rayleigh’s quotient, given in Table 10.6, only require that approximate
solutions be first-order differentiable. Thus functions that are only first-order differentiable
are permissible interpolating functions for Rayleigh-Ritz approximations. 

Boundary conditions for continuous systems are classified as being of two types.
Geometric boundary conditions are those that must be satisfied according to geometric con-
straints. For example, u(0) � 0, if x � 0 is a fixed support for a bar problem, is a geomet-
ric boundary condition. Natural boundary conditions are those that must be satisfied as a
result of force and moment balances. For example, at x � 1, if x � 1 is a free
end, is a natural boundary condition. This condition occurs because there is no external
force at the free end. Note from Table 10.6 that the energy scalar product definitions include
terms arising because of natural boundary conditions. Thus, since the natural boundary con-
ditions are incorporated into the energy scalar products, the chosen interpolating functions
for a Rayleigh-Ritz approximation must satisfy only geometric boundary conditions.

The set of admissible functions for use as interpolating functions in a Rayleigh-Ritz
approximation to solutions of the wave equation consists of those that are first-order dif-
ferentiable and satisfy all geometric boundary conditions (displacement conditions). By
similar arguments, it is determined that the set of admissible functions for use as basis func-
tions in a Rayleigh-Ritz approximation to solutions of the beam equation consists of those
that are second-order differentiable and satisfy all geometric boundary conditions (dis-
placement and slope conditions).

The Rayleigh-Ritz can be difficult to apply for vibrations problems. The assumed modes
method, introduced in the next section, is based on application of Lagrange’s equations and
leads to the same approximation for the same set of interpolating functions as the Rayleigh-
Ritz method. The finite-element method will be developed from the assumed modes method.

11.2 ASSUMED MODES METHOD
Consider the forced vibrations of a longitudinal bar of Figure 11.1. The displacement u is
a function of the spatial coordinate x and time t, u(x, t). Let u1(x), u2(x), . . . , un(x) be a
set of n linearly independent functions that are at least first-order differentiable and satisfy
all of the system’s geometric boundary conditions. An approximate solution is assumed as

(11.1)

The kinetic energy of the bar, according to the approximation of Equation (11.1), is cal-
culated as
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Thus, the kinetic energy has the quadratic form

(11.2)

where

(11.3)

The potential energy of the system, according to the approximation of
Equation (11.1), is

(11.4)

The potential energy has the quadratic form

(11.5)V =
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kijwiwj
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 dx + kui(L)uj(L) d
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k [u(L)]2
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mijw
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FIGURE 11.1
(a) Forced longitudinal vibra-
tions of a bar are described
by a displacement function
u(x, t). (b) Assumed mode
approximations to mode
shapes.
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where

(11.6)

The virtual work done by the external force f (x, t) due to a virtual displacement �u(x, t) is

(11.7)

The virtual work can be written as

(11.8)

where

(11.9)

The assumed modes method approximates the solution to the forced vibrations of a
continuous system with n degrees of freedom. The generalized coordinates for the n-
degree-of-freedom model are the coefficient functions w1(t), w2(t), . . . , wn(t). Quadratic
forms of the kinetic and potential energies in terms of the generalized coordinates have
been obtained. Use of Lagrange’s equations, as applied in Section 7.4 to linear systems with
quadratic energy forms, leads to differential equations of the form

(11.10)

where the elements of the mass matrix M are the coefficients of Equation (11.3), the ele-
ments of the stiffness matrix K are the coefficients of Equation (11.6), and the elements of
the force vector F are the generalized forces of Equation (11.9). If scalar product notation
is used

(11.11)

Approximations to the n lowest natural frequencies are obtained as the square
roots of the eigenvalues of M�1K. The corresponding mode shape vectors are used in
Equation (11.1) to approximate the mode shapes for these frequencies. An approxi-
mation to the forced response is obtained by solving Equation (11.10) using the
methods of Chapter 9.

mij = (ui 
, uj )T  kij = (ui 

, uj )V  Q i = ( f, ui )

Mw
$

+ Kw = F

Q i =

L

L

0
f (x, t )ui(x)dx

dW = a
n

i = 1

Q i 
dwi

dW =

L

L

0
f (x, t)du(x, t)dx = a

n

i = 1

dwiL

L

0
f (x, t)ui(x)dx

kij =

L

L

0
EA 

dui

dx
 
duj

dx
dx + kui(L)uj(L)

Use the assumed modes method to approximate the three lowest natural frequencies and
mode shapes for the bar of Figure 11.1(a) with A(x) = 0.001(1 � 0.002x) m2, E � 200 �
109 N/m2, � � 7600 kg/m3, L � 3.6 m, m � 12 kg, and k � 4 � 107 N/m. Use the inter-
polating functions

(a)

which are the first three mode shapes of a uniform fixed-free bar.

u1(x) = sin apx
2L
b  u2(x) = sin a3px

2L
b  u3(x) = sin a5px

2L
b

EXAMPLE 1 1 . 1



Finite-Element Method 693

SO LU T I ON
Equations (11.3) and (11.6) are used to determine the elements of the mass and stiffness
matrices, respectively, for the assumed modes approximation. For example,

(b)

(c)

A MATLAB script is written using symbolic algebra to determine the mass and stiffness
matrices for this assumed modes approximation. The natural frequency approximations are
the square roots of the eigenvalues of M�1K. The eigenvectors are used to develop approx-
imations to the mode shapes. If X1 � [X11 X12 X13]

T is the eigenvector corresponding to the
eigenvalue that gives an approximation to the lowest natural frequency, then the approxi-
mation to the corresponding mode shape is

The natural frequency approximations are

(d)

The mode shape approximations are illustrated in Figure 11.1(b).

v1 = 1.86 * 103 rad/s  v2 = 4.99 * 103 rad/s  v1 = 9.72 * 103 rad/s

w1(x) = X11u1(x) + X12u2(x) + X13u3(x)

k12 =

L

L

0
E   30.001(1 - 0.002x)4 a p

2L
b a3p

2L
b  cos apx

2L
b  cos a3px

2L
bdx - k

m12 =

L

L

0
r  30.001(1 - 0.002x)4 sin apx

2L
b  sin a3px

2L
bdx - m

11.3 GENERAL METHOD
Consider again the bar of Figure 11.1(a). The bar is divided into n discrete segments, or ele-
ments. For purposes of discussion assume the elements are of equal length l � L �n. The dis-
cretization of a uniform bar into n elements of equal length l is shown in Figure 11.2(a). The
piecewise defined interpolating functions of Figure 11.2(b) are mathematically described as

(11.12)

When the functions of Equation (11.12) are used in an assumed modes approximation
of the form

(11.13)u(x, t) = a
n

i = 0

Wi(t)ui 
(x)

un(x) = c x
l

+ (1 - n) du(x - (n - 1)l ) 

+ c - x
l

+ (1 + j ) d [u(x - jl ) - u(x - ( j + 1)l )]     1 … j 6 n

uj(x) = c x
l

+ (1 - j ) d [u(x - ( j - 1)l ) - u(x - jl )]

u0(x) = a -

x
l

+ 1bu(x - l )
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then

(11.14)

Thus, the generalized coordinates are the displacements at the element boundaries. The
geometric boundary condition w(0, t) � 0 can be imposed simply by setting W0 � 0.

The finite-element method is an application of the assumed modes method using
piecewise-defined basis functions. The basis function uj(x) is nonzero only over the jth and
( j � 1)st elements. The assumed modes method as described in Section 11.2 is applied.
The mass matrix is developed from the kinetic energy, the stiffness matrix is developed
from the potential energy, and the force vector is developed from the virtual work of the
external forces. As a result of the piecewise definition of the interpolating functions, it is
noted that mij � (ui, uj)T � 0 unless i � j � 1, j, or j � 1.

u( jl, t) = Wj

(a)

21 3 ... ...j n – 1 n

l

(b)

u0(x)
1

...

xl

u1(x)
1

xl 2l

u2(x)
1

xl 2l 3l

uj(x)
1

x( j – 1)l ( j + 1)ljl
...

un – 1(x)
1

x( n – 2)l L( n – 1)l

un(x)
1

x( n – 1)l L

FIGURE 11.2
(a) Discretization of uniform
bar into n elements of equal
length l. (b) Interpolating
functions that can be used
in an assumed modes
approximation.
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When the interpolating functions of Equation (11.12) are used in the assumed modes
method, Equation (11.13) can be rearranged to

(11.15)

where

(11.16)

Equations (11.15) and (11.16) are illustrated in Figure 11.3. Equation (11.15) rewrites the
assumed modes approximation as a linear combination of functions that are each nonzero
only over one element. The functions are in terms of the displacements at the element
boundaries. Application of the finite-element method is used to obtain approximations to
the displacements of the nodes (the element boundaries). Figure 11.3 illustrates that the
finite-element method, as applied to this problem, assumes a linear interpolation between
the nodal displacements.

Often a large number of elements are required to obtain accurate results for complex
structures. Application of the finite-element method is more convenient when formulated
as in Equation (11.15). This allows an approximation function to be defined for each ele-
ment in terms of the displacements at the element boundaries. The kinetic energy, poten-
tial energy, and work done by external forces are calculated for the element in terms of the
generalized coordinates representing displacements at element boundaries. For example,
the kinetic energy of element j can be written in the quadratic form

(11.17)

where w � [Wj�1 Wj ]
T is the element displacement vector, the vector of boundary displace-

ments, written in terms of global generalized coordinates and mj is the element mass matrix
written in local coordinates. The total kinetic energy of the system is the sum of the 
element kinetic energies

(11.18)

and has the quadratic form

(11.19)Tj =
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f1(x, t) = W1(t ) 
x
l
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Wj + 1 Wn – 1
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( j – 1)l ( j + 1)ljll 2l 3l ( n – 1)l nl

FIGURE 11.3
Linear interpolation between
nodes for finite-element
model of a bar.
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where W � [W1 W2 . . . Wn]
T is the global displacement vector, the vector of generalized

coordinates, and M is the global mass matrix.
The above development suggests a computational procedure where the energy meth-

ods are used to develop the finite-element model. The system is divided into a finite
number of discrete elements. The global generalized coordinates are the coordinates repre-
senting the degrees of freedom at the nodes. Each element has a specific number of degrees
of freedom. The bar element, for example, has two degrees of freedom, the displacements
of the ends of the element. A local coordinate system is defined for each element in the finite-
element model. The kinetic energy, potential energy, and virtual work are determined for
each element. The potential energy, for example, is written in quadratic form in terms of
an element displacement vector and element stiffness matrix. Model elements for a bar, a
torsional system, and a beam are developed in this fashion. The element mass and stiffness
matrices are assembled into global mass and stiffness matrices. The differential equations
are written in terms of the global generalized coordinates by using the global matrices. The
homogeneous solution of the differential equations provides approximations to the natural
frequencies and mode shapes. Nonhomogeneous equations are solved to provide approxi-
mation to the forced response.

The following sections provide the details of the method. The standard bar element
and standard beam element, written in terms of local coordinates, are developed.
Methods of assembling the element matrices into global matrices are discussed.
Examples of application of the finite-element method to bar, beam, and truss problems
are presented.

This chapter provides only an overview of the finite-element method. There is much
more to the method that is beyond the scope of the discussion. This includes error analy-
sis, element selection, substructuring, and algorithm development. Many excellent finite-
element software packages exist.

11.4 THE BAR ELEMENT
A bar element of length l is illustrated in Figure 11.4. The element has two degrees of free-
dom represented by w1, the displacement of the left end of the element, and w2, the dis-
placement of the right end of the element. Define a local coordinate along
the axis of element. The linear displacement function for the element is

(11.20)

The kinetic energy of the element, assuming uniform properties, is

(11.21)

=
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Equation (11.21) can be rewritten in the quadratic form

(11.22)

Thus the element mass matrix is

(11.23)

The potential energy of the element, assuming uniform properties, is

(11.24)

The potential energy can be written in the quadratic form

(11.25)

from which the element stiffness matrix is determined as

(11.26)

If the element has an external axial load f (�, t), then the virtual work done by the load is

(11.27)

and the element generalized forces are

(11.28)

The torsion element of Figure 11.5 is developed in the same manner as the bar ele-
ment. If w1 is the angular displacement at the left end of the element and w2 the angular
displacement at the right end of the element, then the finite-element approximation to the

q1 =

L

l

0
f (j, t)a1 -

j

l
bd j  q2 =

L

l

0
f (j, t)

1
l
d j

= dw1L

l

0
f (j, t)a1 -

j

l
bd j + dw2L

l

0
f (j, t)

1
l

 d j

=

L

l

0
f (j, t) c1

l
(dw2 - dw1)j + dw1 dd j

dW =

L

l

0
f (j, t) du(j, t) d j

k =

EA
l
c   1 -1
-1   1 d

V =

1

2
 
EA
l
3w1  w24c   1 -1

-1   1 d c
w1

w2

d

=

1
2

 
EA
l

(w2
2 - 2w1w2 + w2

1)

=

1

2L

l

0
EA c1

l
(w2 - w1) d

2

d j

V =

1
2L

l

0
EAa 0u

0j
b2

d j

m =

rAl

6
 c2 1

1 2
d

T =

1

2
 w# Tmw# =

1

2
 
rAl

6
3w#

1  w
#

24c21   
1

2
d cw

#

1

w#

2

d

w1 w2

l

ξ

FIGURE 11.4
A bar element of length l has two degrees of
freedom. A linear function in terms of local
coordinate � interpolates the displacement.
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angular displacement over the element is given by

(11.29)

Application of Equation (11.29) to the kinetic energy

(11.30)

leads to the element mass matrix

(11.31)

Application of Equation (11.29) to the potential energy

leads to the element stiffness matrix
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FIGURE 11.5
Uniform torsion element of length l has two
degrees of freedom represented by w1 and w2,
angular displacements at the ends of the element.

Use a one-element, finite-element model to approximate the lowest natural frequencies and
mode shapes of a free-free bar.

SO LU T I ON
The displacements of the ends of the bar are the two generalized coordinates. The differ-
ential equations for the model are

(a)

The approximations to the natural frequencies are obtained by assuming a normal-mode
solution of Equation (a) as w � [1 �]Te iwt, resulting in

(b)

where The characteristic equation is obtained by setting the determinant of the
coefficient matrix in Equation (b) to zero, giving

(c)
The solutions to Equation (c) are

(d)

The mode shape corresponding to the rigid-body mode is [1 1]T, while the mode shape
corresponding to the second mode is [1 �1]T.
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EXAMPLE 1 1 . 2
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EXAMPLE 1 1 . 3
Use a one-element, finite-element model to approximate the lowest natural frequency of a
fixed-free bar.

SO LU T I ON
The differential equations for a one-element, finite-element model are those given in
Equation (a) of Example 11.2. Since the bar is fixed at x � 0, w1 � 0. When one coordi-
nate is zero, to obtain the appropriate finite-element mode, simply cross-out the row and
column associated with the generalized coordinate in the element mass and stiffness matrix.
The differential equations, crossing out the first row and first column of the mass and stiff-
ness matrices, reduce to

(a)

or

(b)

The approximation to the natural frequency using a one-element approximation is
obtained from Equation (b) as

(c)

Note that the one-element, finite-element model of the fixed-free bar leads to the same
natural frequency approximation that is obtained by using a SDOF model when an equiv-
alent mass of is lumped at the end of the bar.

rAL
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3E
rL2

w
$
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3E
rL2w2 = 0

rAL

6
(2w

$

2) +

EA
L

w2 = 0

EXAMPLE 1 1 . 4
Use a one-element, finite-element model to approximate the lowest natural frequency of
torsional oscillations of a fixed-free elastic shaft with a rigid disk of moment of inertia I
attached at its free end, as in Figure 11.6.

SO LU T I ON
The mass matrix and stiffness matrix for a one-element model for the shaft are given by
Equations (11.31) and (11.32), respectively. The bar is fixed at x � 0; thus, w1 � 0 and
the first row and first column of the mass and stiffness matrix are crossed out when devel-
oping the model. However, a disk of moment of inertia I is attached at the free end, adding
to the kinetic energy such that

(a)

Thus, the model of the system is

(b)arJL
3

+ Ibw
$

2 +

JG

L
w2 = 0

T =

1

2
a2rJL

6
bw# 2

2 +

1
2

Iw# 2
2
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11.5 BEAM ELEMENT
The potential energy scalar product for a beam involves the second spatial derivative of the
displacement. Thus a Rayleigh-Ritz or assumed modes approximation must be twice dif-
ferentiable. When a finite-element model of the beam is developed by the assumed modes
method, the requirement that the interpolation be twice differentiable leads to requiring
that displacements and slopes (first spatial derivatives) be continuous at element bound-
aries. In order to enforce this requirement over the entire beam, each beam element has
four degrees of freedom represented by the displacements and slopes at the ends of the ele-
ment. Let w1 represent the transverse displacement of the left end of the element, w2 the
slope at the left end of the element, w3 the transverse displacement of the right end of the
element, and w4 the slope at the right end of the element, as illustrated in Figure 11.7. If
� is the local coordinate over the beam element, the finite element approximation for the
displacement across the beam element must satisfy

(11.33)

The deflection of a beam element without transverse loading across its span, but with pre-
scribed displacements and slopes at its ends, is

(11.34)u(j) = C1j
3

+ C2j
2

+ C3j + C4

u(0, t ) = w1  0u
0j

(0, t ) = w2  u (l, t ) = w3  0u
0j

(l, t ) = w4

or

(c)

The natural frequency approximation for the system of Figure 11.6 using a one-element,
finite-element model is obtained from Equation (c) as

(d)v = A
3JG

rJL + 3IL

w
$

2 + a 3JG

rJL + 3IL
bw2 = 0

L
I

r, J, G

FIGURE 11.6
A one-element, finite-element model is used
to approximate the lowest natural frequency
of a torsional shaft with an attached disk.

l

ξ

w2

w1 w3

w4

FIGURE 11.7
Beam element has four degrees of freedom,
represented by the displacements and slopes
of each end.
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Using Equation (11.33) in Equation (11.34) to determine the constants leads to

(11.35)

(11.36)

(11.37)

(11.38)

Use of Equations (11.35) through (11.38) in Equation (11.34) and rearranging leads to

(11.39)

The kinetic energy of the beam element is

(11.40)

Use of Equation (11.39) in Equation (11.40) leads to a quadratic form of kinetic energy

(11.41)

where and the element (local) mass matrix for a uniform beam
element is

(11.42)

The potential energy of the beam element is

(11.43)

Use of Equation (11.39) in Equation (11.43) leads to the quadratic form of potential
energy

(11.44)

where the element (local) stiffness matrix for a uniform beam element is
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The method of virtual work is used to obtain the generalized forces as

(11.46)
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Use a one-element, finite-element model to approximate the natural frequencies and mode
shapes of a uniform fixed-free beam.

SO LU T I ON
The differential equations governing the free vibrations of a one-element, finite-element
model of a beam are

(a)

The beam is fixed at x � 0; thus, w1 � 0 and w2 � 0. Thus, for the one-element, finite-
element model, the first and second rows and columns are crossed out, leaving

(b)

A normal-mode solution is assumed for this two degree-of-freedom system as
w � [1 �]T ei�t, which when substituted into Equation (b) leads to an eigenvalue
problem for � as
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FIGURE 11.8
A one-element, finite-element model of fixed-free beam has two degrees of freedom, which leads to
approximations of the first two mode shapes.

where the values of � are the square roots of the eigenvalues of the matrix

(d)

The approximations to the natural frequencies are calculated as

(e)

The approximations to the mode shapes are represented by the eigenvectors, which are

(f)

The discrete mode shape vectors of Equation (f ) are substituted into Equation (11.39) to
obtain approximations for the mode shapes. The results are

(g)

and

(h)

Equations (g) and (h) are plotted in Figure 11.8.

w2(x) = 3
x2

L2 - 2
x2

L3 + 7.62a -

x2

L2 +

x3

L3 b

w1(x) = 3
x2

L2 - 2
x2

L3 + 1.38a -

x2

L2 +

x3

L3 b

W1 = c 1
1.38
d  W2 = c 1

7.62
d

v1 = 3.53A
EI

rAL4
  v1 = 30.8A

EI

rAL4

m- 1k =

420EI

rAL4
 c 156 -22L

-22L 4L2 d
-1 c 12 -6L

-6L 4L2 d

–2
0

w1(x)

0.2 0.30.1 0.4 0.5 0.6 0.7 0.8 0.9 1

w
(x

)
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–1

–1.5

0

0.5
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Use a one-element, finite-element model to approximate the steady-state response of the
pinned-pinned beam of Figure 11.9 with a concentrated load F(t) � 80 sin 100t at its
midspan.

SO LU T I ON
The differential equations for a one-element, finite-element model of a beam are given in
Equation (a) of Example 11.5, except that the right-hand side is [q1 q2 q3 q4]

T. For a
pinned-pinned beam, w1 � 0 and w3 � 0. The first and third columns of the stiffness
matrix and the mass matrix are crossed out, leading to

(a)

The concentrated load can be represented using the Dirac delta function of Appendix A
as

(b)

The generalized forces are obtained by

(c)

(d)

Substituting given values into the differential equations leads to

(e)

A steady-state solution is assumed to Equation (e) as

(f)cw2

w4

d = cW2

W4

d  sin 100t

c 0.1737
-0.1303

 -0.1303
0.1737

d cw
$

2

w
$

4

d + c6300
3150

 3150
6300

d cw2

w4

d = c 10
-10
d  sin 100t

q4 =

L

L

0
80 sin 100t daj -

L
2
b a -

j2

L2 +

j3

L3 bd j = 10 sin 100t

q2 =

L

L

0
80 sin 100t daj -

L
2
b a j

L
- 2
j2

L2 +

j3

L3 bd j = 10 sin 100t

F (x, t) = 80 sin 100t dax -

L
2
b

rAL

420
c 4L2

-3L2

-3L2 4L2 d cw
$

2

w
$

4

d +

EI
L3  c4L2 2L2

2L2 4L2 d cw2

w4

d = cq2

q4

d

EXAMPLE 1 1 . 6

E = 210 × 109 N/m2

I = 1.5 × 10–4 m4

r = 7600 kg/m2

A = 3 × 10–4 m2

1 m 1 m

10 sin 100t N

FIGURE 11.9
A one-element, finite-element model is applied to determine the steady-state amplitude of the point
of application of a concentrated load.
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which when substituted into Equation (e) yields

(g)

The steady-state response is obtained by substituting Equation (g) into Equation (11.39)
with W1 � W3 � 0 yielding

(h)W (x) = 0.99091a x
2

- 2
x2

4
+

x3

8
b - 0.99091a -

x2

4
+

x3

8
b

cW2

W4

d = c   0.09091
-0.09091

d

11.6 GLOBAL MATRICES
Local mass and stiffness matrices are derived for bar, torsion, and beam elements in
Sections 11.4 and 11.5. The accuracy of the finite-element method improves as the
number of elements used increases. The use of many elements is necessary in the approxi-
mation of complicated systems. Local mass and stiffness matrices are calculated for each
element and assembled into global matrices. When many elements are used, an efficient
assembly algorithm is necessary.

A bar element has two degrees of freedom. The local generalized coordinates are the
displacements of the ends of the elements. An n-element finite-element model of a bar, as
illustrated in Figure 11.10, has at most n � 1 degrees of freedom. The global generalized
coordinates are the displacements of the boundaries between elements and the ends of the
bar. Each geometric boundary condition reduces by one the number of global degrees of
freedom. For example if the left end of the bar is fixed, then its displacement is zero and
the model has n degrees of freedom.

Let W1, W2, . . . . , Wn represent the global generalized coordinates. Each local gener-
alized coordinate is one of the global generalized coordinates, unless that element is subject
to a geometric boundary condition. The local mass and stiffness matrices can be expanded
to include all global generalized coordinates. The total kinetic energy of the system is the
sum of the kinetic energies of the elements. Let

(11.50)

be the kinetic energy of the ith element. The local mass matrix can be enlarged and the
kinetic energy written in terms of the global generalized coordinates as

(11.51)Ti =

1
2

 W
#

T
 M
∼

iW
#

Ti =

1
2

 w# T
i miw

#

i

21 3 ... ...j n – 1 n

W1 W2 W3 Wj – 1 Wn – 2 Wn – 1 WnWj

FIGURE 11.10
An n-element model of a
fixed-free bar. Global general-
ized coordinates are the dis-
placements of the nodes,
which are located at element
boundaries or ends of the
bar. The bar is fixed at x � 0,
W0 � 0.
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The total kinetic energy of the system is

(11.52)

Thus, the global mass matrix is

(11.53)

The global stiffness matrix and the global force vector can be obtained in an analogous
manner.

M = a
n

i = 1

M
∼

i

T = a
n

i = 1

Ti =

1
2a

n

i = 1

 W
#

TM
∼

iW
#

=

1
2

 W
#

T aa
n

i = 1

M
∼

ibW
#

 

Derive the global mass matrix for a three-element model of a fixed-free bar.

SO LU T I ON
The three-element model of a fixed-free bar is shown in Figure 11.11. The three-element
model has three degrees of freedom, noting that u(0) � 0. The global generalized coordi-
nates are the displacements of the ends of the elements. The assembly of the global mass
matrix from the local mass matrices is shown. The global displacement vector is W �
[W1 W2 W3]

T. The quadratic form of the kinetic energy is .

Element 1 Local generalized coordinates:

(a)

Element mass matrix in terms of local generalized coordinates:

(b)m1 =

rAl

6
 c2 1

1 2
d

w1 = 0  w2 = W1

T =
1
2 W

#
TMW

#

EXAMPLE 1 1 . 7

(a)

(b)

21 3

L
3

L
3

L
3

W1 W2 W3

l

ξ

w1 = 0 w2 = W1

l

ξ

w1 = W1 w2 = W2

l

ξ

w1 = W2 w2 = W3

FIGURE 11.11
(a) Three-element model of fixed-free bar has three degrees of freedom. The elements are of equal
length . (b) Local coordinates for each element.l =

L
3
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Kinetic energy of element:

(c)

Element mass matrix in terms of global generalized coordinates:

(d)

Element 2 Local generalized coordinates:

(e)

Element mass matrix in terms of local generalized coordinates:

(f)

Element mass matrix in terms of global generalized coordinates:

(g)

Element 3 Local generalized coordinates:

(h)

Element mass matrix in terms of local generalized coordinates:

(i)

Element mass matrix in terms of global generalized coordinates:

(j)

Thus the global mass matrix is

(k)=

rAl

6
 C4 1 0

1 4 1
0 1 2

S
=

rAl

6
 £ C 2 0 0

0 0 0
0 0 0

S + C2 1 0
1 2 0
0 0 0

S + C0 0 0
0 2 1
0 1 2

S ≥
M = M

∼
1 + M

∼
2 + M

∼
3

M
∼

3 =

rAl

6
 C0 0 0

0 2 1
0 1 2

S
m3 =

rAl

6
 c2 1

1 2
d

w1 = W2  w2 = W3

M
∼

2 =

rAl

6
 C2 1 0

1 2 0
0 0 0

S
m2 =

rAl

6
 c2 1

1 2
d

w1 = W1  w2 = W2

M
∼

1 =

rAl

6
 C2 0 0

0 0 0
0 0 0

S
T =

1

2
 
rAl

6
 (2w 

# 2
2 ) =

1
2
 
rAl

6
 (2W

#
2

1 ) =

1
2

[W
#

1 W
#

2 W
#

3]C2 0 0
0 0 0
0 0 0

S CW
#

1

W
#

2

W
#

3

S
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The model of Example 11.7 has only three degrees of freedom, and it is easy to con-
struct . It is more difficult for systems with a large number of degrees of freedom. For
such systems computer analysis will be used to formulate the model and solve the resulting
differential equations. Thus it is important to have an efficient algorithm for assembly of
the global mass matrices.

Let Si be a transformation matrix between the local generalized coordinates for element
i and the global generalized coordinates,

(11.54)

The total kinetic energy of the system is

(11.55)

Using Equation (11.54) in Equation (11.55) leads to

(11.56)

Thus the global mass matrix is

(11.57)M = a
n

i = 1

ST
i miSi

=

1

2
W
#

T aa
n

i = 1

ST
i miSibW

#

=

1

2a
n

i = 1

W
#

TST
i miSiW

#

T =

1
2a

n

i = 1

(SiW
#

)Tmi(SiW
#

)

T =

1

2a
n

i = 1

w# i
Tmiw

#

i

wi = SiW

M
∼

Illustrate the development of  for the system of Example 11.7 using the transformation matrix.

SO LU T I ON
The transformation between the local generalized coordinates and the global generalized
coordinates for element 2 of Example 11.7 is

(a)

Thus

(b)=

rAl

6
 C2 1 0

1 2 0
0 0 0

S
=

rAl

6
 C1 0

0 1
0 0

S c2 1 0
1 2 0

d

M
∼

2 = C1 0
0 1
0 0

S  
rAl

6
 c2 1

1 2
d c1 0 0

0 1 0
d

cw1

w2

d = c1
0
 0

1
 0

0
d CW1

W2

W3

S

M
∼

2

EXAMPLE 1 1 . 8
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11.7 BENCHMARK EXAMPLE
The response of the machine on the beam is considered using the finite-element method.
Five elements are used to model the beam, as shown in Figure 11.12(a), which indicates
the global coordinates used. The machine is a discrete mass connected to the beam by an

(a)

21 3 4 5

W1

x = 0.4 x = 0.8 x = 0.12 x = 0.16

W2

W3 W5 W7

W4 W6 W8 W9

k c

m

W10

w3

w4
1

w3w1

w4
w1 = W1
w2 = W2
w3 = W3
w4 = W4

w1 = 0
w2 = 0
w3 = W1
w4 = W2

w2
2

w3w1

w4
w1 = W3
w2 = W4
w3 = W5
w4 = W6

w2
3

w4w1

w3
w1 = W5
w2 = W6
w3 = W7
w4 = W8

w2
4

w1 w3

w4 w1 = W7
w2 = W8
w3 = 0
w4 = W9

w2
5

(b) (c)

W10

FIGURE 11.12
(a) Five-element, finite-
element model of machine
attached by isolator to fixed-
pinned beam. The model has
ten degrees of freedom. (b)
Relation between local coor-
dinates and global coordi-
nates for model. (c) The
machine adds another degree
of freedom to the model.
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isolator. The beam is assumed to be undamped. The following describes the construction
of the model. There are a total of 10 degrees of freedom in the model. For the element
matrices It is noted that

(a)

and

(b)

The local mass matrix for each element is

(c)

The local stiffness matrix for each element is

(d)

The relation between the local coordinates for each element and the global coordinates are
shown in Figure 11.10(b).

Element 1: w
1

� 0, w
2

� 0, w
3

� W
1

w
4

� W
2

The transformation matrix between the
local coordinates and the global coordinates is

(e)S1 = ≥
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0

¥

= (9.47 * 105 lb/ft)≥
  12   24 -12   24
  24   64 -24   32
-12 -24   12 -24
  24   32 -24   64

¥

K =

EI
L3 ≥

   12   6L -12   6L
   6L    4L2

-6L    2L2

-12 -6L   12 -6L
   6L    2L2

-6L    4L2

¥

= (8.87 * 10-3 slugs)≥
156    88 54 -52
  88    64  52 -48

 54    52 156 -88
-52 -48 -88    64

¥

M =

rAL

420
 ≥

156 22L 54 -13L
  22L   4L2  13L    -3L2

 54  13L 156 -22L
-13L -3L2

-22L     4L2

¥

EL
/
 3 =

(30 * 106 psi)(291 in4)a 1 ft
12 in

b2

(4 ft)3 = 9.47 * 105 lb/ft

rA/

420
=

(30 lb/ft) (4 ft )a 1
32.2 ft/s2 b

420
= 8.87 * 10-3 slugs

/ =
L
5 = 4  ft .
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Element 2: w
1

� W
1

w
2

� W
2
, w

3
� W

3
, w

4
� W

4
The transformation matrix between

the local coordinates and the global coordinates is

(f)

Element 3: w
1

� W
3
, w

2
� W

4
, w

3
� W

5
, w

4
� W

6
The transformation matrix between

the local coordinates and the global coordinates is

(g)

Element 4: w
1

� W
5
, w

2
� W

6
, w

3
� W

7
, w

4
� W

8
The transformation matrix between

the local coordinates and the global coordinates is

(h)

Element 5: w
1

� W
7
, w

2
� W

8
, w

3
� 0, w

4
� W

9
The transformation matrix between

the local coordinates and the global coordinates is

(i)

Discrete Mass The displacement of the discrete mass is W10. Its kinetic energy is ,

where m � 31.06 slugs. The potential energy of the spring is , k �

. The 10 � 10 global matrix for the discrete element is ; the global stiff-

ness matrix is . Their elements are zero except for 

(j)

and

(k)K
∼

10,5 = -3.93 * 104 lbf/ft   K
∼

10,10 = 3.93 * 104 lbf/ft

K
∼

5,5 = 3.93 * 104 lbf/ft   K
∼

5,10 = -3.93 * 104 lbf/ft

M
∼

10,10 = 31.06 slugs

K
∼

M
∼

3.93 * 104 lbf/ft

V =
1
2k (W10 - W5)

2

T =
1
2mW

#
2
10

S5 = ≥
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0

¥

S4 = ≥
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0

¥

S3 = ≥
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0

¥

S2 = ≥
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0

¥
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K = a
5

i = 1

ST
i  kSi + K

∼

(l)Y
2.768 0 0.4790 -0.4612 0 0 0 0 0 0

0 1.135 0.4612 -0.4258 0 0 0 0 0 0
0.4790 0.4612 2.768 0 0.4790 -0.4612 0 0 0 0

-0.4612 -0.4258 0 1.1354 0.4612 0.4258 0 0 0 0

0 0 0.4790 0.4612 2.768 0 0.4790 -0.4612 0 0

0 0 -0.4612 -0.4258 0 1.1354 0.4612 -0.4258 0 0

0 0 0 0 0.4790 0.4612 2.7674 0 -0.4612 0

0 0 0 0 -0.4612 -0.4258 0 1.1354 -0.4258 0

0 0 0 0 0 0 -0.4612 -0.4258 0.5677 0

0 0 0 0 0 0 0 0 31.06 0

= I

The global matrices are formed by

M = a
5

i = 1

ST
i  mSi + M

∼

(m)Y
2.272 0 -1.136 2.272 0 0 0 0 0 0

0 12.12 -2.272 3.030 0 0 0 0 0 0

-1.136 -2.272 2.272 0 -1.136 2.272 0 0 0 0

2.272 3.030 0 12.12 -2.272 3.030 0 0 0 0

0 0 -1.136 -2.272    2.276 0 -1.136 2.272 0 -0.00393

0 0 2.272 3.030 0 12.12 -2.272 3.030 0 0

0 0 0 0 -1.136 -2.272    2.272 0 2.272 0

0 0 0 0 2.272 3.030 0 12.12 3.030 0

0 0 0 0 0 0 2.272 3.030 6.060 0

0 0 0 0 -0.00393 0 0 0 0.00393

= 107I

The natural frequency approximations are the square roots of the eigenvalues of M_1K,
which are

(n)

The forced response is determined by

(o)MW
$

+ KW = F

v9 = 1.883 * 104 rad/s  v10 = 2.438 * 104 rad/s

v6 = 6.121 * 103 rad/s   v7 = 9.039 * 103 rad/s   v8 = 1.322 * 104 rad/s

v4 = 2.126 * 103 rad/s  v5 = 3.688 * 103 rad/s

v1 = 34.7 rad/s  v2 = 381.7 rad/s  v3 = 1.011 * 103 rad/s
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where F is a 10�10 vector with all elements equal to zero except

(p)

A steady-state solution is assumed as W � U sin 80t, which leads to

(q)

The transmitted force is

(r)

The steady-state approximation is plotted in Figure 11.13.

= 4610 N

k | U10 - U5 | = (3.93 * 104 lb/ft) | 1.238 * 10-2  ft  +  6.38 * 10-3 ft |

Y  ft

-1.71 * 10-3

-7.3 * 10-4

-4.83 * 10-3

-7.1 * 10-4

-6.38 * 10-3

5 * 10-5

-4.32 * 10-3

8.9 * 10-4

1.18 * 10-3

-1.238 * 10-2

= IY
U1

U2

U3

U4

U5

U6

U7

U8

U9

U10

I

F10 = 20,000 sin 80t lb

–7
0 4 62 8 10 12 14 16 18 20

w
 (

ft
)

–4

–5

–6

–3

–2

–1

× 10–3

0

x (ft)

FIGURE 11.13
Steady-state mode shape of
beam as predicted by finite-
element method.
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11.8 FURTHER EXAMPLES

Use a three-element, finite-element model to approximate the lowest natural frequency and
its corresponding mode shape for a uniform fixed-free bar.

SO LU T I ON
The three-element model of a fixed-free bar is illustrated in Figure 11.11. The global mass
matrix was derived in Example 11.7. Using the same method, the global stiffness matrix is
determined as

(a)

The differential equations for the bar in the finite-element model are

(b)

The natural frequencies are the square roots of the eigenvalues of M�1K. The mode shape
vectors are the corresponding eigenvectors. The lowest natural frequency and mode shape
vector are calculated as

(c)

The mode shape vector provides the displacements at the element boundaries. The finite-
element approximation to the mode shape is a piecewise linear approximation between the
element boundaries.

v1 = 1.584A
E
rL2  W = C0.577

1
1.155

S

 rAl

6
 C4 1 0

1 4 1
0 1 2

S CW1

$

W2

$

W3

$

S +

EA
l

 C    2 -1    0
-1    2 -1
   0 -1    1

S CW1

W2

W3

S = C0
0
0
S

  K =

EA
l

 C    2 -1    0
-1    2 -1
   0 -1    1

S

EXAMPLE 1 1 . 9

Use a two-element, finite-element model to approximate the four lowest natural frequen-
cies for the system of Figure 11.14(a). Note that the exact solution for this system was
obtained in Example 10.6.

SO LU T I ON
The two-element, finite-element model for the fixed-free beam illustrating the global gen-
eralized coordinates is shown Figure 11.14(b). The beam element of Section 11.5 is used.
Note that since the left end of the beam is fixed, the geometric boundary conditions of zero
slope and zero displacement must be imposed. The generic element mass and stiffness

EXAMPLE 1 1 . 1 0



Finite-Element Method 715

matrices for a beam element are

(a)

(b)

The potential energy for the discrete spring is incorporated into the local stiffness matrix
for element 2. For this model .

Element 1 Local generalized coordinates:

(c)w1 = 0  w2 = 0  w3 = W1  w4 = W2

l = L>2

k =

El
l 3

 ≥
  12   6l -12   6l
  6l   4l 2 -6l   2l 2

-12 -6l   12 -6l
  6l   2l 2 -6l   4l 2

¥

m =

rAl

420
 ≥

  156   22l   54 -13l
  22l   4l 2   13l -3l 2

  54   13l   156 -22l
-13l -3l 2 -22l   4l 2

¥

k = 2 × 106 N/m

1 m

(a)

m = 200 kg
I = 5 × 10–5 m4

E = 210 × 109 N/m2

(b)

21

W1 W3

W2 W4

(c)

1

w3 = W1w1 = 0

w4 = W2w2 = 0

2

w3 = W3w1 = W1

w4 = W4w2 = W2

FIGURE 11.14
(a) System of Example 11.10. (b) Two-element, finite-element model of beam illustrating global gener-
alized coordinates. (c) Local generalized coordinates for each element.
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Element global matrices are

(d)

Element 2 Local generalized coordinates:

(e)

The element stiffness matrix for element 2 must be modified to account for the potential
energy of the spring, . The stiffness matrix term k33 is the only term affected by
the discrete spring. The global mass and stiffness matrices for element 2 are

(f)

(g)

The global mass and stiffness matrices are

(h)

(i)

Substitution of given values leads to

(j)M = ≥
74.29 0 12.86 -1.55

0 0.476 1.55 -0.179
12.86 1.55 37.14 -0.262
-1.55 -0.179 -2.62    0.238

¥

K = K
∼

1 + K
∼

2 =

EI
l 3

 E
  24 0 -12 6l

0    8l 2 -6l  2l 2

-12 -6l 12 +

kl 3

EI
 -6l 

  6l    2l 2 -6l  4l 2

U

M = M
∼

1 + M
∼

2 =

rAl

420
 ≥

   312 0  54 -13l
0   8l 2   13l -3l 2

  54   13l   156 -22l
-13l -3l 2 -22l   4l 2

¥

K
∼

2 =

El
l 3

 E
  12   6l -12   6l
  6l   4l 2 -6l    2l 2

-12 -6l 12 +

kl 3

EI
-6l

  6l    2l 2 -6l    4l 2

U

M
∼

2 =

rAl

420
 ≥

  156   22l   54 -13l
  22   4l 2   13l -3l 2

  54   13l   156 -22l
-13l -3l 2 -22l   4l 2

¥

V =
1
2kv2

3

w1 = W1  w2 = W2  w3 = W3  w4 = W4

M
∼

1 =

rAl

420
 ≥

  156 -22l 0 0
-22l   4l 2 0 0

0 0 0 0
0 0 0 0

¥  K
∼

1 =

EI
l 3

 ≥
  12 -6l 0 0
-6l    4l 2 0 0
 0  0 0 0
 0  0 0 0

¥
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(k)

The natural frequency approximations, the square roots of the eigenvalues of M�1K, are
obtained as

(l)

The exact natural frequencies for this system, obtained in Example 10.6, are

(m)
v1 = 829 rad/s        v2 = 5.05 * 103 rad/s
v3 = 1.41 * 104 rad/s  v4 = 2.73 * 104 rad/s

v1 = 806.0 rad/s      v2 = 5.09 * 103 rad/s
v3 = 1.72 * 104 rad/s  v4 = 5.00 * 104 rad/s

K = ≥
   2.016 0 -1.008    0.252

0    0.108 -0.252    0.042
-1.008 -0.252    1.008 -0.252
   0.252    0.042 -0.252    0.084

¥109

Use a two-element finite-element model for the beam to determine the steady-state
response of the system of Figure 11.15(a).

SO LU T I ON
For a two-element, finite-element model of the beam, the system has five degrees of freedom.
The global generalized coordinates are illustrated in Figure 11.15(b). The local mass and stiff-
ness matrices for each element are given by Equations (11.42) and (11.45), respectively.

Element 1

(a)w1 = 0  w2 = W1  w3 = W2  w4 = W3

EXAMPLE 1 1 . 1 1

F0 sinw t

L
4

L
4

L
4

L
4

k

L = 8 m
r = 7600 kg/m3

E = 200 × 109 N/m2

I = 1.6 × 10–6 m4

A = 3.5 × 10–3 m2

m = 20 kg
k = 3 × 104 N/m
F0 = 2500 N
w = 80 rad/s

r, A, E, I

m

(a)

FIGURE 11.15
(a) System of Example 11.11. (b) Two-element model for beam illustrating global generalized coordi-
nates. (c) Relations between local coordinates and global coordinates for each element. (d) Output
from MATLAB code. (e) Steady-state mode shape.



718 CHAPTER 11

(c)

w3 = W2w1 = 0

w4 = W3w2 = W1

w3 = 0w1 = W2

w4 = W4w2 = W3

Global mass matrix
[ 16.677, 13.550, -12.507, 0, 0]
[ 13.550, 81.298, 0, -13.550, 0]
[ -12.507, 0, 33.353, -12.507, 0]
[ 0, -13.550, -12.507, 16.677, 0]
[ 0, 0, 0, 0, 20.]

Global stiffness matrix
[ .32000e6, -.12000e6, .16000e6, 0, 0]
[ -.12000e6, .15000e6, 0, .12000e6, -30000.]
[ .16000e6, 0, .64000e6, .16000e6, 0]
[ 0, .12000e6, .16000e6, .32000e6, 0]
[ 0, -30000., 0, 0, 30000.]

iter =

2
eigs =

1.151315789473683e+005
3.487849420597156e+004
5.482456140350870e+003
1.816727650409610e+003
2.298793581937252e+002

FIGURE 11.15
(Continued)

W5

(b)

21

W2

W3W1 W4
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stopcrit =

1.245169782336117e-015

Force vector
[ 2.60400e2]
[ 8.12500e3]
[ 0]
[ -2.60400e2]
[ 0]

Natural frequencies in rad/s
[ 339.31, 186.76, 74.044, 42.623, 15.162]

Steady-state amplitudes in m
[ -0.9758e-2]
[ -0.1133e-1]
[ 0.0]
[ 0.9758e-3]
[ 0.3468e-2]

(d)

–0.012
0 2 31 4

(e)

5 6 7 8

W
(x

) 
(m

)

–0.006

–0.008

–0.01

–0.004

–0.002

0

x (m)

FIGURE 11.15
(Continued)
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Global element matrices are

(b)

The generalized force vector for element 1 is calculated by using Equations (11.46) through
(11.49). Since w1 � 0, q1 is not calculated.

(c)

(d)

(e)

The global generalized force vector for element 1 is

(f)

Element 2 Local generalized coordinates:

(g)

Global mass and stiffness matrices are

M
∼

2 =

rAl

420
 E

0   0   0   0 0
0   156   22l -13l 0
0   22l   4l 2 -3l 2 0
0 -13l -3l 2   4l 2 0
0   0   0   0 0

U
w1 = W2  w2 = W3  w3 = 0  w4 = W4

F1 =

H
-

1
48

  13
32

-

11
192
0
0

X
l F0 sin vt

q4 =

L

l

l >2
F0 sin vt a -

j2

l 2
+

j3

l 3
bd j = -

11

192
l F0 sin vt

q3(t) =

L

l

l /2
F0 sin vt a3

j2

l 2
- 2
j3

l 3
bd j =

13

32
l F0 sin vt

q2(t) =

L

l

l /2
F0 sin vt a j

l
- 2
j2

l 2
+

j3

l 3
bd j = -

1

48
l F0 sin vt

K
∼

1 =

EI
l 3

 E
   4l 2 -6l    2l 2 0 0

-6l   12 -6l 0 0

   2l 2 -6l    4l 2 0 0
0 0 0 0 0
0 0 0 0 0

U

M
∼

1 =

rAl

420
 E

  4l 2   13l -3l 2 0 0
  13l   156 -22l 0 0
-3l 2 -22l   4l 2 0 0

0 0 0 0 0
0 0 0 0 0

U
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(h)

The generalized force vector for element 2 is calculated by using Equations (11.46) through
(11.49). Since w3 � 0, q3 is not calculated.

(i)

(j)

(k)

The global generalized force vector for element 2 is,

(l)

For the discrete spring-mass system.

Potential energy: (m)

Kinetic energy: (n)

The contributions to the global matrices due to the discrete mass-spring system are

(o)

Assembling the global mass matrix, global stiffness matrix, and global generalized force
vector leads to the following differential equations

Ms = E
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 m

U  Ks = E
0 0 0 0 0
0 k 0 0 -k
0 0 0 0 0
0 0 0 0 0
0 -k 0 0 k

U

T =

1

2
mW

#
2
5

V =

1
2

k (W2 - W5)
2

F2 = H
   0

   13
32

   35

192

-

5
192

   0

X l F0 sin vt

q4(t) =

L

l>2

0
F0 sin vt a -

j2

l 2
+

j3

l 3
bd j = -

5

192
l F0 sin vt

q2(t) =

L

l>2

0
F0 sin vt a j

l
- 2
j2

l 2
+

j3

l 3
bd j =

11
192

l F0 sin vt

q1(t) =

L

l>2

0
F0 sin vt a1 - 3

j2

l 2
+ 2
j3

l 3
bd j =

13
32

l F0 sin vt

K
∼

2 =

EI
l 3

 E
0 0 0 0 0
0 12 6l 6l 0
0 6l 4l 2 2l 2 0
0 6l 2l 2 4l 2 0
0 0 0 0 0

U
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(p)

The method of undetermined coefficients is used to approximate the steady-state response
of the system. The steady-state response is assumed as W(t) � S sin �t where S is the vector
of undetermined coefficients. A MATLAB script can be written to determine the natural
frequencies and steady-state response. The output from running the script is given in
Figure 11.15(d), while the MATLAB-generated plot of the steady-state mode shape is given
in Figure 11.15(e). The steady-state amplitude of the discrete mass is W5 � 3.3 mm.

I
-

1

48

   13
16

-

1

8

-

5
192

   0

Y
l F0 sin vtE

W1

W2

W3

W4

W5

U =+

EI
l 3

 G
4l 2 -6l   2l 2 0 0

-6l 24 +

kl 3

EI
0 6l -

kl 3

EI
2l 2 0 8l 2 2l 2 0
0 6l   2l 2 4l 2 0

0 -

kl 3 
EI

0 0
kl 3

EI

W

rAl

420
 F

4l 2 13l -3l 2 0 0
13l 312 0 -13l 0
-3l 2 0 8l 2 -3l 2 0

0 -13l -3l 2 4l 2 0

0 0 0 0
420m
rAl

V E
W1

$

W2

$

W3

$

W4

$

W5

$

U

Use the finite-element method to approximate the lowest natural frequency for the truss of
Figure 11.16(a). Use one bar element for each truss member.

SO LU T I ON
The finite-element model of the four-bar truss using one bar element for each member has
four degrees of freedom. The global generalized coordinates are illustrated in Figure 11.16(b).

Member 1 The relations between the local generalized coordinates and the global gener-
alized coordinates are w1 � 0, w2 � W1. The contributions to the global mass and stiffness
matrices for element 1 are

(a)M
∼

1 =

rAl1
6

 D2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

T  K
∼

1 =

EA
l1

 D1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

T

EXAMPLE 1 1 . 1 2
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l1

l1 = 1.2 m
l2 = 2.683 m
l3 = 2.4 m
l4 = 1.2 m
q = 63.43°
sin q = 0.894
cos q = 0.447

W1

W2

q

l 2

l4

l3

W3

W4

All members are made of material of elastic
modulus E and have cross-sectional area A.

(a)

w1 = 0

w1 = 0

w2 = W3 w2 = W4

w1 = W2

w1 = 0

w2 = W1

w2 = W1 cosq  – W2 sinq

(b)

FIGURE 11.16
(a) Four-bar truss of Example 11.12 illustrating global coordinates. (b) Relationships between local coor-
dinates and global coordinates for each truss member. (c) Output from MATLAB code to determine
natural frequencies and mode shapes.
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Member 2 The relations between the local generalized coordinates and the global gener-
alized coordinates for member 2 are w1 � 0, w2 � W1 cos � � W2 sin �. The transforma-
tion between the nonzero local generalized coordinate and the global generalized
coordinates written in matrix from is

(b)

The contributions to the global mass and stiffness matrices from element 2 are obtained by
using Equation (10.43) with S2 � [cos � � sin � 0 0]. Note that since w1 � 0, the ele-
ment mass and stiffness matrices in terms of the local generalized coordinate are

(c)

Thus the contribution to the global mass matrix for element 2 is

(d)

(e)=

rAl2
3

 D  cos2u -cos u  sin u 0 0
- cos u  sin u  sin2u 0 0

0 0 0 0
0 0 0 0

T
M
∼

2 = D  cos u

- sin u

0
0

T arAl2
6
b 324 3cos u - sin u 0 04

m2 =

rAl2
6

 324  k2 =

EA
l2

 314

DW1

W2

W3

W4

T3w24 = 3 cos u - sin u 0 04

Global mass matrix
176.01 -108.78 0 0
-108.78 460.67 0 121.6

0 0 121.6 0
0 121.6 0 243.2

Global stiffness matrix
7.2634e+009 -1.193e+009 0 0
-1.193e+009 5.7184e+009 0 -3.3333e+009

0 0 6.6667e+009 0
0 -3.3333e+009 0 3.3333e+009

eigs =
5.482456140350878e+007
5.482456140350876e+007
3.162555149229576e+007
2.146804007227498e+006

Natural frequencies in rad/s
7404.4 7404.4 5623.7 1465.2

(c)
FIGURE 11.16
(Continued)
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The contribution to the global stiffness matrix for element 2 is calculated as

(f)

Element 3 The relations between the local generalized coordinates and the global gener-
alized coordinates for element 3 are w1 � W2, w2 � W4. The contributions to the global
mass and stiffness matrices from element 3 are

(g)

Element 4 The relations between the local generalized coordinates and the global gener-
alized coordinates for element 4 are w1 � 0, w2 � W3. The contributions to the global mass
and stiffness matrices from element 4 are

(h)

The global mass matrix is

(i)

Similar calculations lead to the global stiffness matrix

(j)K = EA H
1
l1

+

(cos2 u)

l2
-

(cos u sin u)

l2
0 0

-

(cos u sin u)

l2

(sin2 u)

l2
+

1
l3

0 -

1
l3

0 0
1
l4

0

0 -

1
l3

0
1
l3

X

D2l1 + 2l2 cos2 u -2l2 cos u sin u 0 0
-2l2 cos u sin u 2l3 + 2l2 sin2 u 0 l3

0 0 2l4 0
0 l3 0 2l3

TM = M
∼

1 + M
∼

2 + M
∼

3 + M
∼

4 =

rA

6
 

M
∼

4 =

rAl4
6

 D0 0 0 0
0 0 0 0
0 0 2 0
0 0 0 0

T  K
∼

4 =

EA
l4

 D0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

T

M
∼

3 =

rAl3
6

 D0 0 0 0
0 2 0 1
0 0 0 0
0 1 0 2

T  K
∼

3 =

EA
l3

 D0    0 0    0
0    1 0 -1
0    0 0    0
0 -1 0    1

T

K
∼

2 =

EA
l2

 D  cos2 u - cos u sin u 0 0
- cos u  sin u  sin2 u 0 0

0 0 0 0
0 0 0 0

T
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The natural frequencies are the square roots of the eigenvalues of M�1K. Output from a
MATLAB script to determine the natural frequencies and mode shapes is given in
Figure 11.16(c). Note that the results show only three distinct natural frequencies.

11.9 SUMMARY

11.9.1 IMPORTANT CONCEPTS
• Natural boundary conditions are those that are imposed as a result of a force balance,

while geometric boundary conditions are those dictated by geometry.
• Admissible functions are functions that satisfy all geometric boundary conditions and

have appropriate continuity. For a bar, this implies only that the function is continuous.
For a beam, this implies that the function and its first spatial derivative are continuous.

• The assumed-modes method assumes a solution that is a linear combination of admis-
sible functions. The coefficients in the linear combination are unknown functions of
time. The linear combination is substituted into Lagrange’s equations to derive a set of
differential equations for the coefficients.

• The finite-element method uses piecewise defined functions as admissible functions.
Only geometric boundary conditions need to be satisfied.

• The finite-element method breaks a complicated structure into element of a finite
length. A piecewise defined function is assumed over each element. An elemental mass
matrix, stiffness matrix, and force vector are defined.

• The local coordinates (defined for each element) are related to the global coordinates.
Global mass and stiffness matrices are defined from local matrices and the transforma-
tion between the local coordinate system and the global coordinate system.

• A bar element has two degrees of freedom which are the displacement at each end of
the element.

• A beam element has four degree of freedom which are the displacements and slopes at
each end of the element.

• The boundary conditions are applied globally.
• The natural frequency approximations are the square roots of the eigenvalues of M�1K.

Approximations to the mode shapes are developed from the eigenvectors.
• The forced-vibration problem can be solved as a forced-vibration problem for a discrete

system.

11.9.2 IMPORTANT EQUATIONS
Assumed-modes method

(11.1)u(x, t ) = a
n

i = 1

wi(t )ui(x)
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Uniform bar element

(11.23)

(11.26)

(11.28)

Uniform beam element

(11.39)

(11.42)

(11.45)

(11.46)

(11.47)

(11.48)

(11.49)q4 =

L

l

0
f (j, t)a -

j2

l 2 +

j3

l 3 bd j

q3 =

L

l

0
f (j, t)a3

j2

l 2 - 2
j3

l 3 bd j

q2 =

L

l

0
f (j, t)a j

l
- 2
j2

l 2 +

j3

l 3 bd j

q1 =

L

/

0
f (j, t)a1 - 3

j2

/
2 + 2

j3

/
3 bd j

k =
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PROBLEMS

SHORT ANSWER PROBLEMS
For Problems 11.1 through 11.10, indicate whether the statement presented is true or false.
If true, state why. If false, rewrite the statement to make it true.

11.1 A piecewise continuous function that satisfies the boundary conditions is an
admissible function for approximation of the natural frequencies of a beam.

11.2 The boundary condition at a free end for a bar is a geometric boundary
condition.

11.3 The boundary conditions at a free end for a beam are natural boundary conditions.
11.4 A beam element has four degrees of freedom.
11.5 A finite-element model of a bar with n elements predicts n natural frequencies

of the bar.
11.6 Natural frequency approximations using the finite element method are

determined as the square roots of the eigenvalues of M�1K where M is the
global mass matrix and K is the global stiffness matrix.

11.7 The finite-element method can be used to approximate the displacement of a
system subject to initial conditions.

11.8 The global generalized coordinates for a pinned-pinned beam are an
accumulation of the local generalized coordinates.

11.9 The stiffness matrix for an interior element of length for a variable area bar is

11.10 The functions w1(x) � x � 1 and w2(x) � x2 � 1 can be used as trial functions
using the assumed-mode method to predict the lowest natural frequencies of a
fixed-free bar.

Problems 11.11 through 11.23 require a short answer.

11.11 What is an admissible function?
11.12 What are natural boundary conditions?
11.13 Give a summary of the assumed-modes method.
11.14 A finite-element model of a bar fixed at x � 0 at one end and having a mass m

rigidly attached at x � L must satisfy what boundary condition?
11.15 A finite-element model of a torsional shaft that is attached to a spring of

torsional stiffness kt1 at x � 0 and a spring of torsional stiffness kt2 at x � L
must satisfy what boundary conditons?

11.16 A torsional bar element has two degrees of freedom. What are the generalized
coordinates associated with these degrees of freedom?

11.17 What are the local generalized coordinates associated with a beam element.
11.18 How many degrees of freedom are there in a three-element model of a fixed-free

bar?
11.19 How many degrees of freedom are there in a two-element model of a fixed-fixed

shaft with a rotor at its midspan?

k =

EA
/

 c    1 -1
-1    1

d
/
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11.20 How many degrees of freedom are there in a two-element model of a fixed-fixed
beam?

11.21 How many degrees of freedom are there in a two-element model of a fixed-
pinned beam?

11.22 How many degrees of freedom are there in a three-element model of a fixed-free
beam?

11.23 How many degrees of freedom are there in a three-element model of beam fixed
at one end and attached to a linear spring at its other end?

Problems 11.24 through 11.33 require a short calculation.

11.24 Use a one-element, finite-element model to approximate the lowest natural
frequency of a bar (elastic modulus E, density �, area A and length L) that is fixed
at one end and attached to a discrete spring of stiffness EA/2L at its other end.

11.25 Use a one-element, finite-element model to approximate the lowest torsional
natural frequency of a uniform shaft with a length L, polar moment of inertia J,
is made from an elastic material of density �, and has a shear modulus G that is
fixed at one end and has a torsional spring of stiffness kt at its other end.

11.26 Use a one-element, finite-element model to approximate the lowest torsional
natural frequency of a uniform shaft with a length L polar moment of inertia J,
is made from an elastic material of density �, and has a shear modulus G that is
fixed at one end and has a rigid disk with a moment of inertia I attached at its
free end.

11.27 Use a one-element, finite-element model to approximate the steady-state
amplitude of a uniform bar with a length L, cross-sectional area A, is made
from an elastic material of density �, and has an elastic modulus G that is fixed
at one end and has harmonic force f (t) � F0 sin �t applied at its free end.

11.28 Develop the element mass matrix for a bar element that is circular in cross
section but has a linearly varying radius over the element. The radius is r1 at 
� � 0 and is r2 at � � .

11.29 Develop the element stiffness matrix for a bar element that is circular in cross
section but has a linearly varying radius over the element. The radius is r1 at 
� � 0 and is r2 at � � .

11.30 Develop the element mass matrix for a bar element that is made of a material of
varying density. The density varies linearly over the element and is �1 at � � 0
and �2 at � � .

11.31 Use a one-element, finite-element model to predict the lowest natural frequency
of a beam with a length L, cross-sectional area A, mass moment of inertia I, is
made from a material of mass density �, and has an elastic modulus E that is
fixed at one end and attached to a linear spring of stiffness k at the other end.

11.32 A concentrated load f (t) � F0 sin �t is acting at the midspan of a simply
supported beam with a length L, cross-sectional area A, mass moment of inertia
I, is made from a material of mass density �, and has an elastic modulus E. Use
a one-element, finite-element model to predict the displacement of the midspan
of the beam.

11.33 A concentrated load f (t) � F0 sin �t is applied to the end of a uniform fixed-
free beam. Use a one-element, finite element model to predict the steady-state
amplitude of displacement of the end of the beam.

/

/

/
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CHAPTER PROBLEMS
It may be convenient to use MATLAB to perform natural frequency calculations as well as
to solve for forced responses.

11.1 The potential energy scalar product for a uniform bar is defined as

Consider the cases where (a) the bar is fixed at x � 0 and free at x � L and (b)
the bar is fixed at x � 0 and attached to a linear spring of stiffness k at x � L.
Discuss, in each case, the implication of requiring f (x) and g (x) to satisfy only
the geometric boundary conditions.

11.2 Use the assumed modes method with trial functions

to approximate the lowest natural frequency and its corresponding mode shape
for a uniform fixed-fixed bar of length L.

11.3 Let w1(x), w2(x), w3(x), w4(x) be linearly independent polynomials of degree
four or less that satisfy the geometric boundary conditions for a bar fixed at
x � 0 and attached to a spring of stiffness k at x � L.

(a) Determine a set of w1(x), w2(x), w3(x), w4(x).
(b) Use the assumed modes method with the functions obtained in part (a) as

trial functions and kL3/EI � 0.5 to approximate the system’s lowest natural
frequencies and mode shapes.

11.4 Use the assumed modes method with trial functions

to approximate the two lowest natural frequencies and mode shapes for a simply
supported beam.

11.5 Repeat Chapter Problem 11.4 if the beam has a machine of mass m � 2.0�AL
where �AL is the total mass of the beam. The machine is placed at the midspan
of the beam.

11.6 The mode shapes of a uniform fixed-free bar are of the form

Use the assumed modes method with �1(x), �2(x), �3(x) as trial functions to
approximate the lowest natural frequency and mode shapes for the tapered bar
of Figure P11.6.

L

r

r(x) = r0(1 – l x)2
r0 = 5 cm
l  = 1 cm/m
L = 3 m
E = 200 × 109 N/m2

r = 7500 kg/m3

FIGURE P11.6

fn(x) =  sin c (2n - 1)px

2L
d  n = 1, 2, 3, . . .

w1(x) = x (x - L)  w2(x) = x (x - L)2  w3(x) = x (x - L)3

w1(x) =  sin ap 

x
L
b  w2(x) = sin a2p 

x
L
b  w3(x) = sin a3p 

x
L
b

( f, g)v =

L

L

0
EAf (x)

d 2g

dx 2 dx
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11.7 Use a one-element, finite-element model to approximate the lowest natural
frequency of a uniform bar of mass density �, cross-sectional area A, elastic
modulus E, and length L that is fixed at one end and has a block of mass m
attached at one end.

11.8 Derive the element stiffness and mass matrices for a tapered bar of rectangular
cross-section, A(x) � A0 (1 � 	x).

11.9 Use a one-element, finite-element model to approximate the lowest nonzero
torsional natural frequency of a uniform shaft of mass density �, polar moment
of inertia J, shear modulus G, and length L that has a thin disk of mass
moment of inertia I1 attached at one end and a thin disk of mass moment of
inertia I2 attached at the other end.

11.10 Use a one-element, finite-element model to approximate the lowest natural
frequencies of a uniform beam of mass density �, cross-sectional area A, cross-
sectional moment of inertia I, elastic modulus E, and length L that is free at
both ends.

11.11 Derive the element m34 of the element mass matrix for a beam element.
11.12 Derive the element k23 of the element stiffness matrix for a beam element.
11.13 Use a two-element, finite-element model to approximate the two lowest natural

frequencies and their corresponding mode shapes for the system of Figure P11.13.

11.14 Use a two-element, finite-element model to approximate the two lowest
torsional natural frequencies for the system of Figure P11.14.

11.15 Use a three-element, finite-element model to approximate the lowest natural
frequency and its corresponding mode shape for the system of Figure P11.15.

m

L

E = 200 × 109 N/m2

A = 3.5 × 10–5 m2

L = 2.5 m
r = 7000 kg/m3

m = 1.2 kg
k1 = 2 × 106 N/m
k2 = 1.4 × 106 N/m

k1 k2

FIGURE P11.15

L

I

J = 3.2 × 10–5 m4

G = 80 × 109 N/m2

r = 7000 kg/m3

L = 4.2 m
I = 1.5 kg · m2

FIGURE P11.14

L

k
E = 200 × 109 N/m2

A = 1.6 × 10–4 m2

L = 2.5 m
k = 1 × 107 N/m

FIGURE P11.13
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11.16 Use a three-element, finite-element model to approximate the steady-state
response of the system of Figure P11.16.

11.17 Use a three-element, finite-element model to approximate the forced response
of the system of Figure P11.15 when the end of the bar is subject to the
excitation of Figure P11.17.

11.18 Use a two-element, finite-element model to approximate the two lowest natural
frequencies of transverse vibration of the beam of Figure P11.18.

11.19 Use a two-element, finite-element model to approximate the lowest natural
frequencies of the beam of Figure P11.19.

11.20 Use a two-element, finite-element model to approximate the two lowest natural
frequencies of the system of Figure P11.20. Use elements of equal length.

11.21 Use a three-element, finite-element model to approximate the three lowest
natural frequencies of the system of Figure P11.21.

k

m

3L
4

3EI
L3

L
4

1
2

k =

m =     rAL

FIGURE P11.20

L

E, I, r, A

FIGURE P11.19

L

E, I, r, A

FIGURE P11.18

F

8000 N

t (s)0.01 0.02

FIGURE P11.17

L1 L2

L1 = 2.1 m
G1 = 40 × 109 N/m2

J1 = 1.8 × 10–5 m4

r1 = 5000 kg/m3

L2 = 1.0 m
G2 = 80 × 109 N/m2

J2 = 4.3 × 10–6 m4

r2 = 7000 kg/m3

I = 0.25 kg · m2

T0 = 100 N · m
w = 500 rad/s

A
B C

I

T0 sinwt

Use two elements for
AB and one element
for BC

FIGURE P11.16
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11.22 Use a two-element, finite-element model to approximate the lowest natural
frequency of the system of Figure P11.22.

11.23 Use a two-element, finite-element model for the beam to approximate the two
lowest natural frequencies of the system of Figure P11.23.

11.24 Use a two-element, finite-element model to approximate the two lowest natural
frequencies of the system of Figure P11.24.

11.25 Use a three-element, finite-element model to approximate the steady-state
amplitude of the machine of the system of Figure P11.25.

m

1.2 m

I = 1.9 × 10–5 m4

m = 210 kg
E = 200 × 109 N/m2

r = 7500 kg/m3

A = 1.4 × 10–2 m2

F0 = 1500 N
w  = 200 rad/s

F0 sinwt

FIGURE P11.25

60 cm

r = 8000 kg/m3

A = 1.1 × 10–4 m2

E = 200 × 109 N/m2

Ib = 1.9 × 10–6 m4

m = 1.2 kg
I = 0.8 kg · m2

FIGURE P11.24

r = 7600 kg/m3

A = 4.5 × 10–3 m4

m = 100 kg
E = 200 × 109 N/m2

I = 1.8 × 10–6 m4

80 cm

m

80 cm

FIGURE P11.23

1.2 m 1.8 m
A B

C

IAB = 4.1 × 10–6 m4

EAB = 200 × 109 N/m2

AAB = 6.3 × 10–4 m2

ρAB = 7500 kg/m3

EBC = 140 × 109 N/m2

ABC = 5.4 × 10–5 m2

ρBC = 5600 kg/m3

IBC = 5.3 × 10–7 m4

FIGURE P11.22

2 m 1.3 m E = 200 × 109 N/m
I = 4.6 × 10–6 m4

r = 7500 kg/m3

A = 1.5 × 10–2 m2

FIGURE P11.21
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11.26 Use a three-element, finite-element model to approximate the steady-state
amplitude of the machine of the system of Figure P11.26.

11.27 The street light has a mass of 25 kg. The wind velocity is 60 m/s, but the
force distribution is as shown in Figure P11.27. Use a three-element, finite-
element model of the structure to approximate the steady-state amplitude of
the light.

11.28 Use a three-element, finite-element model to approximate the steady-state
response of the system of Figure P11.28.

F0 sinwt

L
3

2L
3

F0 = 800 N
w  = 120 rad/s
E = 200 × 109 N/m2

A = 4.1 × 10–3 m2

I = 8.6 × 10–5 m4

r = 7500 kg/m3

L = 3 m

FIGURE P11.28

4 m

Parabolic

E = 200 × 109 N/m2

ri = 6 cm
ro = 8 cm

F0 sinwt

ro ri

FIGURE P11.27

k

m

F0 sinw t

L
2

L
2

L = 2.6 m
E = 200 × 109 N/m2

I = 4.5 × 10–6 m4

A = 3.1 × 10–2 m2

r = 7000 kg/m3

m = 20 kg
k = 2 × 105 N/m

FIGURE P11.26
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11.29 A plate and girder bridge is modeled as a simply supported beam, as illustrated
in Figure P11.29. A vehicle is traveling across the bridge with the velocity v. Use
a three-element, finite-element model of the bridge to determine the time-
dependent response of the structure as the vehicle is crossing the bridge.

11.30 A simple model of a one-story frame structure is shown in Figure P11.30(a).
Use one beam element to model each of the columns and two bar elements to
model the girder. Determine the response of the structure if it is subject to the
blast force of Figure P11.30(b).

11.31 Use the finite-element model of Chapter Problem 11.30 to determine the
response of the structure if it is subject to the earthquake of Figure P11.31.

11.32 Use the finite-element model of Chapter Problem 11.30 to determine the
response of the structure if HVAC equipment on the girder produces a lateral
harmonic force of magnitude 3000 N at a frequency of 500 rpm.

2.5 m/s

0.2 s 2.4 s x

FIGURE P11.31

(a) (b)

5.1 m

2000 kg

2.5 m
E = 200 × 109 N/m2

ρ = 7500 kg/m3

A = 3.1 × 10–2 m2

I = 1.7 × 10–5 m4

F(N )

7000

t(s)
(t)

0.08

FIGURE P11.30

Vehicle of mass
1100 kg

L

Lv

v Lv = 2.5 m
v = 60 m/s
L = 8 m
I = 1.5 × 10–6 m4

r = 7500 kg/m3

A = 3.2 × 10–2 m2

E = 200 × 109 N/m2

FIGURE P11.29
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11.33 Use two bar elements to model each member of the truss of Example 11.12 and
approximate the three lowest natural frequencies of the truss.

11.34 Use one bar element to model each member of the truss of Figure P11.34 and
approximate its two lowest natural frequencies.

11.35 Use one bar element to model each member of the truss of Figure P11.35 and
approximate its two lowest natural frequencies.

11.36 A beam is placed on an elastic foundation whose stiffness per unit length is k.
Derive the element k23 of the local stiffness matrix for a beam element of length
l including the stiffness of the elastic foundation.

11.37 A beam is subject to a constant axial load of magnitude P, which is applied
along the beam’s neutral axis. Derive the element k31 of the local stiffness matrix
for a beam element of length l, including the effect of transverse displacement
due to the axial load.

11.38 A beam is rotating about an axis with an angular velocity �. Determine the
element m13 of the local mass matrix for a beam element of length l, including
the kinetic energy due to the rotation of the beam. The left end of the element
is a distance r from the axis of rotation.

E = 140 × 109 N/m2

A = 1.6 × 10–3 m2

1.5 m 1.5 m

1.5 m

FIGURE P11.35

30 cm
40 cm

20 cm

E = 140 × 109 N/m2

A = 1.6 × 10–3 m2

FIGURE P11.34



C h a p t e r 1 2

NONLINEAR VIBRATIONS

12.1 INTRODUCTION
All physical systems are inherently nonlinear. Often assumptions and approximations are
made such that the mathematical problem governing the behavior of the system is linear.
This is done for an obvious reason; the solution of a linear problem is much easier than the
solution of a nonlinear problem. Often, the results obtained using the linear approxima-
tion are sufficient for engineering work. Except for the discussions of free and forced oscil-
lations when Coulomb damping is present, this text has thus far considered only linear
systems.

Nonlinear systems are much more difficult to analyze than linear systems because the
principle of linear superposition is not valid for nonlinear systems. Among the ramifica-
tions of the absence of a superposition principle are

• The homogeneous solution of a second-order nonlinear differential equation is not a
linear combination of two linearly independent solutions.

• The general solution of a nonlinear differential equation cannot be written as the sum
of a homogeneous solution and a particular solution, which is independent of initial
conditions. The forced response of a nonlinear system cannot be separated from its
free-vibration response.

• The method of superposition cannot be used to add the forced responses due to a
combination of excitations. The nonlinearity causes the responses to interact.
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• Since the convolution integral is derived by using linear superposition, it does not
apply to nonlinear systems. There is no equivalent of the convolution integral for non-
linear systems.

• The Laplace transform cannot be used to derive the solution of nonlinear differential
equations.

The focus of this chapter is on the qualitative analysis of nonlinear systems. Quantitative
results are presented to show how the nonlinearities act to produce nonlinear phenomena.

12.2 SOURCES OF NONLINEARITY
Let x1, x2 , . . . , xn be the generalized coordinates for a conservative n degree-of-freedom
system. The kinetic energy of the system is a function of the generalized coordinates and
their derivatives

(12.1)

The potential energy of the system is a function of the generalized coordinates

(12.2)

If the system is linear, then its kinetic energy is independent of the generalized coordinates
and is a quadratic function of their derivatives. A conservative system is nonlinear if either
the kinetic or potential energy cannot be written in a quadratic form.

The kinetic energy function contains terms other than quadratic terms when the iner-
tia properties of the system are dependent on the generalized coordinates or other kine-
matic relationships between the generalized coordinates are nonlinear. Nonlinear terms due
to the latter are called geometric nonlinearities.

Terms other than quadratic terms appear in the potential energy function because of
geometric nonlinearities or nonlinear force-displacement relations in flexible elements.
Nonlinear terms due to the latter are called material nonlinearities.

V = V (x1, x2, Á , xn 
)

T = T (x1, x2, Á , xn, x
#

1, x
#

2, Á , x# n 
)

EXAMPLE 1 2 . 1
Derive the governing differential equation for the simple pendulum of Figure 12.1.

SO LU T I ON
The kinetic energy function for the pendulum is

(a)

With the plane of the support as the datum,

(b)

The kinetic energy function is quadratic, but the potential energy function is not. The non-
quadratic term in the potential energy function is a result of the geometric relationship
between the instantaneous position of the particle and the datum.

V = -mgl cos u

T =

1

2
m(l u

#

)2
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Lagrange’s equation, Equation (7.10), is applied with L � T � V,

(c)

giving (d)u
$

+

g

l
  sin u = 0

d
dt

 a 0L

0u
# b -

0L
0u

= 0

θ

l

m

FIGURE 12.1
The differential equation governing
oscillations of the simple pendulum
of Example 12.1 is nonlinear.

The nonlinear term in the differential equation of Example 12.1 is a transcendental
function of the dependent variable. Approximate solutions to such equations are made by
replacing the transcendental function by its Taylor series expansion. For the equation of
Example 12.1, this leads to

(12.3)

Approximations can be made by assuming � is small. A linear approximation is obtained
by ignoring all but the linear terms. The simplest nonlinear approximation is obtained by
keeping only the largest nonlinear term. Since this term is proportional to the cube of the
dependent variable, the nonlinearity is called a cubic nonlinearity.

u
$

+

g

l
 au -

u3

6
+

u5

120
-

Áb = 0

EXAMPLE 1 2 . 2
Derive the differential equations governing the motion of the system of Figure 12.2.

SO LU T I ON
Let x, the change in length of the spring from its length when the system is in equilibrium
with a length l, and � be the generalized coordinates. The system’s kinetic energy function is

(a)T =

1
2

m  3x 
# 2

+ (l + x)2u2
# 4
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Assuming the spring is linear and using the plane of the support as the datum, the system’s
potential energy function is

(b)

Application of Lagrange’s equations leads to

(c)

and (d)m (l + x)2 u
$

+ m (l + x )g sin u + 2m (l + x )x#   u
#

= 0

m x
$

+ k x - m (l + x )u2
#

+ mg (1 - cos u ) = 0

V =

1

2
k ax +

mg

k
b2

- mg (l + x ) cos u

FIGURE 12.2
(a) The “swinging spring” in equlibrium;
(b) the oscillations of the swinging
spring are described by coupled nonlin-
ear differential equations. The coupling
occurs only in the nonlinear terms. The
linear approximation calculating the
extensional mode is uncoupled from the
swinging mode.

θ
l

m

k

(a) (b)

m

l + x

If x and � are assumed small, Taylor series expansions used for the transcendental func-
tions, and only linear terms retained, the differential equations of Example 12.2 becomes

(12.4)

(12.5)

Thus, a linear approximation predicts two uncoupled modes: a spring mode with a natural
frequency of and a pendulum mode with a natural frequency of Coupling
occurs only in the nonlinear terms. If only the largest nonlinear terms are retained, the
governing differential equations become

(12.6)

(12.7)

Since the largest nonlinear terms involve quadratic products of the generalized coordinates
and their derivatives, the nonlinearities are termed quadratic.

Note that l is not the unstretched length of the spring, but its length when the system
is in static equilibrium, l � l0 � mg >k. Hence, the effect of gravity causing a static spring
force does not cancel with the static spring force in a nonlinear differential equation. Both
must be included in the potential energy formulation.

l u
$

+ g u +

g

l
 ux + 2x#  u

#

= 0

m x
$

+ k x - ml u 
2

#

+

m g

2
 u2

= 0

1g >l.1k >m

u
$

+

g

l
  u = 0

mx
$

+ k x = 0
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A material nonlinearity occurs when a flexible component has a nonlinear constitutive
equation. The system of Figure 12.3 is used to model most one-degree-of-freedom systems
with viscous damping and harmonic excitation. If the spring has a force-displacement rela-
tion of the form

(12.8)

where f is a nonlinear function of x, then the governing differential equation is nonlinear, as

(12.9)

If the spring is unstretched when it is unloaded, then a Taylor series expansion is used to
expand f (x ) about x � 0. If the spring has the same properties in compression as in ten-
sion, only odd powers of x appear in the expansion:

(12.10)

The values of the coefficients in the Taylor series expansion should decrease as the power
increases. The expansion is usually truncated after the cubic term, leading to

(12.11)

where �n is the natural frequency of the corresponding linear system, � is the damping ratio
for the linear system, and

(12.12)

A spring for which � is positive is called a hardening spring. A spring for which � is negative
is called a softening spring.

Equation (12.11) is called Duffing’s equation. Duffing’s equation is nondimensionalized
by introducing

(12.13)

where (12.14)

is the static deflection of a linear spring of stiffness k1. Substituting Equation (12.13) into
Equation (12.11), rearranging, and dropping the * from the nondimensional variables leads to

(12.15)x
$

+ 2zx# + x + Px 
3

= ¶ sin rt

� =

mg

k1

x*
=

x
�
  t*

= vnt

a =

k3

k1

x
$

+ 2 zvnx
#

+ v2
nx + av2

nx
3

=

F0

m
 sin vt

m x
$

+ cx# + k1x + k3x 
3

+
Á

= F0 sin vt

mx
$

+ cx# + f (x) = F0 sin vt

F = f (x)

c

m
F0 sinωt

m
F0 sinωt

External
forces

m

Effective
forces

F = f(x)
f(x)

cẋ

mẍ

x

(a) (b)

=

FIGURE 12.3
(a) Model system for an
SDOF system with a nonlinear
elastic element, viscous
damping and harmonic
excitation; (b) FBDs used
to derive Equation (12.4).
Nonlinear terms are due
to a material nonlinearity.



742 CHAPTER 12

where

(12.16)

(12.17)

and

(12.18)

It is shown in Chapter 3 that the presence of some forms of damping causes nonlinear
terms in the differential equation. If the damping force is a function of the velocity,

(12.19)

then for Coulomb damping

(12.20)

and for aerodynamic drag

(12.21)

The general form of the differential equation for a system subject to a harmonic excitation
with nonlinear damping and a nonlinear flexible element is

(12.22)

Nonlinear terms can arise in differential equations because of an external excitation, as
in the following example.

mx
$

+ g (x# ) + f (x) = F0 sin vt

g (x#  ) = c x#  2

g (x#  ) = mmg  

x#

| x#  |

Fd = g (x# )

P = a �2

¶ =

F0

mv2
n�

r =

v

vn

EXAMPLE 1 2 . 3
The U-tube manometer of Figure 12.4 rotates about an axis other than its centroidal axis with
an angular velocity �(t). The liquid is incompressible with a mass density �, the column has
a total length l, and the tube has a cross-sectional area A. If the rotational speed is greater than
a critical speed, then all of the fluid is drained from the left leg. Assume the column of liquid

ω

h(t)

b

FIGURE 12.4
The oscillations of the column of liquid in
a U-tube manometer rotating about a non-
centroidal axis. When the angular velocity
is large enough to drain fluid from the left
leg, the oscillations are governed by a non-
linear differential equation.
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moves in the manometer as a rigid body and let h(t) represent the instantaneous height of the
column in the right leg. The potential energy function for this system is

(a)

The system’s kinetic energy function is

(b)

Neglecting viscous friction, Lagrange’s equation is applied to derive

(c)

The differential equation in Example 12.3 has a quadratic nonlinearity which is the
result of the externally imposed rotation. If the speed of rotation is time-dependent, the
differential equation has variable coefficients and the system is said to parametrically excited.

lh
$

+ gh +

v2

2
 (l  -  b  -  h)2

=

v2b 
2

2

T =

1

2
 rAlh

#

 
2

+

1

2
rAb 

2h v2
+

L

b

0
rAr 

2v2dr +

L

l -b -h

0
rAr 

2v2dr

V =

1

2
 rgAh 

2

12.3 QUALITATIVE ANALYSIS OF NONLINEAR SYSTEMS
Qualitative analysis of nonlinear systems is of importance since exact analytical solutions
are often not available. Qualitative analysis is used to predict general features of the motion
including stability and long-time behavior.

The most useful tool for qualitative analysis of a nonlinear system is the state plane, a
graphical time history of the relationship between two variables. The state plane for a one
degree-of-freedom system is a family of curves showing the history of the relation between
velocity and displacement. The curves in the state plane are called trajectories. Attractors are
points or curves to which the trajectories eventually approach.

EXAMPLE 1 2 . 4
Draw the state plane for the unforced Duffing’s equation with no damping for a hard-
ening spring.

SO LU T I ON
Let v � x. Then

(a)

Duffing’s equation, Equation (12.11), becomes

(b)

Integrating both sides with respect to x gives

(c)

where C is the constant of integration, dependent on initial conditions. The state plane for
is shown in Figure 12.5. Different trajectories correspond to different values of C.P =

1
2

1
2

v 
2

= C -

1
2

x 
2

-

1
4

 Px 4

v 
dv
dx

= -x - Px 3

x
$

=

dv
dt

=

dv
dx

 

dx
dt

= v 

dv
dx
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The system of Figure 12.3 is in equilibrium when its velocity is zero and the sum of
the spring force and damping force is zero. For a linear system, this occurs only when
v � 0 and x � 0. A nonlinear system may have more than one equilibrium point. An
equilibrium point is stable if trajectories approach the equilibrium point for large time.
An equilibrium point is unstable if trajectories diverge from the equilibrium point for
large time.

The equilibrium points for a system governed by Equation (12.22) are v � 0 and the
values of x such that f � 0. The stability of an equilibrium point is determined by analyz-
ing the trajectories in the vicinity of the equilibrium point. Let

(12.23)

be a point in the phase plane in the vicinity of the equilibrium point, x0. Substituting
Equation (12.23) into Equation (12.22) with F0 � 0 leads to

(12.24)

Expanding f and g about x � x0 and , respectively, and keeping only linear terms gives

(12.25)

The general solution of Equation (12.25) is

(12.26)

If either �1 or �2 have a positive real part, then the equilibrium point is unstable.
If �1 and �2 are real and have the same sign, the equilibrium point is called a node. If

�1 and �2 are real and have different signs, the equilibrium point is called a saddle point,

�x = Ae 
b1t + Be 

b2t

�x
$

+

dg 

d x#
 (0)�x# +

df 

dx
 (x0)�x = 0

x# = 0

� x
$

+ g (�x#  ) + f (x0 + �x) = 0

x = x0 + �x

–4

–4

4

8
υ

–8

4 8 x–8

FIGURE 12.5
State plane for unforced and undamped Duffing’s equation.
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(a) Stable node (b) Saddle point

(c) Unstable focus (d) Center

FIGURE 12.6
State planes in the vicinity of
equilibrium points: (a) stable
node, (b) saddle point,
(c) unstable focus, and
(d) center.

EXAMPLE 1 2 . 5
Determine the equilibrium points and their nature for the damped unforced Duffing’s
equation.

SO LU T I ON
The equilibrium points are the values of x such that

(a)
For a hardening spring, the only equilibrium point for Duffing’s equation is x � 0. For a
softening spring, the system has the additional equilibrium points

(b)x0 = �A
1

-P

x + Px 
3

= 0

and is, by definition, unstable. If �1 and �2 are complex conjugates, the equilibrium point
is called a focus. A special case of a focus occurs when �1 and �2 are purely imaginary, in
which case the equilibrium point is called a center. Sketches of state planes in the vicinity
of a node, saddle point, focus, and center are given in Figure 12.6.
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The nature of the equilibrium point corresponding to x0 � 0 is investigated by assuming
x � �x, which leads to

(c)

Hence, he equilibrium point x � 0 is a stable node if � 1, and is a stable focus if � � 1.
For a softening spring, the natures of the additional equilibrium points are determined

using

(d)

Substituting into Duffing’s equation and linearizing leads to

(e)

and

(f)

Since the two values of � are real with opposite signs, these equilibrium points are saddle
points and thus, by their very nature, unstable.

b = -z � 2z2
+ 2

�x
$

+ 2z�x# - 2�x = 0

x = � A -

1
P

+ �x

Ú

b1, 2 = -z � 2z2
- 1

The phase plane for a system subject to a forced excitation is usually difficult to deter-
mine solely by analytical methods. Often, these phase planes must be drawn by graphical
methods or numerical results. Figure 12.7 shows several phase planes corresponding to the
forced Duffing’s equation. 

–1

–1

1

2 υ

–2

1 2 x–2

(a)

FIGURE 12.7
Examples of state planes
for (a) forced, undamped
Duffing’s equation and
(b) forced, damped Duffing’s
equation.
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12.4 QUANTITATIVE METHODS OF ANALYSIS
Exact solutions to nonlinear vibration problems exist only for a few special free-vibration
problems. Exact solutions for nonlinear forced-vibration problems are almost nonexistent.
Consider Equation (12.22) with F0 � 0. Let . Then, using the chain rule for differ-
entiation, as in Example 12.4, Equation (12.22) can be written as

(12.27)

For certain forms of g (v) and f (x), Equation (12.27) can be integrated, yielding v(x),
which, in turn, can be integrated, yielding t (x).

Consider an undamped system, g (v) � 0. Integrating Equation (12.27) with respect
to x and using x � x0 and v � 0 when t � 0 yields

(12.28)

Rearranging and integrating with respect to x gives

(12.29)

Since Equation (12.29) gives t as a function of x, it is not useful for computing the time
history of motion, but can be used for frequency calculations. For many forms of f (x),
closed-form evaluation of the integral does not exist, and numerical integration is used.

t =

L

x

x0

d l

c2
L

x0

l

f (h)d h d1>2

v (x ) = c2
L

x0

x
f (h)d h d1>2

v  

dv
d x

+ g (v ) + f (x ) = 0

v = x#

–2

–2

2

4 υ

–4

2 4 x–4

(b)

FIGURE 12.7
(continued)
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Care must be taken when evaluating Equation (12.29) numerically because the integrand
is singular for � � 0.

Since exact solutions are not often available, numerical solutions are used. Self-starting
methods such as Runge-Kutta are convenient for numerical solution of nonlinear equations.

The general form of the equations for a nonlinear n degree-of-freedom system is

(12.30)

Let v � and x be independent n-dimensional vectors. Equation (12.30) can be rewritten
as two systems of first-order equations

Analytical solutions are preferable to numerical solutions because they can be used to
predict trends, analyze the effects of parameters, and develop qualitative results. Thus,
approximate analytical methods are often used to approximate the solution of nonlinear
problems.

If the magnitude of the nonlinear term is small or the amplitude of motion is small,
then a perturbation method can be used to develop an approximate solution. Let P be a
small nondimensional parameter, The small parameter may be a measure of the
amplitude or a measure of the nonlinearity. For a one degree-of-freedom system, the gen-
eralized coordinate is expanded in a series of powers of P,

(12.31)

Equation (12.31) is substituted into the governing differential equation. Coefficients of
like powers of P are collected and set to zero independently. The result is a set of linear dif-
ferential equations that are successively solved for xi(t ), i � 1, 2, . . . .

The series of Equation (12.31) is convergent. However, it converges slowly and thus a
finite number of terms are inadequate to represent the solution for all t. When only a few
terms are included, nonperiodic terms appear which cause the solution to be unbounded
for large t. The terms which produce these nonuniformities are called secular terms. Since
it is impossible to include an infinite number of terms in the evaluation, the secular terms
must be removed. A variety of perturbation methods have been developed to remove sec-
ular terms. These include the method of strained parameters, the method of renormaliza-
tion, the method of multiple scales, and the method of averaging. The application of these
methods to nonlinear oscillation problems is beyond the scope of this book, but an exhaus-
tive treatment is found in Nayfeh and Mook. The method of renormalization is illustrated
in Section 12.5.

x (t ) = x 0(t ) + Px1(t ) + P
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P V 1.

d x1

dt
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dt
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o     o

d xn
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1 = h1(x, x# , t )
x
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 o
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12.5 FREE VIBRATIONS OF SDOF SYSTEMS
The free vibrations of a conservative system are periodic. If the spring in the system of
Figure 12.3 has the same properties in compression as in tension, then each period of
motion can be broken into four parts, each of which takes the same amount of time. If the
mass is displaced a distance x0 from equilibrium and released from rest, the period of the
resulting motion can be calculated by using Equation (12.29) as four times the time it takes
the mass to go from its initial position to x � 0,

(12.32)

Equation (12.32) shows that, in contrast to a linear system, the period and the correspon-
ding natural frequency for a nonlinear system depend on the initial conditions.

T =

4

22L

0

x 0

d l

C1x0
l  

f (h)dh D1>2

EXAMPLE 1 2 . 6
A mass, attached to a softening spring with a cubic nonlinearity, is displaced a nondimen-
sional distance x0 from equilibrium and released from rest. Determine the period of the
resulting oscillations as a function of and x0.

SO LU T I ON
In the notation of Section 12.2 and Equations (12.10) through (12.15), the nondimen-
sional force developed in a softening spring is

(a)

Thus, the nondimensional period is determined from Equation (12.32)

(b)

where x0 is the nondimensional initial displacement. The dimensional period is the nondi-
mensional period divided by the linear natural frequency. Proceeding with the algebra
gives
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where is the complete elliptic integral of the first kind of argument k, where

(d)

A table of elliptic integrals, such as in Abramowitz and Stegun, is used to generate
Figure 12.8.
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0
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2
0
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2
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2.4
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� = 0.7

� = 0.3
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FIGURE 12.8
Period of Duffing’s equation as function of displacement x0 for several values of .	

When the integral of Equation (12.32) cannot be evaluated in closed form, numerical
integration must be used. However, the integrand is singular at � � x0. Let 
 be a small
nondimensional value. Then for the system of Example 12.6,

(12.33)

The first integral is evaluated by numerical integration. The integrand of the second inte-
gral is expanded by the binomial theorem, and the resulting expansion is integrated term
by term. The expansion is truncated such that desired accuracy is achieved.
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Perturbation methods can be applied to approximate the period of a nonlinear system.
When the straightforward expansion, Equation (12.31), is substituted into the unforced,
undamped Duffing’s equation, the results are

(12.34)

Coefficients of powers of P are set to zero independently, leading to a set of hierarchical
equations

(12.35)

(12.36)

(12.37)

The solution for x0 is

(12.38)

where A and � are determined using initial conditions. Substitution of Equation (12.38)
into Equation (12.36) and use of trigonometric identities lead to

(12.39)

The particular solution of Equation (12.39) is

(12.40)

and the resulting two-term approximation for x(t) is

(12.41)

Unfortunately, the expansion of Equation (12.41) is not periodic and grows without bound
as t gets large. Indeed, when t is as large as 1/P, the second term in the expansion is as large
as the first term, rendering it invalid.

The problem with the straightforward expansion is that it cannot account for the vari-
ation of the period with initial conditions, as mandated by the exact solution. The method
of renormalization is used to take this variation into account and render the two-term
straightforward expansion uniform. A new time scale is introduced according to

(12.42)

Equation (12.41) is rewritten with w as the independent variable
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Taylor series expansions are used to expand the trigonometric functions and coefficients of
powers of P are recollected, leading to

(12.44)

The secular term is removed from Equation (12.44) by choosing

(12.45)

leading to

(12.46)

where

(12.47)

The binomial expansion is used to invert Equation (12.47)

(12.48)

The amplitude is determined by application of the initial conditions. If x(0) � 
 and
, then

(12.49)

(12.50)

A natural frequency approximation can be obtained to greater accuracy by calculating
higher-order terms in the expansion for x, and choosing the �i from Equation (12.48) to
eliminate secular terms.

For damped systems, the damping term is often small enough to be ordered with the
nonlinearity. To this end, define

(12.51)

where � is of order 1. When the straightforward expansion is used in the damped, unforced
version of Duffing’s equation, the following equations result, defining x0 and x1:

(12.52)

(12.53)

In order to use the method of renormalization for damped systems, the solutions of
Equations (12.52) and (12.53) are written using complex exponentials
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When Equation (12.47) is used to remove secular terms from the two-term expansion,

(12.55)

and the resulting two-term uniformly valid expansion is

(12.56)

Thus, when secular terms are removed through x1, damping has no effect on the nat-
ural period. The exponential decay, comparable to that of a linear system, is apparent.

In summary, the natural frequency of a nonlinear system depends on its initial condi-
tions. The straightforward perturbation expansion and the method of renormalization can
be used to determine an approximation to the natural frequency when the nonlinearity is
small or when the amplitude is small. Small viscous damping has an effect on free vibra-
tions of nonlinear systems similar to that on free vibrations of linear systems, causing an
exponential decay of amplitude.

12.6 FORCED VIBRATIONS OF SDOF SYSTEMS
WITH CUBIC NONLINEARITIES
Consider the damped Duffing’s equation subject to a two-frequency excitation,

(12.57)

Use of the straightforward expansion, Equation (12.31), produces the following two-term
approximation to the solution of Equation (12.57):
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(12.58)
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The expansion of Equation (12.58) is nonuniform because of the secular terms arising
from the free-vibration solution. Additional nonuniformities occur when the values of r1 and r2
are such that the denominators of other terms are very small. Examination of Equation (12.58)
suggests that an exhaustive study of the frequency response of a one degree-of-freedom system
with a cubic nonlinearity requires the following cases be considered:

1. No resonances.

2. r1 � 1 or r2 � 1, primary resonance.

3. r1 � or r2 � , superharmonic resonance.

4. r1 � 3 or r2 � 3, subharmonic resonance.

5. 2r2 � r1 � 1, 2r1 � r2 � �1, 2r2 � r1 � �1, r1 � r2 � 1 � �1, r1 � r2 � 1 � �1, 
or r1 � r2 � 1 � 1, combination resonances.

6. Conditions when two resonances occur simultaneously. For example, when r1 � and
r2 � , both superharmonic and combination resonances occur.

A resonance condition occurs when the free-vibration contribution to the solution
does not decay with time. The steady-state solution has a contribution from the free vibra-
tions as well as the forced steady-state response. For a linear system, the free-vibration
response is periodic with a frequency equal to the natural frequency, and the forced
response due to a harmonic excitation is periodic with a frequency equal to the excitation
frequency. For a linear system, only the primary resonance can occur when the excitation
frequency is near the natural frequency.

For a system with a cubic nonlinearity, Equation (12.44) shows that the free-vibration
response includes a periodic term whose frequency is three times the linear natural fre-
quency. Thus oscillations at this frequency are sustained in the absence of an external exci-
tation. Any additional energy input may lead to growth of the free oscillations and thus
produce the subharmonic resonance.

The forced response of a system with a cubic nonlinearity to a harmonic excitation
includes a periodic term whose frequency is three times the excitation frequency. Thus,
when the excitation frequency is one-third of the natural frequency, this term tends to
excite the free vibrations and causes the free-vibration term to be sustained, even in the
presence of small damping. This produces the superharmonic resonance.

When a system with a cubic nonlinearity is subject to a multifrequency excitation, the
forced response includes periodic terms at frequencies that are combinations of the excita-
tion frequencies. When this combination of frequencies is close to the natural frequency,
free oscillations are sustained and a combination resonance exists.

The straightforward expansion is nonuniform for all r1 and r2, even when no resonance
conditions exist. The method of renormalization can be used to render the two-term
expansion uniform, but it can only be used to predict periodic responses, and cannot pro-
vide information about the stability of equilibrium points. Possibly the best method for
obtaining uniform expansions to approximate the solution of nonlinear forced-vibration
problems is the method of multiple scales. The results provided in the following discussion
can be obtained using the method of multiple scales. Since its application is beyond the
scope of this text, the discussion focuses on qualitative behavior. More detail is available in
Nayfeh and Mook.

5
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1
3

1
3

1
3
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1. No resonances. For most values of r1 and r2, no resonance conditions exist. However, the
expansion of Equation (12.58) is still nonuniform. When secular terms are removed, the
solution is the sum of the free-vibration response and the forced response. The free vibra-
tions decay exponentially, but the frequency of free vibrations depends on the initial con-
ditions and the amplitudes and frequencies of the excitation.
2. Primary resonance. A primary resonance occurs when an excitation frequency is near
the system’s linear natural frequency, corresponding to the nondimensional frequency
being near 1. When the amplitude of the excitation is of order 1, the straightforward per-
turbation expansion predicts an infinite amplitude response, even in the presence of small
damping. When the amplitude of the excitation is the same order as the nonlinearity and
the damping, secular terms occur in x1.

The frequency response in the vicinity of the primary resonance is studied by introduc-
ing a detuning parameter, defined by

(12.60)

The amplitude and phase of the resulting motion vary with time, but possible steady
states can be identified. The following approximate equations can be derived for the steady-
state amplitude and the steady-state phase angle:

(12.61)

(12.62)

where (12.63)

Equations (12.61) and (12.62) are plotted in Figures 12.9 and 12.10. Note from these
figures that there is a frequency range where three possible steady-state amplitudes and
phases exist for a single frequency. This leads to an interesting phenomenon, peculiar to
nonlinear systems, called the jump phenomenon. Imagine that the amplitude of excitation
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is fixed, but its frequency is slowly increased, starting slightly below the linear natural fre-
quency. As the frequency is increased the steady-state amplitude follows the upper branch
of the frequency response curve, until the point of vertical tangency is reached. When the
frequency is increased beyond this critical value, the only possible steady-state amplitude is
finitely lower than the amplitude at the critical frequency, and the amplitude will “jump”
to this lower value. Now if the frequency is decreased from this value, the steady-state
amplitude will follow the lower branch of the frequency response curve, until the point of
vertical tangency is reached, when it will “jump” to the upper branch.

A state plane showing the relation between the amplitude and phase can be plotted for
Duffing’s equation with a primary resonance for parameters where the triple valuedness
exists. Two equilibrium points are stable foci corresponding to the points on the upper and
lower branches of the frequency response curve. A third equilibrium point is a saddle point
corresponding to the intermediate amplitude between the points of vertical tangency. Since
this equilibrium point is unstable, it can never be physically attained. The initial conditions
dictate which of the two stable foci corresponds to the steady-state solution.
3. Superharmonic resonance. When either r1 or r2 is near , the free-oscillation term does
not decay exponentially. The steady-state response then consists of the forced response
whose period is three times that of the linear natural period plus the free response, whose
frequency is adjusted to three times that of the excitation. Thus the total response is peri-
odic with the period equal to that of the excitation.

Introduction of a detuning parameter when r1 is near , 3ri � 1 � P, leads to the fre-
quency response equation

(12.64)

which is cubic in A2 and hence has three solutions. For a certain frequency range, three real
solutions exist. The triple valuedness of the amplitude leads to a jump phenomenon simi-
lar to that for the primary resonance, as shown in Figure 12.11.
4. Subharmonic resonance. When an excitation frequency is near three times the linear
natural frequency, a subharmonic resonance may occur. The frequency response curve when
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ri is near 3, ri � 3 � P is given by

(12.65)

Equation (12.65) has the trivial solution, A � 0, and two solutions obtained as roots of a
quadratic equation in A2. The quadratic equation yields real solutions for A if and only if
the parameters satisfy the following inequality:

(12.66)

When nontrivial solutions exist, one corresponds to a stable focus and one corresponds to
a saddle point. The initial conditions determine whether the steady-state contribution from
the free-oscillation term is trivial or approaches the stable focus.

Thus, if Equation (12.66) is satisfied and the initial conditions are appropriate, the
free-vibration term will not decay, but will exist with an adjusted frequency of one-third of
that of the excitation. The total response is periodic with the period equal to that of the
excitation. The frequency response curve is illustrated in Figure 12.12.
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5. Combination resonances. Combination resonances are unique to nonlinear systems and
occur because of the nonlinear interaction of the particular solutions from x0 when x1 is calcu-
lated. When a combination resonance is present, a nontrivial free-vibration solution exists. The
nonlinearity tunes the free-vibration response to the appropriate combination of frequencies.

The jump phenomenon does occur when a combination resonance is present.
6. Simultaneous resonances. Simultaneous resonances occur when two resonance conditions
occur simultaneously. A detuning parameter is introduced for each resonance condition.
Analysis of the steady state is much more complicated. For some simultaneous resonances, as
many as seven equilibrium points exist in the state plane for the same frequency.

12.7 MDOF SYSTEMS
Nonlinear MDOF systems exhibit behaviors which are not present for linear systems. It is
instructive to consider free and forced vibrations of systems with quadratic nonlinearities
and systems with cubic nonlinearities. Let p1, p2, . . . , pn be the principal coordinates for a
linearized system with natural frequencies �1 � �2 � . . . � �n, respectively. Principal
coordinates that uncouple a linear system do not uncouple the system when nonlinearities
are considered. The differential equations for the principal coordinates are coupled through
nonlinear terms. For example, the free vibrations of an undamped two degree-of-freedom
system with quadratic nonlinearities are governed by

(12.67)

(12.68)

12.7.1 FREE VIBRATIONS
The free-vibration response of a system with quadratic nonlinearities includes periodic
terms with frequencies of �1 � �2, �1 � �2, 2�1, and 2�1. If �2 L 2�1, then the nonlin-
earity acts as if it excites the system with a harmonic excitation of frequencies �1 and �2,
producing a self-sustaining free oscillation, called an internal resonance.

In the absence of the internal resonance, and in the presence of damping, the free oscil-
lations of both modes decay exponentially, and are to first approximation independent. When
an internal resonance is present, free oscillations are sustained, even when damping is present
and causes coupling between the two modes. Even if only one mode is initially excited, the
internal resonance excites the other mode as well. Energy is continually exchanged between
the two modes.

An internal resonance occurs in a two degree-of-freedom system with cubic nonlinear-
ities when �2 L 3�1.

p
$

2 + v2
2 p2 + b1p 2

1 + b2 p1 p2 + b3 p2
2 = 0

p
$

1 + v2
1 p1 + a1p2

1 + a2 p1 p2 + a3 p2
2 = 0

EXAMPLE 1 2 . 7
Reconsider the spring pendulum of Example 12.2. The spring has a stiffness 1 	 103 N/m
and an unstretched length of 0.5 m. For what values of m will an internal resonance occur?

SO LU T I ON
Since l is the length of the spring when the system is in equilibrium,

(a)l = a0.5 +

mg

k
bm
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Since the approximate linear system is uncoupled when x and � are used as generalized
coordinates, these are also the principal coordinates and the linear natural frequencies are

(b)

Setting �2 � 2�1 gives m � 12.74 kg.

12.7.2 FORCED VIBRATIONS
The free oscillations are self-sustaining in MDOF systems subject to harmonic excitations
when the frequency of excitation is near certain values. A primary resonance occurs if the exci-
tation frequency is near any of the system’s natural frequencies. Subharmonic and superhar-
monic resonances occur as for one degree-of-freedom systems. Other secondary resonances
occur when the excitation frequency is near a certain combination of natural frequencies.

For a system with quadratic nonlinearities, these resonances occur when the excitation
frequency is near the sum or difference of two natural frequencies. Combination resonances
occur for multifrequency excitations. Simultaneous resonance conditions can also exist.

A complete summary of the phenomena present in nonlinear MDOF systems is too
extensive. The jump phenomenon occurs for certain types of resonances. Quenching can
also occur in certain systems with simultaneous resonances where introduction of the
second resonance causes the total response to decrease.

A saturation phenomenon can also occur for systems with quadratic nonlinearities.
The amplitude of a specific mode may build up as the amplitude of excitation is increased.
When the excitation amplitude reaches a certain value, the mode may become saturated;
its amplitude of response remains constant as the excitation amplitude is further increased.
The amplitudes of the other modes will continue to grow with the excitation amplitude.

In addition to primary resonances, subharmonic resonances, and superharmonic reso-
nances, combination resonances occur in a two degree-of-freedom system with cubic non-
linearities when one of the following conditions is met:

(12.69)

(12.70)

(12.71)

where 
 is the excitation frequency.

12.8 CONTINUOUS SYSTEMS
The nonlinear dimensionless partial differential equation governing transverse vibrations of
a uniform beam of length L and radius of gyration r, subject to a transverse load per unit
length F (x, t), is
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The nonlinear term is a result of the midplane stretching and is often ignored.
Let �1, �2, . . . be the natural frequencies of the linearized system and �1, �2, . . . be

their corresponding normalized mode shapes such that
(12.73)

for an appropriate scalar product.
The expansion theorem is used to develop an approximation to the solution of

Equation (12.72) as

(12.74)

where is a small dimensionless amplitude. Substituting Equation (12.74) into
Equation (12.72), taking the scalar product with respect to �j (x ) for an arbitrary j, and
using algebra and mode shape orthonormality lead to

(12.75)

The preceding procedure is similar to the modal analysis method of Chapter 10, except
that the members of the resulting set of ordinary differential equations are still coupled
through the nonlinear terms. The nonlinear terms, due to midplane stretching are cubic
nonlinearities. If the excitation is harmonic with a frequency 
, then from the results of
Section. 12.7, the following resonances can occur:
1. Internal resonances occur if �i L 3�j, or � L 2�j � �k for any i, j, and k. From

Table 10.4, for a fixed-pinned beam, �2 � 3�1 � 2.30, and for a fixed-fixed beam
�5 � 2�3 � �2 � 4.86. Internal resonances occur in each of these beams. It is noted
that for a pinned-pinned beam �3 � 2�2 � �1. However, the coefficient multiplying
p2

2 p1 in Equation (12.75) is zero for a pinned-pinned beam.

2. Primary resonance occurs if 
 L �i for any i.

3. Superharmonic resonance occurs if 
 � �i �3 for any i.

4. Subharmonic resonance occurs if 
 � 3�i for any i.

5. Combination resonances occur if 
 L 2�i � �j , 
 L �i  � �j � �k, or 
 L (�i  � �i)�2
for any i, j, and k.

12.9 CHAOS
Recent research in nonlinear phenomena has led to the development of a relatively new
branch of physics called chaos. The term chaos refers to the seemingly random response of a
nonlinear system due to deterministic excitation. Chaos occurs when a periodic excitation
leads to a nonperiodic response. It also occurs when slightly different initial conditions lead
to divergent responses.

Chaos has been observed and predicted in nonlinear systems in such diverse fields as
physics, medicine, economics, and meteorology. Chaos occurs in mechanical systems,
electrical systems, and chemical systems. Researchers observed that chicken pox epidemics

 + (F (x, t ),fj (x ))

 p
$

j + v2
j pj = P aL

r
b2  c1

2 a
q

k = 1
a

q

l = 1
a

q

m = 1

afj, 
0

2fk

0x 2 bL
1

0

0fl

0x
 
 0fm

0x
dx pk  

 pl   
pm d

P V 1

w (x, t ) = Pa
q

i = 1

pi(t )fi (x )

(fi (x ),fj(x )) = dij



762 CHAPTER 12

are periodic while measles epidemics are chaotic. Others have used chaos to model stock
market fluctuations. Chaotic fluctuations has been applied to turbulent flows.

Chaotic motion has been observed in many mechanical systems. Chaotic vibrations for
systems modeled by Duffing’s equation are well documented, as are chaotic motions of a
forced pendulum.

Analytical tools have been developed to identify and classify chaotic behavior. These
tools can be applied to analytical solutions for vibrating systems as well as experimental
observations. Some are described in the following discussion.

1. State space. Observation of the state space can indicate whether a system is chaotic. A
chaotic motion will have trajectories that do not repeat, when viewed in the phase plane. The
trajectories will fill a region of the phase plane without ever repeating. However, viewing of
the state plane is by itself insufficient to speculate that a motion is chaotic. An example of a
chaotic response from Duffing’s equation, Equation (12.15) as viewed in a state plane is
shown in Figure 12.13.
2. Poincaré sections. A Poincaré section is a graph of the phase plane response taken or
sampled only at fixed intervals of time. If the response is periodic and the time interval is
equal to the period, then the Poincaré section is only a point, as the same response is
obtained on each sampling. If the response is periodic and the time interval is less than
the period, but commensurate with the period, the Poincaré section is a finite number
of points.

The Poincaré section of a nonlinear system with a quadratic subharmonic resonance,
sampled at the period of excitation should have two points. The presence of the subhar-
monic resonance doubles the period of response. If a system subject to a periodic excita-
tion is sampled at intervals equal to the period of excitation and the Poincaré section is a
seemingly random collection of points, the response can be guessed to be chaotic. Poincaré
sections for responses of Duffing’s equation, Equation (12.15) are given in Figure 12.14.
These Poincaré sections illustrate that values of parameters determine whether a response
is chaotic.
3. Fourier transforms. The Fourier transform of a nonperiodic continuous function is an
extension of the Fourier series defined for periodic functions. The Fourier transform is

y

x

� = 0.2
ζ = 0
Λ = 1
r = 1.3

FIGURE 12.13
State plane for an apparently chaotic motion.
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FIGURE 12.14
(a) Poincare’ section for
periodic motion when
sampling interval is equal to
half the period. (b) Poincare’
section for periodic motion
when sampling interval is
incommensurate with period.
(c) Poincare’ section for a
chaotic motion.
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obtained from the Fourier series by allowing the period to become infinite. The resulting
Fourier transform of f (t) is defined as

(12.76)

The transform function, F(�), is a function of the transform variable, �. If the Fourier
transform of a periodic function is taken, then F(�) � 0 unless � is a multiple of the func-
tion’s fundamental frequency.

The Fourier transform decomposes a function into its harmonic components. The
strength of a component is given by the magnitude of F (�). The values of � which have
significant nonzero values of F (�) are called the spectrum of the function. If the Fourier
transform of the response of a nonlinear system due to a periodic response is a continuous
spectrum, then the response is chaotic.

For computational purposes the Fourier transform is replaced by the fast Fourier trans-
form. If f (t ) is known at k times, t1, t2, . . . , tk, then the discrete fast Fourier transform is
given by

(12.77)

Examples of Fourier transforms are given in Figure 12.15.
4. Bifurcation diagrams. Bifurcation diagrams can be used to identify one route to chaos.
The steady-state amplitude (or phase) of a nonlinear system as a function of a system param-
eter is plotted as the parameter is slowly changed. For a nonlinear system the steady-state
solution may split at a certain value of the parameter and two possible steady states exist for
greater values of the parameter. A bifurcation is said to occur for the value of the parameter
where the split occurs. The bifurcation is often the result of the sudden presence of a sub-
harmonic resonance. When this occurs the period of motion doubles. As the parameter is
increased, additional bifurcations may occur, where the period again doubles. If the system
is chaotic, as the parameter increases, bifurcations and period doubling occur more rapidly.
The chaotic response bounces between amplitudes and has no discernible period. The plot
of steady-state amplitudes (or phases) as the parameter increases becomes a blur. It is often
the case that as the parameter is increased much further, the motion again becomes periodic.

While chaotic motion is characterized by its unpredictable nature, it has some univer-
sal features. Feigenbaum showed that, as the number of bifurcations increases, the values
of the parameter, call it A, for which the bifurcations occur are given by

(12.78)

There are many routes to chaos. The one described here applies to systems undergoing
nonlinear oscillations subject to a harmonic excitation and is illustrated by the rotating
U-tube manometer of Example 12.3 and Figure 12.16. The manometer is rotated about a
vertical axis other than its centroidal axis. The rotational speed of the manometer varies as

(12.79)

where A is large enough to cause the fluid to be completely drained from the left leg during
an initial transient period. The system is subject to viscous damping from the interaction
of the fluid with the wall of the manometer.
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FIGURE 12.15
(a) Fourier transform of a
periodic function with two
distinct frequencies.
(b) Fourier transform of a
periodic function of
fundamental frequency �0.
(c) Fourier transform of a
chaotic response.

h(t)
a b

ω = A sin λt

FIGURE 12.16
For certain values of � and e the motion of the column
of liquid in the U tube manometer can be chaotic when
the manometer rotates about a non-centroidal axis.
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The behavior of a nonlinear system is heavily influenced by the system parameters. This
is evidenced by the state planes of Figures 12.17 and 12.18. Figure 12.17 shows the state
planes for two slightly different values of the frequency for the same amplitude. A steady
state is evident for the motion of Figure 12.17(a), while the motion of Figure 12.17(b)
appears chaotic. Chaos is also induced by small amplitude changes for the same frequency
as shown in Figure 12.18(a).

A bifurcation diagram for the parameter A is shown in Figure 12.19. The fre-
quency of excitation is fixed as its amplitude varies. For A � 3.33, the steady-state
motion is periodic. The stationary response is periodic of frequency 2� and a certain
amplitude.

λ = 0.27(a) A = 4.5

λ = 0.28(b) A = 4.5

FIGURE 12.17
A small change in frequency
can cause a change from a
periodic response to a chaotic
response.
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λ = 0.27(a) A = 4.6

λ = 0.27(b) A = 4.7

FIGURE 12.18
A small change in the input
amplitude can cause a change
from a periodic response to a
chaotic response.

For A L 3.33, the parameters change such that a subharmonic resonance becomes
present. A bifurcation is said to occur. The presence of the subharmonic resonance means
that the steady-state response is the sum of a free-vibration term and a forced-vibration
term and that the period of motion is doubled. Two amplitudes are evident in the station-
ary oscillations.

For A L 3.35, another bifurcation occurs. A higher-order subharmonic resonance is
induced. The response has a period of four times the original period and is made up of four
distinct amplitudes.

As A increases, bifurcations occur more rapidly with the period doubling with each
bifurcation. Eventually, the response is chaotic. The chaotic response shown in Figure 12.20
bounces between amplitudes and has no discernible period.

For A L 3.36, the motion ceases to be chaotic and returns to the doubled period.
However, bifurcations begin to occur again at A L 3.37.
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FIGURE 12.19
Bifurcation diagram for
rotating manometer. First
bifurcation occurs near
A � 3.34. As A increases
chaos develops. Motion is
not chaotic for a range of A,
then the process to chaos
begins again.

FIGURE 12.20
The time history of motion
for these parameters has no
discernable period.

The process described previously is called period doubling through a subharmonic cascade.
Chaos is the subject of much current research. It is hoped that studying chaos can

lead to the better understanding of nonlinear systems like turbulent fluid flows, the
flow and pumping of blood through a human heart, weather patterns, and nonlinear
vibrations.
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12.10 CHAPTER SUMMARY

12.10.1 IMPORTANT CONCEPTS
• Methods of analysis for linear systems are not applicable to nonlinear systems
• A geometric nonlinearity occurs due to the geometry of the system. A material non-

linearity occurs due to nonlinearity in material behavior
• Static spring forces do not cancel with gravity in nonlinear systems
• The state plane is a family of curves showing the history of the relation between 

displacement and velocity. The curves the state plane are called trajectories.
• An equilibrium point is stable if the trajectories approach the equilibrium point as time gets

large. The trajectories are unstable if the trajectories diverge from the equilibrium point.
• An equilibrium point is classified by the eigenvalues of the stability equation �1 and �2.

If �1 and �2 are real and of the same sign, the equilibrium point is called a node. If �1
and �2 are real and of opposite signs, the equilibrium point is a saddle point (unstable).
If �1 and �2 are complex conjugates, the equilibrium point is called a focus. If �1 and
�2 are purely imaginary, the equilibrium point is called a center.

• Secular terms are terms which produce non-uniformities in perturbation expansions.
• The period for free vibrations of a nonlinear system depends upon initial conditions.
• Small viscous damping leads to linear decay of the free-vibration solution.
• Resonances occur in the forced response of Duffing’s equation. Resonances due to a single

frequency excitation are classified as primary when r � 1, superharmonic when r � 1�3,
or subharmonic when r � 3. Combination resonances and simultaneous resonances occur
when the excitation is at two or more frequencies.

• A jump phenomenon occurs when the frequency is in the vicinity of the linear natural
frequency, which is characterized by a discrete change in amplitude at critical frequencies.
The jump also occurs in the phase.

• A jump response also occurs near the superharmonic resonance, but not near the sub-
harmonic resonance.

• Internal resonances are present in MDOF systems and continuous systems.

12.10.2 IMPORTANT EQUATIONS
Duffing’s equation

(12.11)

Nonlinear differential equation with nonlinear damping and nonlinear flexible element

(12.22)

Stability of an equilibrium point

(12.23)

(12.26)�x = Ae b1t + Be b2t

x = x0 + �x

mx
$

+ g (x# ) + f (x ) = F0 sin vt

x
$

+ 2zvn x# + v2
n x + av2

nx 3
=

F0

m
 sin vt
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General perturbation expansion in terms of a small dimensionless parameter

(12.31)

Period of nonlinear system

(12.32)

Two-term expansion for free vibrations of undamped Duffing’s equation

(12.46)

(12.48)

Free vibrations of damped Duffing’s equation

(12.56)

Detuning parameter to allow for study of the frequency response in the neighborhood of
resonance

(12.60)

Amplitude and phase near primary resonance

(12.61)

(12.62)

Amplitude equation near superharmonic resonance

(12.64)

PROBLEMS

SHORT ANSWER PROBLEMS
For Problems 12.1 through 12.14, indicate whether the statement presented is true or false.
If true, state why. If false, rewrite the statement to make it true.

12.1 The convolution integral can be applied to solve nonlinear problems.
12.2 A mass attached to a linear spring sliding on a surface with Coulomb damping

is an example of a nonlinear system.
12.3 The swinging spring is an example of a two degree-of-freedom system with a

cubic nonlinearity.
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Á
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12.4 The period of free vibrations of a nonlinear system depends upon initial
conditions.

12.5 The free response of a system with a cubic nonlinearity occurs only at the linear
natural frequency of the system.

12.6 A focus is always unstable.
12.7 A saddle point is always unstable.
12.8 Secular terms must be removed from the response of a system.
12.9 When a superharmonic resonance occurs, the free oscillation term does not

decay exponentially but combines with the forced response.
12.10 A SDOF system with viscous damping subject to a single frequency excitation

always has a free response which decays exponentially.
12.11 A SDOF system with a cubic nonlinearity is excited by a harmonic force at a

frequency of 100 rad/s. The forced response occurs only at 300 rad/s.
12.12 A MDOF system has a combination resonance when the parameters are such

that one of the system’s linear natural frequencies is in a certain combination
with another of the system’s natural frequencies.

12.13 A bifurcation is a split in natural frequencies for one value of a parameter.
12.14 Period doubling is a route to chaos.

Problems 12.15 through 12.38 require a short answer.

12.15 Why can’t the Laplace transform method be applied to nonlinear systems?
12.16 A spring has a cubic nonlinearity which is an example of a (geometric, material)

_______________________________ nonlinearity.
12.17 A spring with a cubic nonlinearity equal to �3x3 is an example of a (hardening,

softening) _______________________________ nonlinearity.
12.18 Trajectories near an equilibrium point in the state space are shown in

Figure SP12.18. Identify the equilibrium point that is (a) an unstable saddle
point, (b) a stable focus, (c) a center, and (d) an unstable node.

FIGURE SP12.18

(a) (b)
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B

A

FIGURE SP12.25

In Problems 12.19 through 12.23, the eigenvalues of the differential equation are �1 and
�2 when the equation is linearized about an equilibrium point. Determine the type of the
equilibrium point and its stability.

12.19 �1 � 3, �2 � �2
12.20 �1 � �3 � 2i, �2 � �3 � 2i
12.21 �1 � 2i, �2 � �2i
12.22 �1 � �3, �2 � �2
12.23 �1 � 3, �2 � 2
12.24 Explain the use of the detuning parameter.
12.25 The frequency-response curve shown in Figure SP12.25 is for the primary

resonance of a SDOF system with a cubic nonlinearity.

(a) Is the curve drawn for a hardening spring or a softening spring?
(b) Explain the significance of points A and B on the diagram.

(c) (d)

FIGURE SP12.18
(continued)
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12.26 A SDOF system with a cubic nonlinearity has a linear natural frequency of
30 rad/s. At what excitation frequency does the system have

(a) A primary resonance?
(b) A superharmonic resonance?
(c) A subharmonic resonance?

In Problems 12.27 through 12.33, a SDOF system with a cubic nonlinearity has a linear
natural frequency of 120 rad/s. The system is forced by harmonic excitations at different
frequencies �1 and �2. What resonances does the system have under the given circum-
stances.

12.27 �1 is near 30 rad/s and �2 is near 60 rad/s
12.28 �1 is near 90 rad/s and �2 is near 60 rad/s
12.29 �1 is near 20 rad/s and �2 is near 260 rad/s
12.30 �1 is near 50 rad/s and �2 is near 180 rad/s
12.31 �1 is near 40 rad/s and �2 is near 200 rad/s
12.32 �1 is near 120 rad/s and �2 is near 40 rad/s
12.33 �1 is near 240 rad/s and �2 is near 360 rad/s
12.34 Explain why a superharmonic resonance occurs.
12.35 What is an internal resonance in a MDOF system?
12.36 Describe the Poincaré section corresponding to a periodic function when the

sampling interval is one-third of the period.
12.37 What is the signature of the Fourier transform?
12.38 What is Feigenbaum’s constant?

Problems 12.39 through 12.53 require short calculations.

12.39 The linearized differential equation around an equilibrium point is

Classify the equilibrium point and determine its stability.

12.40 The linearized differential equation around an equilibrium point is

Classify the equilibrium point and determine its stability.

12.41 The linearized differential equation around an equilibrium point is

Classify the equilibrium point and determine its stability.

12.42 The equation of motion of a simple pendulum of length / is

(a) Determine the pendulum’s equilibrium points.
(b) Classify the equilibrium points and determine their stability.
(c) Sketch a trajectory in the phase plane corresponding to each equilibrium

point.

u
$

+

g

/

  sin u = 0

�x
$

+ 2�x# - 3�x = 0

�x
$

- 2�x# + 3�x = 0

�x
$

+ 2�x# + 3�x = 0
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12.43 The differential equation governing the motion of a nonlinear system is

(a) Determine the equilibrium points.
(b) Classify the equilibrium points and determine their stability.
(c) Sketch a trajectory in the phase plane corresponding to each equilibrium

point.
12.44 The differential equation governing the motion of a nonlinear system is

(a) Determine the equilibrium points.
(b) Classify the equilibrium points and determine their stability.
(c) Sketch a trajectory in the phase plane corresponding to each equilibrium

point.
12.45 The equation of motion for a particle moving on a rotating circular frame

(Figure SP12.45) is

u
$

+

g

R
a sin u -

v2

g
  cos ub = 0

x
$

- x + 0.1x 
3

= 0

x
$

- 0.5x# + x - 0.1x 3
= 0

(b)

ω

FIGURE SP12.45

(a) Determine the equilibrium points.
(b) Classify the equilibrium points and determine their stability for

(i) (ii) (iii)

12.46 Determine the free response to the nondimensional undamped Duffing’s
equation for e � 0.01, x (0) � 1, and 

12.47 Determine the free response to the nondimensional damped Duffing’s equation
for e � 0.01, � � 0.05, x (0) � 1, and 

12.48 Determine the steady-state amplitudes for the equation

x
$

+ 0.05x# + x + 0.01x 3
= 0.03 sin 1.01t

x# (0) = 0.

x# (0) = 0.

v2

g
= 1.5

v2

g
= 1

v2

g
= 0.5
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12.49 Determine the steady-state amplitudes for the equation

12.50 Determine the steady-state amplitudes for the equation

12.51 Suggest any internal resonances for a fixed-free beam.
12.52 Suggest any internal resonances for a beam fixed at one end with a mass of

0.25� AL attached at its other end.
12.53 Determine the Fourier transform of

F (t ) � 2 sin 3t � 4 sin 4.5t
12.54 What are the dimensions of the following quantities?

(a) Coefficient multiplying x 3 in nonlinear spring stiffness, k3
(b) The perturbation parameter, e
(c) A detuning parameter, 

CHAPTER PROBLEMS
12.1 The free-vibration response of a block hanging from a linear spring is the same

as that of the block attached to the same spring, but sliding on a frictionless
surface. Is the response the same if the spring has a force-displacement relation
given by the following?

(a) F � k1x � k3x3

(b) F � k1x � k2x2

(c) F � k1x, x � x0
(d) F � k2x, x � x0

12.2 The system of Figure P12.2 is one of the few for which an exact solution is
available. Its solution is obtained in a manner analogous to that of free vibrations
with Coulomb damping. The block is displaced a distance x0 � 
 to the right
from equilibrium and released. Determine the period of the resulting oscillations.

x
$

+ 0.05x# + x + 0.01x 3
= 0.03 sin 3.06t

x
$

+ 0.05x# + x + 0.01x 3
= 0.03 sin 0.33t

k k
m

δ

FIGURE P12.2

FIGURE P12.3

12.3 The block in Figure P12.3 is not attached to the springs. Determine the period
of the resulting oscillations if the block is displaced a distance x0 to the right
from equilibrium and released.
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12.4–12.7 Without making linearizing assumptions, use Lagrange’s equations to derive the
nonlinear differential equation(s) governing the motion of the systems shown. Use
the generalized coordinates indicated in Figures P12.4 through P12.7.

y

x = generalized coordinate

y = px2 rotates at
constant w

Particle of mass m moves
along parabola

Parabola

w

FIGURE P12.6 FIGURE P12.7

Slender rod of mass 2m

k m
x

l

θ

12.8 A wedge of specific weight � floats stably on the free surface of a fluid of
specific weight �w (Figure P12.8). The wedge is given a vertical displacement �
from this equilibrium position.
(a) Derive the differential equation governing the resulting free oscillations of

the wedge. Neglect viscous effects and the added mass of the fluid.
(b) What is the equation of the trajectory in the phase plane which describes

the resulting motion. Sketch the trajectory.
(c) Assume � is small and use the method of renormalization to determine a

two-term approximation for the frequency-amplitude relationship.

L/4

k
Slender rod of mass m

θ

3L/4

FIGURE P12.4

k
m x

k
Unstretched length of springl

FIGURE P12.5
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b

L

h
γ

γw

γ

γw

h

r

FIGURE P12.8

FIGURE P12.9

12.9 Repeat Chapter Problem 12.8 for the inverted cone of Figure P12.9.

12.10 Determine the equation defining the state plane for the system of Figure P12.6.
Sketch trajectories in the phase plane when the following are given.

(a) p � 1.5 m�1, � � 5 rad/s
(b) p � 1.0 m�1, � � 5 rad/s
(c) p � 5.097 m�1, � � 10 rad/s

12.11 Plot the trajectory in the state plane corresponding to the motion of a mass
attached to a linear spring free to slide on a surface with Coulomb damping
when the mass is displaced from equilibrium and released from rest.

12.12 Determine the equilibrium points and their type for the differential equation

12.13 Determine the equilibrium points and their type for the differential equation

12.14 Determine the equilibrium points and their type for the differential equation

12.15 Determine the equilibrium points and their type for the differential equation

12.16 The equation of motion for the free oscillations of a pendulum subject to quadratic
damping is

(a) Determine an exact equation defining the state plane.
(b) Determine the equilibrium points and their type.

u
$

+ 2zu
#
2

+  sin u = 0

x
$

+ 2zx# + x - Px 2
= 0

x
$

+ 2zx# + x + Px 2
= 0

x
$

+ 2zx# - x - Px 3
= 0

x
$

+ 2zx# - x + Px 3
= 0



778 CHAPTER 12

12.17 Determine the period of oscillation of a mass attached to a hardening spring
with a cubic nonlinearity.

12.18 Determine an integral expression for the period of oscillation of the system of
Figure P12.6.

12.19 Use the method of renormalization to determine a two-term approximation for
the frequency-amplitude relation for the system of Figure P12.4. If the bar is
rotated 4° from equilibrium and released, what is the period for L � 4 m,
k � 1000 N/m, and m � 10 kg?

12.20 A 25-kg mass is attached to a hardening spring with k1 � 1000 N/m and
k3 � 4,000 N/m3. The mass is displaced 15 mm from equilibrium and released
from rest. What is the period of the ensuing oscillations?

12.21 Suppose the mass of Chapter Problem 12.20 is subject to an impulse which
imparts a velocity of 3.1 m/s to the mass when the mass is in equilibrium.
What is the period of the ensuing oscillations?

12.22 Suppose the mass of Chapter Problem 12.20 is attached to the same spring
when a 50-N force is statically applied and suddenly removed. What is the
period of the ensuing oscillations?

12.23 Use the method of renormalization to determine a two-term frequency-amplitude
relationship for the particle on the rotating parabola of Figure P12.6, assuming
the amplitude is small.

12.24 Use the method of renormalization to determine a two-term frequency-amplitude
relationship for a block of mass m attached to a spring with a quadratic nonlinearity.
When nondimensionalized the differential equation governing free vibrations of
the system is

Problems 12.25 through 12.31 refer to the system of Figure P12.25.

12.25 If F (t ) � F0 sin �t, what values of � will lead to the presence of the
following?

(a) A primary resonance
(b) A superharmonic resonance
(c) A subharmonic resonance

x
$

+ v2x + Px 2
= 0  P V 1

17.8 kg F(t)

20 N · s/m

k1 = 1000 N/m
k3 = 950 N/m3

FIGURE P12.25

12.26 When F (t) � 5 sin 8t N, a primary resonance condition occurs. Determine the
amplitude of the forced response.

12.27 When F (t ) � 150 sin 2.5t N a superharmonic resonance condition occurs.
Determine the amplitude of the forced response.
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k2

m2 F(t)

1000x + 950x3

10 kg

x1 x2

FIGURE P12.32

12.28 If F (t ) � F0 sin �t N, for what value of � will a jump in amplitude occur
when � is increased slightly beyond this value when

(a) F0 � 5 N and a primary resonance occurs.
(b) F0 � 150 N and a superharmonic resonance occurs.

12.29 If F (t) � 25 sin 22 t N, will a nontrivial subharmonic response exist?
12.30 If F (t) � 30 sin 15 t � 25 sin �t N, what values of � lead to a combination

resonance?
12.31 If F (t) � 30 sin 2.5t � 25 sin �t N, what values of � lead to simultaneous

resonances? 

Problems 12.32 through 12.35 refer to the systems of Figure P12.32. The spring of stiff-
ness k2 is a linear spring.

12.32 If m2 � 10 kg, for what values of k2 will internal resonances exist?
12.33 For what values of m2 are internal resonances possible? If an internal resonance

is possible in terms of m2, for what values of k2 will they exist?
12.34 Consider the system with m2 � 10 kg and k2 � 2000 N/m. The right mass is

displaced 10 mm from equilibrium while the left mass is held in place. The
system is released from rest from this configuration.

(a) Determine the natural frequencies, mode shapes, and principal coordinates
for the linearized system.

(b) Write the nonlinear differential equations governing the system using the
principal coordinates of the linearized system as dependent variables.

12.35 If m2 � 10 kg, k2 � 1000 N/m, and F(t ) � 150 sin �t N, for what values of �
will the following resonances exist?

(a) Primary resonance
(b) Superharmonic resonance
(c) Subharmonic resonance
(d) Combination resonance

12.36 Consider the system of Figure P12.36.

(a) Derive the nonlinear differential equations governing the motion of the system
using the generalized coordinates shown.

(b) Expand trigonometric functions of the generalized coordinates using Taylor
series expansions. Rewrite the differential equations keeping only quadratic
and cubic nonlinearities.
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12.37 Show that the coefficient multiplying for a pinned-pinned beam is zero in
Equation (11.50).

12.38 A fixed-free rectangular steel beam 
with a length of 1 m, base of 2 cm, and height of 5 cm is subject to a single-
frequency harmonic excitation. List all excitation frequencies that should be
avoided to avoid all primary, secondary, and combination resonances involving
the three lowest modes.

12.39 If the beam of Chapter Problem 12.38 is fixed-fixed, which of the following
excitation frequencies should be avoided and why?

(a) 180 rad/s
(b) 1530 rad/s
(c) 2200 rad/s
(d) 7940 rad/s

(r = 7850   kg>m3, E = 210 *  109
   N>m2)

p2
2 p1

Slender rod
of mass m

k m

l

F(t) = F0 sinω t

θ

x

FIGURE P12.36

(c) For what values of l in terms of the other parameters will an internal
resonance exist?

(d) In the absence of an internal resonance, for what values of � will resonance
conditions exist?



C h a p t e r 1 3

RANDOM VIBRATIONS

13.1 INTRODUCTION
A time-dependent process is deterministic if its properties at a given time t can be predicted
in advance. A linear process is deterministic if its input is deterministic. The processes of
free and forced vibrations of SDOF, MDOF, and continuous systems (as described previ-
ously) are all deterministic; their response can be predicted at any instant of time given a
deterministic input, as illustrated in Figure 13.1. A nonlinear system can have a chaotic
response due to deterministic input.

Many physical systems do not have a deterministic input, such as those illustrated in
Figure 13.2 on page 783. The road contour encountered by the wheels of a vehicle, while
described as sinusoidal in previous chapters, is really made up of a series of bumps and
depressions that cannot be predicted. Other sources of non-deterministic input to systems
are the excitation provided to a building from an earthquake, vortex shedding from a
bridge, and the vibration of a floor in an industrial plant. These inputs are said to be random:
an input which cannot be predicted at any time. There are many reasons why an input is
random. For example, many vehicles of assorted sizes and shapes have travelled over the
road; environmental conditions such as temperature, rain, and snow have affected the road
over a long period; or imperfections in the road material affect the road contour. An earthquake
is random because not enough is known about the origin of the earthquake: the energy
released by the earthquake and the propagation of seismic waves are not understood fully.
Vortex shedding is a random phenomenon because the wind velocity is uncontrollable and
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m2

k2

k c

m

m1

k1

(a)

(b)

F0sinωt

F0sinωt

F(t)

F(t)

t

(c)

FIGURE 13.1
Examples of deterministic
systems. (a) SDOF system
subject to harmonic
excitation. (b) SDOF system
subject to pulse loading.
(c) Fixed-pinned beam
subject to harmonic loading.

is affected by many factors, including the geometry of the bridge deck. Machines on the
floor of an industrial plant are vibrating at different frequencies, and different amplitudes,
at different times, providing a random input to anything placed on the floor.

The response of a system due to a random input is also random. Analysis of such sys-
tems requires a method of approach which combines the different vibrations with the
methods of dealing with random input. Random input can be expressed in terms of statis-
tical quantities and the output can be expressed in terms of its mean square values, which
can be translated into probabilities.

Assumptions are made which make the analysis of random vibrations easier.
Mathematical functions describing the statistical analysis of a random variable are devel-
oped including the mean, standard deviation, and probability distribution. Functions
defining the joint probability distribution are developed to include the autocorrelation
function. The Fourier transform is employed to derive a transfer function for the system
and to relate the autocorrelation function to the power spectral density. The power spectral
density is used to describe the random response of a SDOF system.

13.2 BEHAVIOR OF A RANDOM VARIABLE

13.2.1 ENSEMBLE PROCESSES
Consider again the SDOF model of a vehicle suspension system. The following experiment
is run. An accelerometer is attached to the wheel of the vehicle and the displacement y(t)
of the axle is monitored. The experiment is repeated at the same speed 50 times, but at each
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time, the displacement measured is different due to variations in wind, temperature, tire
conditions, and other factors outside of the control of the experiment. The displacement
of the axle is not repeatable and is a random phenomenon. The variable y(t) is a random
variable, and each displacement yi(t ) is a sample function of the random variable. All
sample functions taken together form a collection or an ensemble of sample functions and
is expressed as {yi(t)}.

13.2.2 STATIONARY PROCESSES
The statistical mean of the ensemble {xi(t)} at a time t0 is calculated by

(13.1)x (t0) =

1
na

n

i = 1

xi (t0 )

FIGURE 13.2
Systems subject to random
input. (a) SDOF model of
vehicle suspension system as
it traverses a road contour.
(b) One-story frame structure
subject to an earthquake.
(c) Vibrations of the floor in
an industrial plant.

k c

m

(a)

(b)

(c)

Floor of an industrial plant with machines

y(t)

t

x

x(t)

t



784 CHAPTER 13

or as n, which is the number of elements in the ensemble, becomes large

(13.2)

Statistical definitions of other functions introduced in this chapter can be calculated in the
same fashion. For example the statistical definition of the standard deviation is

(13.3)

These statistical averages are functions of time.
The ensemble measurements are a function of time. However, if the measurements have

statistical features which are independent of time (such as the mean and standard deviation),
the ensemble is said to be stationary. The value of m, as calculated by Equation (13.1),
is independent of the time t0 at which it is calculated. A random stationary process has
other implications, which are covered in more detail later. All processes in this chapter are
assumed to be stationary.

13.2.3 ERGODIC PROCESSES
The temporal average uses a representative sample function and integrates over time, as

(13.4)

or using the notation of improper integrals, as

(13.5)

If the temporal average is the same for all ensemble measurements. That is, mt is the same
for every i when the random process is ergodic. Only stationary ergodic processes are cov-
ered in this chapter.

13.3 FUNCTIONS OF A RANDOM VARIABLE

13.3.1 PROBABILITY FUNCTIONS
Consider a random variable y with sample points y1, y2, . . . , yn. The probability that y is
less than or equal to a certain value that is less than or equal to a value is the number of
values of divided by the number of sample points n. In the limit, as n , this
defines the probability distribution function P (y). For a random variable that is a function
of time, P(y) is defined in the limit as the time span approaches infinity, the total time that
the function is less than or equal to y divided by the time span. The probability distribution
function has the property that

(13.6)

subject to P (� ) � 0 and P ( ) � 1.qq

0 … P (y ) … 1

: qy … yN
yN

mt(i ) =

L

q

-
q

x i (t ) dt

mt (i ) = lim
T: q

1
TL

T
2

-
T
2

xi (t ) dt

s =

a
n
i=1(xi - x )2

n - 1

m (t0 ) = lim
n: q  

1
n a

n

i =  1
xi (t0 )
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The time-dependent data for a stationary ergodic process is illustrated in Figure 13.3
along with its probability distribution. P (a) is the probability that the random variable y
takes on a value less than or equal to a. The probability that it is greater than a is 1�P(a).
The probability that the random variable is between a and a value b � a is P(b) � P(a).

This leads to the definition of the probability density function. Taking the limit as �y
goes to zero of the probability that y is between y and y � �y divided by �y

(13.7)

Equation (13.7) defines the derivative of P with respect to y. Thus,

(13.8)

From the fundamental theorem of integral calculus, we have

(13.9)

where is a dummy variable of integration. It is noted from Equation (13.9) that

(13.10)

Also,

(13.11)

The probability density function, defined by Equation (13.8), illustrated in Figure 13.4.

0 … p(y ) … 1

L

q

-
q

p (y ) dy = 1

j

P (y) =

L

y

-
q

p(j ) dj

p (y ) =

dP
dy

p (y) = lim
�y :0

 
P ( y + �y) - P (y )

�y

FIGURE 13.3
A random process and its
probability distribution.1

0

P(y)

x

a

t

FIGURE 13.4
A random process and its
probability density function.

P(x)

y

t
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13.3.2 EXPECTED VALUE, MEAN, AND STANDARD
DEVIATION
The expected value of a function of a random variable f ( y) with a probability density
function p( y) is defined as

(13.12)

The mean of a random variable y is the expected value of the random variable

(13.13)

The variance of a random variable is the expected valued of (y � m)2 and is expressed as

(13.14)

The standard deviation is the positive square root of the variance and

(13.15)

13.3.3 MEAN SQUARE VALUE
The mean square value of a function of a random variable y is the expected value of y2, as

(13.16)

The mean square value is related to the variance and mean through

(13.17)

But by definition, the integral of the probability density function is one and the integral of
yp(y) is m. Equation (13.17) becomes

(13.18)y 2
= s2

+ m2

s2
=

L

q

-
q

(y - m)2p (y ) dy =  y 2
- 2m

L

q

-
q

yp (y) dy + m2

L

q

-
q

p(y)dy

y 2
= E (y 2) =

L

q

-
q

y 2p (y ) dy

s = 2s2

s2
= E 3(y - m)24 =

L

q

-
q

(y - m )2p (y ) dy

m =

L

q

-
q

yp (y ) dy

E3 f (y )4 =

L

q

-
q

f (y )p(y) dy

EXAMPLE 1 3 . 1
For the process of Figure 13.5, determine (a) the mean, (b) the mean square value, and 
(c) the standard deviation.

SO LU T I ON
(a) The mean is calculated two ways. It is equally likely that at any time the value of the

function is any value between 0 and A and the function is linear in t. Hence,

(a)

1
A

 0 … y … A

0 y 6 0 or y 7 A
p (y) = c
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Thus,

(b)

Using the temporal definition of mean, Equation (13.4) becomes

(c)

(b) The mean square value is

(d)

(c) The variance is obtained using Equation (13.18) as

(e)

The standard deviation is the square root of the variance, so

(f)s = A
A2

12
=

A23

6

s2
= y 2

- m2
=

A2

3
-

A2

4
=

A2

12

y 2
=

L

q

-
q

y 2p(y) dy =

L

A

0
y 2 a 1

A
bdy =

A2

3

=

A
2

m = lim
T: q

1

TL

T
2

-
T
2

x (t ) dt =

1
T
c
L

0

-
T
2

Aa1 +

2t
T
bdt +

L

T
2

0
Aa1 -

2t
T
bdt d

m =

L

q

-
q

yp (y )dy =

L

A

0
x a 1

A
bdx =

A
2

FIGURE 13.5
Process of Example 13.1.

–T
2

T

A
2t

2

T
1 + A 2t

T
1 – A

13.3.4 PROBABILITY DISTRIBUTION FOR ARBITRARY
FUNCTION OF TIME
Let y(t) be single-valued arbitrary function of time over a period T. Suppose an arbitrary
measurement were made. It is equally likely that any time in the interval 0 � t � T is
chosen; thus,

The following formula is used to find p(y):

(13.19)

where ti are all of the values where y (ti) � y.

p (y ) = a
n

i = 1

 
p(t )

` dy

dt
(ti ) `

p(t ) =

1

T
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EXAMPLE 1 3 . 2
(a) Find the probability distribution for the rectified sine wave p( y) over the half-period

(b) Use p(y) to calculate the mean.
(c) Use p(y ) to determine 

SO LU T I ON
(a) The mathematical form of the rectified sine wave is

(a)

There are two values of t corresponding to each value of y. The derivatives have equal 
magnitude, as

(b)

From Equation (13.19), noting that the interval is T/2 and that there are two points 
corresponding to each y, we have

(c)

Thus, since y � A, we have

(d)

(b) The mean is given by Equation (13.13) as

(d)

The same value of m is obtained using Equation (13.4).
(c) The mean square value is obtained using Equation (13.16) as

(e)y 2
=

L

q

-
q

y 2p (y )dy =

L

A

0
y 2a 2

p2A2
- y 2

bdy =

A2

2

m =

L

q

-
q

yp (y )dy =

L

A

0
y a 2

p2A2
- y 2

bdy =

2A
p

2

p2A2
- y 2

  0 … y … A

          0                     y 7 A
p(y) = c

p (y ) = 2 a 2

T
b ≥

T
2p

AA1 - a y
A b

2
¥ =

2

p2A2
- y2

` dy

dt
` = 2p

T
 A ` cos

2p
T

 t ` =

2p
T

 A B1 - a y
A b

2

y (t ) = A `   sin 
2p
T

t ̀

y 2.

0 … t …
T
2.

13.3.5 GAUSSIAN PROCESS
The probability density function for a Gaussian distribution of mean m and standard 
deviation s is

(13.20)( x - m
s )2

p (x) =

1

22ps
e -

1
2
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The Gaussian distribution is the probability distribution for a normal distribution, such as
one defined by the bell-shaped curve, illustrated in Figure 13.6.

(13.21)

is the standard normal variable. In terms of z, the probability density function is expressed as

(13.22)

Equation (13.22) is the normalized Gaussian probability density function. It has a mean of
zero and a standard deviation of one. The normalized Gaussian probability density func-
tion is illustrated in Figure 13.7.

The probability distribution is given from the density function by Equation (13.9), as

(13.23)d t
t2

2p (z ) =

L

z

-
q

1

22p
e-

p (z ) =

1

22p
e -

z 2

2

z =

x - m

s

FIGURE 13.6
Gaussian probability density
function with a mean of m
and a standard deviation of s.

µ – σ µ + σµ
x

p

FIGURE 13.7
(a) Normalized Gaussian
density function distribution.
(b) Gaussian probability
distribution.

(a)

P(x)

x

1
√2

p

(b)

1

0.5
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The integral in Equation (13.23) cannot be evaluated analytically, but the values are
summarized in a table of normal distributions. An abbreviated one is given in Table 13.1.

z P(z) z P(z)

0.0 0.5 1.1 0.8643
0.1 0.5398 1.2 0.8849
0.2 0.5793 1.3 0.9032
0.3 0.6179 1.4 0.9192
0.4 0.6554 1.5 0.9382
0.5 0.6915 1.6 0.9452
0.6 0.7257 1.7 0.9554
0.7 0.7580 1.8 0.9641
0.8 0.7881 1.9 0.9713
0.9 0.8159 2.0 0.9773
1.0 0.8413 1q

Probability distribution for a Gaussian process,
P(�z) � 1� P(z)

T A B L E 1 3 . 1

EXAMPLE 1 3 . 3
The displacement of a machine is a random variable with a mean of 1 mm and a standard
deviation of 0.1 mm. What is the probability that at any given time the displacement (a)
exceeds 1.05 mm, (b) is less than 0.85 mm, and (c) is between 0.93 mm and 1.01 mm?

SO LU T I ON
Assume the amplitude of vibration has a Gaussian distribution. The normalized variable is
given by Equation (13.20) with m � 1 mm and s � 0.1 mm.
(a) Calculating the value of the normalized variable, we have

(a)

The probability that z � 0.5 is P (0.5) � 0.6915

(b)

(b) The normalized variable for x � 0.85 mm is

(c)

The probability that z � �1.5 is

(d)

(c) The z value corresponding to 0.93 mm is z � �0.7 and the z value corresponding to
1.01 mm is z � 0.1. The probability that z is between �0.7 and 0.1 is

(e)= 0.5398 - (1 - 0.7580) = 0.2978

Prob( - 0.7 6 z 6 0.1) = P (0.1) - P ( - 0.7)

Prob(z 6 - 1.5) = P ( - 1.5) = 1 - P (1.5) = 1 - 0.9832 = 0.0168

z =

0.85  mm - 1  mm
0.1  mm

= -1.5

Prob(z 7 0.5) = 1 - P (0.5) = 1 - 0.6915 = 0.3085

z =

1.05  mm - 1  mm
0.1  mm

= 0.5
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13.3.6 RAYLEIGH DISTRIBUTION
The Rayleigh distribution is used for random variables restricted to positive values. The
probability density function for the Rayleigh distribution for a positive random variable y
is defined by

(13.24)

The Rayleigh distribution is illustrated in Figure 13.8 for several values of a.
The probability distribution for the Rayleigh distribution can be obtained by direct

integtration. Let Then

and (13.25)

Representative values of the probability distribution are given in Table 13.2.

p (y) =

L

y 2

2a

0
e -udu = 1 - e -

y2

2adu =

y

a
dy

u =

y 2

2a.

p(y ) =

y

a
e -

y2

2a

FIGURE 13.8
Rayleigh distribution for
several values of a.

0
0

a = 0.5

0.5 1 1.5 2 2.5 3

p
(y

)

0.2

0.1

0.3

0.5

0.6

0.7

0.8

0.4

0.9

y

a = 1.5
a = 1.0

P(u) P(u) P(u)

0 0 1.0 0.6321 2.0 0.8647
0.1 0.0952 1.1 0.6671 2.1 0.8775
0.2 0.1813 1.2 0.6988 2.2 0.8892
0.3 0.2592 1.3 0.7275 2.3 0.8997
0.4 0.3297 1.4 0.7534 2.4 0.9093
0.5 0.3935 1.5 0.7769 2.5 0.9179
0.6 0.4512 1.6 0.7981 2.6 0.9257
0.7 0.5034 1.7 0.8173 2.7 0.9328
0.8 0.5507 1.8 0.8347 2.8 0.9392
0.9 0.5934 1.9 0.8504 2.9 0.9450

u =

y 2

2a
u =

y 2

2a
u =

y 2

2a

Rayleigh probability distributionT A B L E 1 3 . 2
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EXAMPLE 1 3 . 3
Calculate for the Rayleigh distribution (a) the mean, (b) the mean square value, (c) the
standard deviation, and (d) the probability that the random variable is one standard devi-
ation greater than the mean for a � 4.

SO LU T I ON
(a) The mean is calculated using Equation (13.13), knowing that it is only defined for pos-

itive values of y, so that

(a)

(b) The mean square value is calculated using Equation (13.16) as

(b)

(c) The variance is calculated using Equation (13.18) as

(c)

The standard deviation of the Rayleigh distribution is

(e)

(d) One standard deviation greater than the mean implies that the variable is greater than

(f)

Thus, the probability that y is greater than 3.82 is

(g)1 - P (3.82) = 1 -

L

3.82

0
p(y )dy = 1 -

L

3.82

0

y

4
e -

y 2

8 dy = 1 - 0.839 = 0.161

m + s = A
pa

2
+ A a

4 - p

2
ba = 1.9102a = 1.91024 = 3.82

s = 20.429a = 0.6552a

s2
= y 2

- m2
= 2a -

pa

2
=

4 - p

2
a = 0.429a

y 2
=

L

q

0
y 2p (y )dy =

L

q

0
y 2 c y
a

e -

y 2

2a ddy = 2a

m =

L

q

0
yp (y )dy =

L

q

0
y c y
a

e -

y 2

2a ddy = A
pa

2

13.3.7 CENTRAL LIMIT THEOREM
A random variable can satisfy many probability distributions. Due to the central limit the-
orem, the Gaussian distribution is the most important. It states that, if a random variable
has any distribution, then if an experiment is run n times and the mean and standard devi-
ation of the kth sample are mk and sk, respectively, then for large n the means of the sample
are normally distributed with a mean equal to

(13.26)

and a standard deviation equal to where

(13.27)

Stated another way, a random variable is the sum of a large number of random variables,
the sum approaches the normal distribution. Thus, if x is a random variable that has a

s2
=

a
n

k=1
(mk - m)2

n - 1

s2n

m =

1
na

n

k = 1

mk
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probability distribution P(x), the random variable X � x1 � x2 � . . . � xn where xi are differ-
ent outcomes for x, which is normally distributed. Thus, an ensemble is normally distributed.

13.4 JOINT PROBABILITY DISTRIBUTIONS

13.4.1 TWO RANDOM VARIABLES
An experiment is run repeatedly on a SDOF system subject to a harmonic excitation. The
output is expected in the form x (t) � A sin(vt � f). However, due to a variety of factors,
the experiment does not yield the same amplitude or phase at the same instant of time.
Ensembles of each are taken as {Ai} and {fi}. Probability density functions can be devel-
oped for both A and f, p(f) and p(A), respectively. It is known that A and f are related
through the frequency ratio of the system and the damping ratio; they are not totally inde-
pendent. Thus, the joint probability density function is not simply p(A)p(f) but is p(A, f).

In general, consider two random variables from the same process x and y. The joint
probability density function is written as p(x, y). This leads to a joint probability distribu-
tion defined by

(13.28)

The joint probability distribution is defined such that P(x, y) is the probability that the first
random variable has a value less than x and the second random variable has a value less than y.
The probability density functions are defined by

(13.29)

and

(13.30)

The means are defined as

(13.31)

and

(13.32)

The variances are defined by

(13.33)

and

(13.34)s2
y = E 3(y - my )24 =

L

q

-
qL

q

-
q

(y - my )2p (x,y)dxdy

s2
x = E 3(x - mx)

24 =

L

q

-
qL

q

-
q

(x - mx )2p (x,y )dydx

my = E (y ) =

L

q

-
q

yp (y )dx =

L

q

-
qL

q

-
q

yp (x,y )dxdy

mx = E(x)
L

q

-
q

xp(x)dx =

L

q

-
qL

q

-
q

xp(x,y)dydx

p(y) =

L

q

-
q

p(x, y)d x

p (x) =

L

q

-
q

p(x, y )dy

P (x, y ) =

L

x

-
qL

y

-
q

p(j,t) djd t
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The covariance is

(13.35)

The coefficient of correlation is defined by

(13.36)

13.4.2 AUTOCORRELATION FUNCTION
Let y(t) be a random variable that is a function of time. Consider the variable at a time t � t.
The autocorrelation is the expected value of the product of the function at these two times:

(13.37)

For a stationary process, R is independent of t, dependent on t, and is written as R(t). For
a stationary ergodic process, the temporal average can be used, as

(13.38)

If t � 0,

(13.39)

From Equation (13.18),

(13.40)

It can be shown that this is the maximum value of the autocorrelation function.
It is noted that for a stationary process

(13.41)

The autocorrelation function is an even function.

R ( - t) = E 3y (t )y (t - t)4 = E 3y (t )y (t + t)4 = R (t)

R(0) = s2
+ m2

R (0) = E (y 2)

R (t ) = lim
T: q

1
TL

T
2

-
T
2

y (t )y (t + t)dt

R (t,t) = E 3y (t )y (t + t)4 =

L

q

-
qL

q

-
q

y (t )y (t + t)p3y (t),y (t + t)4dy(t ) dy (t + t)

rxy =

sxy

sxsy

=

L

q

-
qL

q

-
q

(x - mx )(y - my )p (x, y )dxdy

c
L

q

-
qL

q

-
q

(x - mx )2p (x,y )dydx d
1
2 c
L

q

-
qL

q

-
q

(y - my)
2p (x,y )dxdy d

1
2

sxy = E 3(x - mx )( y - my )4 =

L

q

-
qL

q

-
q

(x - mx )(y - my )p (x,y )dxdy

EXAMPLE 1 3 . 4
Determine the autocorrelation function for the sine wave given by

(a)

SO LU T I ON
The autocorrelation function is given by Equation (13.38) for an egrodic process. The
process is periodic of period thus, the limit of the integral is replaced by its
evaluation over one period as

(b)R(t) =

v

2p
 
L

p
v

0

 A  sin  (vt - f) {A  sin  3v(t + t) - f4} dt =

A2

2
  cos  vt

T =
2p
v ;

y (t ) = A sin (vt - f)
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The autocorrelation of a harmonic function is another harmonic function. The function
and its autocorrelation are shown in Figure 13.9.

FIGURE 13.9
(a) y (t) � A sin(vt � f) for Example 13.4. (b) Autocorrelation function for y(t).

t
(a)

A

x(
t)

t
(b)

A2

R
(t

)

EXAMPLE 1 3 . 5
(a) Determine the autocorrelation function for the process shown in Figure 13.10. 
(b) Verify that R (0) � E ( y2).

SO LU T I ON
(a) The process is periodic of period T thus the autocorrelation function is

(a)R (t) =

1
TL

T

0
y(t )y (t + t)dt =

L

T
4

0
Ay (t + t)dt
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where

(b)

For 

(c)

For 

(d)

For 

(e)

The autocorrelation is periodic of period T and is illustrated in Figure 13.10.
(b) Using Equation (13.16),

(f)E (y2) =

L

T

0
y 2dt =

L

T
4

n
A2dt = A2 

T
4

= R (0)

R(t) =

1

TL

T
4

T -t

A2dt = A2a t
T

-

3
4
b

3T
4 6 t 6 T,

R(t) = 0

T
4 6 t 6

3T
4 ,

R (t) =

1
TL

T
4 - t

0
A2dt = A2a1

4
-

t

T
b

0 6 t 6
T
4 t

A    0 6

T
4

- t

0  T
4

6 t 6

3T
4

A  t -

3T
4

6 T

y (t + t) = g

FIGURE 13.10
(a) y(t) for Example 13.5. (b) Autocorrelation function for y(t).
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13.4.3 CROSS CORRELATIONS
The cross correlation between two stationary ergodic random variables y1 and y2 is defined by

(13.42)

13.5 FOURIER TRANSFORMS

13.5.1 FOURIER SERIES IN COMPLEX FORM
The Fourier series for a periodic function of period T is given by Equation (4.130).
Through substitution of the relations between the trigonometric functions and exponen-
tials of complex exponents,

(13.43)

and

(13.44)

the Fourier series representation for a periodic function can be written as

(13.45)

Defining

(13.46)

The Fourier series is written as

(13.47)

where which is the complex conjugate of ak. The above equations can be com-
bined using the definitions of the Fourier coefficients to yield.

(13.48)

Since F(t) is periodic of period T,

(13.49)

The mean square value of F(t) is

(13.50)

Equation (13.50) is called Parseval’s identity.

F 2
=

1
TL

T
2

-
T
2

F 2(t )  dt =

1
TL

T
2

-
T
2

a a
q

k = -
q

ake
ivktb2

dt = a
q

k = -
q

aka
*
k = a

q

k = -
q

|ak |2

ak =

1
TL

T
2

-
T
2

F (t )e ivktd t

ak =

1
TL

T

0
F (t )e ivktd t

a
-k =  a*

k,

F ( t ) = a
q

k = -
q

ake
ivkt

ak =

1
2

(ak - ibk )

F (t ) =

a0

2
+ a

q

k = 1

c1
2

(ak - ibk )e ivkt +

1
2

(ak + ibk )e -ivkt d

 cos vt =

1
2

(e ivt
+ e -ivt )

 sin vt =

1
2i

(e ivt
- e -ivt )

C (t ) = lim
T: q

1
TL

T
2

-
T
2

y1 (t )y2 (t + t)dt
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13.5.2 FOURIER TRANSFORM FOR NONPERIODIC FUNCTIONS
A Fourier series can be developed for any function by taking the limit of Equation (13.47)
as T approaches infinity, as

(13.51)

As T the discrete frequencies approach a continuous spectrum vk v, and the inte-
gral divided by the period is expressed as a function of the continuous variable v as 
As T approaches infinity, k becomes a continuous variable, and the infinite sum becomes
an integral with a variable of integration of v. The result of the limiting process is

(13.52)

where

(13.53)

Equation (13.53) defines the Fourier transform of a nonperiodic function. Equations (13.52)
and (13.53) form a Fourier transform pair.

F (v) =

L

q

-
q

F (t )e -ivtd t

F (t ) =

1

2pL

q

-
q

F (v)e ivtdv

F (v)
2p .

:: q

b aq
k = -

q

c 1
TL

T
2

T
2

F (t )e ivktdt de ivkt rF (t ) = lim
T: q

EXAMPLE 1 3 . 6
Determine the Fourier transform of the unit impulse function d (t).

SO LU T I ON
By definition and from Equation (13.53),

(a)

The unit impulse function is zero everywhere except at t � 0, where it is infinite. But it is
infinite in such a way (see Appendix A) that

(b)

Thus, the Fourier transform of the unit impulse function is

(c)F (v) = 1

L

q

-
q

d(t )F (t )dt = F (0)

F (v) =

L

q

-
q

d(t )e -ivtdt

EXAMPLE 1 3 . 7
Determine the Fourier transform of F0 sin vnt. 

SO LU T I ON
Using Equation (13.43) for sin vnt and substituting into Equation (13.53) gives the
Fourier transform as

(a)F (v) =

L

q

-
q

F0

2i
(e ivnt - e -ivnt )e -ivtdt
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Unlike the Laplace transform, the integration cannot be performed by traditional means.
Instead, use Equation (13.52)

(b)

Recalling the property of the unit impulse function,

(c)

leads to the realization that

(d)

The Fourier transform of a periodic function leads to a discrete frequency distribution.

F (v) =

F0

2i
3d(v - vn ) - d(v + vn )4

L

q

-
q

F (v)d(v - a ) dv = F (a)

F0

2i
(e ivnt - e -ivnt ) =

1
2pL

q

-
q

F (v)e ivtdv

EXAMPLE 1 3 . 8
Determine the Fourier transform of the non-periodic function of Figure 13.11.

SO LU T I ON
The Fourier transform of F(t) is

(a)

The real part of the Fourier transform of F(t) is illustrated in Figure 13.11(b), the imagi-
nary part in Figure 13.11(c).

+ 2 vT  cos  vT - 2  sin  vT d

=

4F0

v
  sin vT -

2F0

v
  sin  vT

2
-

iF0

v
c2  sin  vT

2
- vT cos   vT

2

+ a tei vt
-

1
iv

eivtb 2
- T

-
T
2

+ a teivt
-

1
iv

eivtb 2 T
T
2

d

=

F0

iv
 c2e ivt 2

- T

-
T
2

+ e ivt 2 T2
-

T
2

+ 2e ivt 2 T
-

T
2

= F0 cL
- T

2

-T
e ivtdt +

L

T
2

-
T
2

e ivtdt + 2
L

T

T
2

e ivtdt +

2
TL

-
T
2

- T
te ivtdt +

2
T L

T

T
2

te ivtdt d

F (v) = F0 cL
- T

2

-T
2a1 +

t
T
be ivtdt +

L

T
2

T
2

e ivtdt +

L

T

T
2

2a1 -

t
T
be ivtdt d
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FIGURE 13.11
(a) F(t) for Example 13.8. (b) Real part of F(v). (c) Imaginary part of F(v).
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13.5.3 TRANSFER FUNCTIONS
The Fourier transform has properties similar to that of the Laplace transform. It exists and
is unique for functions that can be generated physically. It satisfies a linearity property. 
Let represent the Fourier transform of F(t). Let and

. Then for any scalars a and b,

(13.54)

The Fourier transform also satisfies a property of transform of derivatives.
Differentiating Equation (13.52) with respect to time leads to

(13.55)

Taking the Fourier transform of both sides of this equation using linearity leads to

(13.56)

The Fourier transform of the second derivative is

(13.57)tb d 2F
dt 2 r = ivtb dF

dt
r = -v2t{F }

t b dF
dt
r = ivt{F }

dF
dt

=

iv
2pL

q

-
q

F (v)e ivtdv = ivF (t )

t{aF (t ) + bG (t )} = aF (v) + bG (v)

G (v) = t{G (t )}
F (v) = t{F (t )}t{F (t )}

EXAMPLE 1 3 . 9
Determine the Fourier transform of the solution of

(a)

for an arbitrary F(t).

SO LU T I ON
Let and Taking the Fourier transform of the differen-
tial equation leads to

(b)

Using linearity, Equation (b) becomes

(c)

Applying the property of transform of derivatives, Equation (c) is rewritten as

(d)

Solving Equation (d) yields

(e)x (v) =

F (v)

-mv2
+ icv + k

- mv2x (v) + icvx (v) + kx (v) = F (v)

mt{x
$

} + ct{x# } + kt{x } = F (v)

t{mx
$

+ cx# + kx } = t{F (t )}

x (v) = t{x (t )}.F (v) = t{F (t )}

mx
$

+ cx# + kx = F (t )

Similar to the Laplace transform method, a transfer function can be defined for 
the Fourier transform as the ratio of the Fourier transform of the output to the Fourier
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transform of the input,

(13.58)

In taking the Fourier transform of a differential equation instead of the Laplace transform,
the s from the Laplace transform is replaced by iv from the Fourier transform. Thus,

(13.59)

is the same as the sinusoidal transfer function discussed in Section 6.9.
Example 13.6 showed that ]. Thus, the Fourier transform of the response

of a system due to a unit impulse function is H(v).

13.5.4 FOURIER TRANSFORM IN TERMS OF f
The frequency parameter v has units of rad/s and is converted to cycles/s by recognizing
that 2p rad � 1 cycle. Denoting the frequency in cycles/s by f, we have v � 2pf.
Substituting for v in Equation (13.52) leads to

(13.60)

Substitution into Equation (13.53) gives

(13.61)

Equations (13.60) and (13.61) are the Fourier transform pair in terms of the frequency in
cycles/s.

13.5.5 PARSEVAL’S IDENTITY
Applying the definition of the inverse Fourier transform,

(13.62)

Changing the order of integration in Equation (13.62) leads to

(13.63)

The inner integral is the definition of the complex conjugate of the Fourier transform of
y(t ), leading to

(13.64)

Equation (13.64) is known as Parseval’s identity for nonperiodic functions. Using the
circular frequency v, Parseval’s identity is written as

(13.65)
L

q

-
q

y 2(t )dt =

1

2pL

q

-
q

| Y (v) |2dv

L

q

-
q

y 2(t )dt =

L

q

-
q

Y ( f )Y *( f )d f =

L

q

-
q

| Y ( f ) |2d f

L

q

-
q

y 2(t )dt =

L

q

-
q

Y ( f ) c
L

q

-
q

y (t )e i 2pftd t ddf

L

q

-
q

y 2(t )dt =

L

q

-
q

y (t ) c
L

q

-
q

Y ( f )e i 2pftd f ddt

F ( f ) =

L

q

-
q

F (t )e -i 2pftdt

F (t ) =

1

2pL

q

-
q

F ( f )e i 2pftd (2pf ) =

L

q

-
q

F ( f )e i 2pftd f

t{d (t )} = 1

H (v) = G (iv)

H (v) =

x (v)

F (v)
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13.6 POWER SPECTRAL DENSITY
The mean square value of a random variable y is calculated according to

(13.66)

Using Parseval’s identity, Equation (13.65) becomes

(13.67)

Equation (13.67) is written as

(13.68)

where

(13.69)

is called the power spectral density. It represents the energy density associated with a fre-
quency v.

The power spectral density is written in terms of f as

(13.70)

where f can take on positive and negative values. If f is restricted to positive values, in order for

(13.71)

the spectral density in terms of f is defined as

(13.72)

Consider the Fourier transform of y (t � t), defined such that

(13.73)

Substituting Equation (13.73) into the definition of the autocorrelation function yields

(13.74)

Interchanging the limiting process with the integration, changing the order of the inte-
gration, and rearranging leads to

(13.75)R (t) =

1
2pL

q

-
q

c lim
T: q

1
TL

q

-
q

y (t )eivtd t dY (v)eivtdv

= lim
T: q

1
TL

T
2

-
T
2

y (t ) c 1

2pL

q

-
q

Y (v)e iv(t +t)dv ddt

R (t) = lim
T: q

1
TL

T
2

-
T
2

y (t )y (t + t)dt

y (t + t) =

1
2pL

q

-
q

Y (v)e iv(t +t)dv

W ( f ) = 4pS(v)

E (y2 ) =

L

q

- 0
S (v)dv =

L

q

0
W ( f )df

W ( f ) = 2pS (v)

S (v) = lim
T: q

1

T
 y (v)y*(v)

y 2
=

L

q

-
q

S (v)dv

y 2
=

1
2p L

q

-
q

 lim
T: q

1
T

 y (v)y*(v)dv

y 2
= lim

T: q

1
TL

T
2

-
T
2

y 2(t )dt
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Using the definition of the Fourier transform in Equation (13.75) gives

(13.76)

Using the definition of power spectral density in Equation (13.76) leads to

(13.77)

Thus, the power spectral density is the Fourier transform of the autocorrelation function
over 2p. Using the definition of the transform pair, we have

(13.78)

Equations (13.77) and (13.78) are called the Wiener-Khintchine equations.
The autocorrelation and the power spectral densities are real functions of v. In addition,

R(t) � R(�t), so that Equation (13.77) can be written as

(13.79)

A wideband process is one in which a large number of frequencies appear in the time-
dependent description of the process, as shown in Figure 13.12(a). The autocorrelation

R (t) = 2
L

q

-
q

S(v) cos vt  dv

S (v) =

1

2pL

q

-
q

R (t)e -ivtd t

R (t) =

L

q

-
q

S (v)e ivtdv

R (t) =

1

2pL

q

- q

lim
T: q

1
TL

q

-
q

Y * (v)Y(v)e ivtdv

FIGURE 13.12
Wideband process (a) y(t),
(b) R(t), and (c) S(v).
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t

t

R
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function is large near v � 0 and decays rapidly, as shown in Figure 13.12(b). The power
spectral density has a significant value over a wide range of frequencies, as shown in
Figure 13.12(c). Jet engine noise is typically a wideband process.

A narrowband process is one in which only a few frequencies with random ampli-
tudes are present in the time-dependent description of the process, as illustrated in
Figure 13.13(a). The autocorrelation function appears to be a decaying cosine function,
as illustrated in Figure 13.13(b). The power spectral density is large over a narrowband of
frequencies, as shown in Figure 13.13(c). Vibration of a floor in an industrial plant is an
example of narrowband excitation in which a few frequencies are dominant in the power
spectral density.

White noise is a limiting case of a wideband process. Its time dependent description,
as illustrated in Figure 13.14(a), is similar to that of a wideband excitation. Its autocorre-
lation function is proportional to the unit impulse function

(13.80)

where S0 is the magnitude of its constant-power spectral density, as shown in Figure 13.14(c),
over a theoretically infinite frequency range. White noise is impossible to achieve, as the
means square value of the process is infinite but it provides a good approximation for many
wide band processes.

R(t) = S0d(t)

FIGURE 13.13
Narrowband process (a) y(t),
(b) R(t), (c) S(v).
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If the white noise is limited by bandwidth, the power spectral density is as given in
Figure 13.14 and is described by

(13.81)

This bandlimited white noise is more realistic, as it has a finite mean square value.

S0  v1 6 v 6 v2

0      v 6 v1 and v 7 v2

S (v)c

FIGURE 13.14
White noise at (a) y(t), (b)
R(t), and (c) S(v).

(a)

Area = S0

(b)

y

t

R

t

(c)

S

w

EXAMPLE 1 3 . 1 0
Determine and plot the autocorrelation function for bandlimited white noise, as illustrated
in Figure 13.15.

SO LU T I ON
The autocorrelation function is given by Equation (13.77), which is evaluated for this
power spectral density as

(a)R(t) = 2
L

v2

v1

S0 cos vtdv =

2F0

t
( sin v2t -  sin v1t)

FIGURE 13.15
Bandlimited white noise for
Example 13.10.w1

ww 2

S
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FIGURE 13.16
Autocorrelation function for
bandlimited white noise with
v1 � 10 rad/s at (a) v2 �

15 rad/s, (b) v2 � 20 rad/s,
and (c) v2 � 50 rad/s.
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The autocorrelation function is plotted in Figure 13.16 for v1 � 10 rad/s for different
values of v2.
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13.7 MEAN SQUARE VALUE OF THE RESPONSE
Equation (13.58) implies that the transfer function is the ratio of the Fourier transform of
the output to the Fourier transform of the input. Multiplying the transfer function by its
complex conjugate yields a real quantity

(13.82)

which is rearranged to yield

(13.83)

Let Sx(v) represent the spectral density of the output and SF (v) represent the spectral den-
sity of the input. The mean square value of the output is calculated as

(13.84)

Substituting Equation (13.83) into Equation (13.84) leads to

(13.85)x2
=

L

q

-
q

| H (v) |2 c lim
T: q

1

T
F (v)F *(v) ddv =

L

q

-
q

| H (v) |2SF (v)dv

Sx(v)dv =

L

q

-
q

lim
T: q

 
1
T

 X (v)X *(v)dvx 2
=

L

q

-
q

X (v)X *(v) = | H (v) |2F (v)F *(v)

H (v)H*(v) =

X(v)X *(v)

F (v)F *(v)

EXAMPLE 1 3 . 1 1
What is the mean square response of a SDOF system due to (a) white noise, (b) bandlim-
ited white noise if

and

SO LU T I ON
The results of Example 13.9 are used to determine the transfer function for a SDOF system as

(a)

The power spectral density of the output is

(b)

The mean square response of the output is given by Equation 13.85

(c)x2
=

L

q

-
q

| H (v) |2SF (v) dv =

L

q

-
q

S0

(k - mv2)2
+ (cv)2dv

Sx(v) = | H (v) |2SF (v) = S0 |
1

-mv2
+ icv + k

| =

S0

(k - mv2)2
+ (cv)2

H (v) =

1

-mv2
+ icv + k

v2 = 100 rad>s
vn = 30 rad>s, m = 1 kg, z = 0.1 S0 = 1 * 10-6 m2 # s>rad v1 = 10 rad>s
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The integral is evaluated using Appendix (E) leading to

(d)

(b) The transfer function is written as

(e)

The square of magnitude of the transfer function is

(f)

The mean square response of the output is

(g)

The integral is evaluated using Appendix (E) leading to

x 2
= (30)(1 * 10-6) c t

4(0.1)
d c 0.1

2p21 - (0.1)2
 ln 

(3.33)2
+ 2(3.33)21 - (0.1)2

+ 1

(3.33)2
- 2(3.33)21 - (0.1)2

+ 1

    +

1

p
 tan -1

3.33 + 21 - (0.1)2

0.1
+

1

p
 tan -1

3.33 - 21 - (0.1)2

0.1

  -

0.1

2p21 - (0.1)2
 ln 

(0.333)2
+ 2(0.333)21 - (0.1)2

+ 1

(0.333)2
- 2(0.333)21 - (0.1)2

+ 1

  -

1

p
 tan -1

0.333 + 21 - (0.1)2

0.1
-

1

p
 tan -1

0.333 - 21 - (0.1)2

0.1
d

 = 1.97 * 10-2 m2

x 2
=

L

100

10

| H (v) |2SF (v) dv =

L

100

10

1 *  10-6

(900 - v2)2
+ (6v)2

dv

  =

1

(900)2L

3.33

0.333

(30)(1 *  10-6) 

c1 - a v
30
b2 d2 + c2(0.1)a v

30
b d2

d a v
30
b  

| H(v) |2 =

1
(900 - v2)2

+ (6v)2

H(v) =

1
1 kg

(900 - v2) + i 6v
=

1
(10000 - v2) + i 6v

x 2
=

pS0

2kc
=

pS0

2zm2v3
n

=

p(1 * 10-6 m2 # s/rad)

2(0.1)(1 kg)2(30 rad/s)
= 5.81 * 10-10 m2

EXAMPLE 1 3 . 1 2
A two degree-of-freedom frame structure is subject to wind loading whose power spectral den-
sity is measured and given in Table 13.3 on the next page and plotted in Figure 13.17(a) on
page 811. The transfer function is also measured and has two peaks, as shown in Figure 13.17.

(a) Determine the mean square value of the response of the system.
(b) Determine the probability that | x | � 0.02 m.
(c) Determine the probability that the maximum value of x exceeds 0.02 m.

(h)
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SO LU T I ON
The mean square of the response of the system is given by Equation (13.85)

(a)

Since the power spectral density and the magnitude of the transfer function are only known
at discrete values of omega, a numerical integration procedure must be used. Applying the
trapezoidal rule over the range of frequencies 0 � v� 380 rad/s with the number of inter-
vals equal to 19 and �v � 20 rad/s leads to

(b)

Assuming the mean is zero, the standard deviation is calculated from Equation (13.18) as

(c)
(b) The value of x can take on positive and negative values. Thus, using the central limit
theorem, it is governed by the Gaussian distribution. The normalized variable is

(d)z =

0.02 m - 0 m
0.0375 m = 0.5333

s = 2x 2
= 0.0375 m

= 1.41 * 10-3 m2

x 2
= 3SF (0)| H (0) |2 + 2a

18

i = 1

SF (20i )| H(20i ) |2 + SF (380)| H (380) |24c 20
2(19)

d

x 2
=

L

q

-
q

| H(v) |2SF (v)dv

0 0 1
20 0.01 1.01
40 0.03 1.03
60 0.5 1.10
80 1.0 1.4
100 1.6 1.9
120 1.0 2.5
140 0.8 3.1
160 1.3 2.5
180 2.0 1.6
200 3.4 1.1
220 2.0 1.3
240 1.8 2.7
260 1.3 4.0
280 1.0 5.6
300 1.3 3.8
320 1.3 2.1
340 0.9 1.3
360 0.6 0.5
380 0.1 0.1

| H(v) |am
N
bSF (v)a10-5m2 # s

rad
bva rad

s
b

Measured values of spectral density function
and magnitude of transfer function

T A B L E 1 3 . 3
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FIGURE 13.17
(a) SF (v) for system of Example 13.12 is experimentally obtained. (b) H(v).
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The probability that | x | � 0.02 is the probability that z � �0.5333, which according to
Table 13.1 is 1 � 0.701 � 0.299. The probability that z � 0.5333 is 0.299. Thus, the
probability that | z | � 0.533 is 0.598.
(c) The maximum value of x is only positive. Thus, it likely follows a Rayleigh distribution
with a � 0.0375. The value of the variable in the Rayleigh distribution is

. The probability that the maximum value of x is greater than 0.02 m is

(e)e -0.142
= 0.867

(0.02 m)2

2(0.0375 m)2 = 0.142

13.8 BENCHMARK EXAMPLE
Consider the benchmark example of the simplified model of a suspension system subject
to a random vibration, as illustrated in Figure 13.18. The differential equation governing
the displacement of the body of the vehicle x(t) given the displacement of the wheel y(t) is

(a)

The transfer function is obtained by taking the Fourier transform of the differential equa-
tion, leading to

(b)

The transfer function is obtained from Equation (b) as

(c)

The transfer function is rewritten as

(d)

The square of the magnitude of the transfer function is

(e)| H(v) |2 =

(1600 - 24v2)2
+ 1600(2 - v)4

(40 - v2)2
+ (4v)2

H(v) =

4iv + 40

(40 - v2 ) + 4iv
c (40 - v2) - 4iv

(40 - v2) - 4iv
d =

1600 - 24v2
+ 40(2 - v)2i

(40 - v2)2
+ (4v)2

H (v) =

X (v)

Y (v)
=

1200iv + 12,000
-300v2

+ 1200iv + 12,000
=

4iv + 40
(40 - v2 ) + 4iv

300( - v2)X (v) + 1200ivX (v) + 12,000X (v) = 1200ivY (v) + 12,000Y (v)

300x# + 1200x# + 12,000x = 1200y# + 12,000y

FIGURE 13.18
System of the benchmark
example as it travels over a
road modeled by white noise.

300 kg 60 m/s

12,000 N/m1200 N . s/m
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The vehicle is traveling over a road contour whose power spectral density is that of white
noise:

(f)

If the vehicle is traveling at 60 m/s, we have

(g)

Thus,

(h)

The mean square values of the response is

(i)

Evaluation of the integral using the formulas of Appendix F leads to

(j)

Assuming the mean is zero, the standard deviation is

(k)

The random variable x is governed by the Gaussian distribution via the central limit
theorem. The maximum absolute value is greater than a if �a � x or x � a. The maxi-
mum amplitude is a positive random variable and is more likely governed by the Rayleigh
distribution. The probabilities of exceeding certain values of the absolute value of x and the
maximum amplitude are given in Table 13.4.

s = 27.74 * 10-5m2
= 8.80  mm

x 2
= (6.1 * 10-8)(404)p = 7.74 * 10-5

 m2

x 2
=  

L

q

-
q

a6.1 * 10-8 
m2 # s

rad
b  b (1600 - 24v2)2

+ 1600(2 - v)4

(40 - v2)2
+ (4v)2 rdv

S0 = 2.3 * 10-5 
 

m2

cycle>m  

1 cycle>m
120p rad>s = 6.10 * 10-8

 m2 # s>rad

1   

cycle

m
= 1 

cycle

m
 
60 m

s
 
2prad
cycle

= 120 prad >s

S0 = 2.3 * 10-5 m2

cycle>m

a (mm) Normal Variable Probability Rayleigh Variable Probability

| a | � x xmax � a

2 0.227 0.820 0.0258 0.9745
4 0.454 0.645 0.1033 0.9019
6 0.682 0.490 0.2324 0.7926
8 0.909 0.362 0.4132 0.6615
10 1.136 0.250 0.6457 0.5243
12 1.364 0.170 0.9298 0.3947
14 1.591 0.118 1.2655 0.2821
16 1.818 0.068 1.6529 0.1915
18 2.045 0.035 2.0119 0.1234
20 2.272 0.022 2.5826 0.0756

a2

2(8.80mm)2

a
8.80 mm

Probability that x � | a | and xmax � a
T A B L E 1 3 . 4
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13.9 SUMMARY

13.9.1 IMPORTANT CONCEPTS
• A random variable does not have a defined value, but it is expressed in terms of proba-

bilities.
• A system with a random input has a random response.
• A sample function is one measurement of a random variable y(t).
• An ensemble is a set of sample functions {yi(t)}.
• A process is stationary if its defining statistics are independent of time.
• A process is ergoidc if one element of the ensemble is representative of the ensemble.

The statistics do not depend on which element is selected.
• The probability distribution function P(y) gives the value of the probability that the

random variable is less than y.
• The probability density function is the derivative of the probability distribution function.
• The mean m of a random variable is the expected value of the random variable.
• The variance s2 of a random variable is the expected value of (y � m)2.
• The mean square value is the expected value of y2.
• A Gaussian process defines a bell-shaped curve.
• The central limit theorem implies that the Gaussian process can be used to describe the

distribution of the means or random variables which are not Gaussian processes.
• The Rayleigh distribution is used for random variables that only have positive values.
• The autocorrelation function is the expected value of x (t)x (t � t). It is a function of t

only for a stationary process.
• The Fourier transform of a nonperiodic function is the application of the Fourier series

as the period approaches infinity.
• The transfer function is the ratio of the Fourier transform of the output of a system to

the Fourier transform of its input.
• The power spectral density function S(v) is the energy density associated with a fre-

quency v.
• The Wiener-Khintchine equations relate the power spectral density to the Fourier trans-

form of the autocorrelation function.
• A wideband process is one in which the power spectral density has a significant value

over a wide range of frequencies.
• A narrowband process is one in which the power spectral density is defined to have a

significant value only over a narrow band of frequencies.
• White noise is a wideband process in which the power spectral density is constant over

all frequencies.
• The power spectral density of the output is equal to the power spectral density of the

input times the square of the transfer function.
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• The mean square value of a process is equal to the integral over the entire range of fre-
quencies of the power spectral density.

13.9.2 IMPORTANT EQUATIONS
Range of values of probability distribution function

(13.6)

Relations between the probability density function and the probability distribution function

(13.8)

(13.9)

Mean of a random variable

(13.13)

Variance of a random variable

(13.14)

Mean square value of a random variable

(13.16)

Relation between the mean, the variance and the mean square value

(13.18)

Probability density function for Gaussian process

(13.20)

Normalized random variable

(13.21)

Probability distribution function for normalized Gaussian process

(13.23)

Probability density function for Rayleigh process

(13.24)p (y ) =

y

a
e -

y2

2a

P(z) =

L

z

-
q

1

22p
e -

t2

2 d t

z =

x - m

s

p (x ) =

1

22ps
e -

1
2(x -m
s )2

y 2
= s2

+ m2

y 2
= E (y 2 ) =

L

q

-
q

y 2p (y )dy

s2
= E 3(y - m)24 =

L

q

-
q

(y - m)2p (y )d y

m =

L

q

-
q

yp (y )dy

P (y ) =

L

y

-
q

p (j)d j

p (y ) =

dP
dy

0 … P (y ) … 1
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Autocorrelation function

(13.37)

Autocorrelation function for an ergodic stationary process

(13.38)

Relation between autocorrelation function, mean and variance for a stationary process

(13.40)

Fourier transform pair

(13.52)

(13.53)

Transfer function

(13.58)

Parseval’s identity

(13.65)

Power spectral density

(13.69)

Wiener-Khintchine equations

(13.77)

(13.78)

Autocorrelation function for white noise

(13.80)

Mean square value of output

(13.85)x 2
=

L

q

-
q

 | H(v) |2 c  lim
T: q

1
T

F (v)F *(v) ddv =

L

q

-
q

| H(v) |2SF(v)dv

R(t) = S0d(t)

S (v) =

1

2pL

q

-
q

R (t)e -ivtdt

R (t) =

L

q

-
q

S(v)e ivtdv

S (v) =

1

2p
 c lim

T: q

1
T

 Y (v)Y *(v) d

L

q

-
q

y 2(t )dt =

1
2pL

q

-
q

| Y (v) |2dv

H (v) =

x (v)

F (v)

F (v) =

L

q

-
q

F (t )e -ivtdt

F (t) =

1

2pL

q

-
q

F (v)e ivtdv

R(0) = s2
+ m2

R (t) = lim
T: q

1
TL

T
2

-
T
2

y (t )y (t + t)dt

=

L

q

-
qL

q

-
q

y(t )y (t + t)p3y (t ),y (t + t)4dy (t )dy (t + t)

R (t,t) = E 3y (t )y (t + t)4
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PROBLEMS

SHORT ANSWER PROBLEMS
For Problems 13.1 through 13.12, indicate whether the statement presented is true or false.
If true, state why. If false, rewrite the statement to make it true.

13.1 The Rayleigh distribution can be applied to random variables with positive
values.

13.2 A stationary process is one in which a representative sample of ensemble
measurements can be used for the entire process.

13.3 The Weiner-Khintchine equations imply that the autocorrelation function is the
Fourier transform of the power spectral density.

13.4 If P(0) � 0.5 for a normalized random variable, the probability distribution
follows the Gaussian distribution.

13.5 The probability distribution function is the derivative of the probability density
function.

13.6 The autocorrelation function is an even function of  t for a stationary process.
13.7 The transfer function is defined as the Fourier transform of the output of a

system divided by the Fourier transform of the input to a system is equal to the
sinusoidal transfer function for the system.

13.8 If x(t) � A sin 5t, then 
13.9 The mean of a random function can be calculated by for a

stationary ergodic process.
13.10 The variance is the positive square root of the standard deviation.
13.11 A narrowband process has a power spectral density defined over a narrow band

of frequencies.
13.12 For a stationary process R (0) � 1.

Problems 13.13 through 13.30 require a short answer.

13.13 What is an ensemble?
13.14 What is a stationary process?
13.15 What is an ergodic process?
13.16 Which is more likely to be a random process, the wind induced vibrations of a

bridge or the rotating unbalance of a machine?
13.17 What is the total area under the curve of a probability density function?
13.18 What does the Central Limit theorem imply?
13.19 What is the power spectral density function for ideal white noise?
13.20 What is the autocorrelation function for ideal white noise?
13.21 What is the Fourier transform of d(t)?
13.22 If the probability density function p(x) is known for a random variable, what is

the probability distribution P(x)?
13.23 What is P(0) for the normalized Gaussian distribution?
13.24 The probability of the maximum value of the response of a system follows what

probability distribution?

m =

L

q

-
q

xp(x) dx

p(x) =
1
A    for  | x | 6 A.
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13.25 The probability that the absolute value of the response of a system follows what
probability distribution?

13.26 A random variable has a probability distribution, P(x). What is p( )?
13.27 A random variable has a probability distribution, P(x). What is the probability

that x � b?
13.28 A random variable has a probability distribution, P(x). What is the probability

that �1 � x � 3?
13.29 If the power spectral density of an input force is SF(v) and the transfer function

for the system the force is applied to is H(v), what is the power spectral density
of the output?

13.30 The spectral density of a random process is S(v). How is the mean square value
of the process determined?

Problems 13.31 through 13.36 require short calculations.

13.31 For the normalized Gaussian distribution P(z), determine the following.

(a) What is the probability that z � 1?
(b) What is the probability that �2 � z � 1?
(c) What is the probability that z � 0.5?

13.32 A random variable has a Gaussian distribution with m � �1.3 and s � 2.8.
Determine the following.

(a) What is the probability that x � �3.3?
(b) What is the probability that x � 3.3?
(c) What is the probability that 0 � x � 6.3?

13.33 A random variable has a Rayleigh distribution with m � 3.1. Determine the
following.

(a) What is the probability that x � 3.1?
(b) What is the probability that x � 2.3?
(c) What is the probability that 2.9 � x � 3.3?

13.34 The probability density function for the standard Cauchy distribution is

(a) What is the probability distribution function for the Cauchy 
distribution?

(b) What is the mean of the Cauchy distribution?
(c) What is the mean square value of the Cauchy distribution?

13.35 The probability distribution function for the standard Weibull 
distribution is

What is its probability density function p(x)?

P (x) = 1 - e-xg

p (x) =

1

p(1 + x2)

q
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13.36 Consider the system shown in Figure SP13.36.

(a) What is the transfer function for the system ?
(b) Determine |H(v)|.
(c) The system is subject to ideal white noise. What is the power spectral

density of the input?
(d) What is the power spectral density of the output?
(e) Determine the mean square response of the system.
(f ) If the mean of the response is zero, what is the standard deviation of the

response?

H(v) =
X (v)
F (v)

FIGURE SP13.36

c

m x

F

13.37 It is desired to approximate the random displacement of a machine due to a
random force F(t). What are the SI units of the following.

(a) The power spectral density of the displacement Sx(v)
(b) The power spectral density of the force SF (v)
(c) The Fourier transform of the force F (v)
(d) The Fourier transform of the displacement X (v)
(e) The transfer function for the system H (v)
(f ) The mean square value of the displacement E(x2)
(g) The variance of the force 
(h) The autocorrelation function for the displacement Rx(t)
(i) The autocorrelation function for the force RF(t)
(j) The probability distribution for the force
(k) The probability density function for the force

CHAPTER PROBLEMS

13.1 Determine the autocorrelation function for x (t) � A cos 2t.
13.2 Determine the autocorrelation function for the rectangular wave shown in

Figure P13.2.

s2
F
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13.3 Determine the autocorrelation function for the rectangular wave shown in
Figure P13.3.

T
2

–2T–5T
2

–3T
2

–T
2

T t

A

F

3T
2

2T 7T
2

FIGURE P13.3

T
2

–T
2

–3T
2

t

A

F

3T
2

FIGURE P13.4

13.4 Determine the autocorrelation function for the triangular wave shown in 
Figure P13.4.

13.5 Determine the autocorrelation function for the triangular wave shown in
Figure P13.5.

T
8

–2T –15T
8

–T –7T
8

T t

A

F

9T
8

2T 17T
8

FIGURE P13.2

T T
2

–T–T 0
2

–3T
2

t

A

3T
2

FIGURE P13.5
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13.6 Determine the autocorrelation function for the triangular wave shown in 
Figure P13.6.

T
4

T
2

–T 0
2

–T
4

A

–A

FIGURE P13.6

–T
4

–T
2

T
4

0 T
2

A

P(t)

FIGURE P13.9

13.7 A sine wave has the form

Determine the expected value of x and x2.

13.8 Assume that t is uniformly distributed.

(a) Determine the probability density function p(x) for the function in
Chapter Problem 13.7.

(b) Determine the probability distribution function P(x) for the function in
Chapter Problem 13.7.

13.9 Determine the probability density function for the periodic function, one
period of which is shown in Figure P13.9

x(t) = 3 - 2 sin 4t

13.10 Determine the probability density function for the half-period cosine wave of
Figure P13.10.

–T
2

T

A

p . t

2

T
cos 

FIGURE P13.10
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13.11 Determine the Fourier transform of the rectangular pulse of Figure P13.11.

13.12 Determine the Fourier transform for the triangular pulse of Figure P13.12

13.13 Determine the Fourier transform of the half-period cosine wave of 
Figure P13.10.

13.14 Determine the power spectral density of the wave shown in Figure P13.2.
13.15 Determine the power spectral density of the wave shown in Figure P13.3.
13.16 Determine the power spectral density of the wave shown in Figure P13.4.
13.17 Determine the power spectral density of the wave shown in Figure P13.6.
13.18 A force has band limited white noise with frequency bounds of v1 � 100 rad/s

and v2 � 500 rad/s and magnitude S0 � 2 � 102 N2 s rad determine the
following.

(a) The autocorrelation function for the force
(b) The expected mean square value of the force
(c) Assuming the mean is zero, what is the probability that the magnitude of

the force is greater than 1000 N?

13.19 A SDOF system with a mass of 20 kg, z � 0.1 and vn � 100 rad/s is subject
to white noise with . What is the power spectral
density of the response Sx(v)?

S0 = 1 * 10-2 N2 # s/rad

>#

T
2

–T
2

F0

P(t)

FIGURE P13.11

–T
2

T t

F0

2

FIGURE P13.12
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13.20 A SDOF system with a mass of 30 kg, z � 0.05, and vn � 200 rad s is subject
to white noise with . What is the power spectral density
of the response Wx(f )?

13.21 A SDOF system with a mass of 20 kg, z � 0.1, and vn � 100 rad/s is subject
to white noise with .

(a) What is the mean square value of the response of the system?
(b) What is the probability of the response exceeding 5 mm?
(c) What is the probability of the maximum of the response exceeding 

5 mm?

13.22 The SDOF system of Figure P13.22 is subject to a white noise with 
S0 � 1 � 10�2 m2 rad s (the power spectral density of the acceleration of 
the base). Calculate the mean square value of the acceleration of the 
20 kg block.

#>

S0 = 1 * 10-2 N2 # s/rad

S0 = 1 * 10-2 N2/Hz
>

FIGURE P13.22

20 kg

y(x)

1000 N . s/m1 × 104 N/m

13.23 The SDOF system of Figure P13.23 is subject to a white noise with S0 � 1 �
10�3 N2 s rad. What is the mean square value of the response of the 300 kg
mass.

>#

FIGURE P13.23

300 kg

y(t)

2000 N . s/m1 × 105 N/m

1 × 105 N/m

x(t)

13.24 Solve Chapter Problem 13.21, assuming the power spectral density is band
limited with v1 � 50 rad/s and v2 � 200 rad/s.
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13.25 Solve Chapter Problem 13.21, assuming the force is narrowband with a power
spectral density given by .

13.26 Solve Chapter Problem 13.22, assuming the acceleration is band limited with 
v1 � 10 rad s and v2 � 30 rad s.

13.27 A two SDOF has governing differential equations

where F (t) is random with a power spectral density of S0 � 5 � 10�2 N2 s rad.

(a) Determine the mean square value of x1.
(b) Determine the mean square value of x2.

>#

= BF (t )
0
RB x1

x2

R+ B 200 -100
-100 300

RB x#1
x#2
R+ B 5 -2

-2 2
RB x#1

x#2
RB1 0

0 1
R

>>
SF (v) =

3 * 10-3

2 + 5v2



Appendix A

UNIT IMPULSE FUNCTION
AND UNIT STEP FUNCTION

Consider the function, f
�
(x ; a), where f

�
(x ; a), as shown in Figure A.1 is defined by

(A.1)

The function has the property

(A.2)

Taking the limit of f
�
(x ; a) as yields

(A.3)

From Equation (A.2)

(A.4)
L

q

-
q

d(x - a)dx = 1

lim
� :0

 f�(x ; a) = d(x - a) = e 0 x Z a
q x = a

� : 0

L

q

-
q

f�(x ; a)dx = 1

f�(x ; a) = f
0 - q 6 x 6 a -

�

2
1
�

a -

�

2
… x … a +

�

2

0 a +

�

2
6 x 6 q

∆
2

a – 

f∆(x; a)

1
∆

a x∆
2

a + 

FIGURE A.1
f∆(x; a).d(x - a ) = lim

� : 0

825
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The function defined in Equation (A.3) and whose valuable property is given in
Equation (A.4) is called the unit impulse function. It has many applications in physics and
engineering. It is used to mathematically represent the force that is applied to cause a unit
impulse applied at a time t � a in a mechanical system. It is used to represent a unit con-
centrated load applied at a location x � a to a structure. The unit impulse function, also
called the Dirac delta function, is used to represent a unit heat source in a heat transfer problem.

Now define

(A.5)

The function defined in Equation (A.5) is called the unit step function and is illustrated in
Figure A.2. Differentiating Equation (A.5) gives

(A.6)

The definitions of the unit impulse function and unit step function can also be used to
derive the following integral formulas. For any function g(t),

(A.7)

and (A.8)
L

t

0
u (t - a)g (t)dt = u(t - a) 

L

t

a
g (t)dt

L

t

0
d(t - a)g (t)dt = u (t - a)g (a)

du
dx

(x - a) = d(x - a)

u(x - a) =

L

x

0
d(x - a) dx =

L

x

0
lim
� :0

 f�(x ; a) dx = e  0 x … a
1 x 7 a

u(x – a)

1

xa

FIGURE A.2
The unit step function u(x � a).



B.1 DEFINITION
The Laplace transform of a function f (t) is defined as

(B.1)

If there exist values of �, M, and T such that

(B.2)

then F(s) exists for s � �. Equation (B.2) is satisfied for all excitations and responses in
this text.

The Laplace transform transforms a real-valued function into a function of a com-
plex variable, s. For many functions, the Laplace transform can be obtained by direct
integration.

e -at | f  (t) | 6 M  for all t 7 T

F (s) = L{  f  (t)} =

L

q

0
f  (t)e -st dt

Appendix B

LAPLACE TRANSFORMS

EXAMPLE B . 1
Determine the Laplace transform of f (t) � eat.

SO LU T I ON

(a)L{e at} =

L

q

0
e ate -stdt =

1
a - s

e (a- s)t 2 q
0

=

1
s - a

  s 7 a

B.2 TABLE OF TRANSFORMS
Equation (B.1) is used to develop a table of transform pairs a table of f (t) versus F(s).
Laplace transforms of other functions can be developed using Table B.1 in conjunction
with the properties of the transform, provided in Table B.2.

B.3 LINEARITY
The Laplace transform operator is a linear operator. Let F(s) � L{ f (t)}, G(s) � L{ g(t)}, and
� and � be any real numbers. Then

(B.3)L{af  (t) + bg (t)} = aF (s) + bG (s)

827
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B.4 TRANSFORM OF DERIVATIVES
The property of the Laplace transform of derivatives along with the linearity of the trans-
form allows easy application of the Laplace transform method to the solution of differen-
tial equations. If F(s) � L{ f (t)}, then

� sn�2
.

f (0)� … � sf (n�2)(0) � f (n�1)(0) (B.4)Le d nf

dt n   f = snF (s) - sn - 1f  (0)

EXAMPLE B . 2
Determine L{cosh(�t)}

SO LU T I ON

Recall that . Then using linearity of the transform

(a)

Using transform pair 3 from Table B.1 with � � � and � � �� in Equation (a)
leads to

(b)L{cosh(vt)} =

1
2
a 1

s - v
b +

1
2
a 1

s + v
b =

1
2
as - v + s + v

s2
- v2 b =

s
s2

- v2

L{cosh(vt)} =

1

2
 L{e vt } +

1

2
 L{e -vt }

cosh(vt) =

e vt
+ e -vt

2

T A B L E B . 1

Number F (s)

1 1

2 tn

3 e�t

4 sin�t

5 cos�t

6 �(t � a) e�as

7 u(t � a)

8

9

10

11

12
2sv

(s2
+ v2)2t  sin vt

s2
- v2

(s2
+ v2)2t  cos vt

1

(s + a)2t e at

v

s2
+ 2as + v2e at sin vt

s + as
s2

+ 2as + v2e at cos vt

e-as

s

s
s2 + v2

v

s2
+ v2

1
s - a

n!
sn + 1

1
s

f (t )
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B.5 FIRST SHIFTING THEOREM
If F(s) � L{ f (t)}, then

(B.5)L{e -atf  (t)} = F (s + a)

T A B L E B . 2

Name of Property Statement of Property

Definition

Linearity of transform

First Shifting Theorem

Second Shifting Theorem

Transform of First Derivative

Transform of Second Derivative

Convolution

Inversion Integral

Note: and G(s) = L{ g (t)}F (s) = L{ f  (t)}

L-1{F (s)} =
1

2piL

g+ i q

g- i q

F (s)e st ds

L{  f  (t) * g (t)} = F (s)G(s)

Le d 2f

dt 2   f = s2F (s) - sf  (0) -

df

dt
 (0)

Le df

dt
  f = sF (s) - f  (0)

L{  f  (t - a)u(t - a)} = e -asF (s)

L{e atf  (t)} = F (s - a)

L{af  (t) + bg (t)} = aF (s) + bG (s)

L{ f  (t)} = 1
q

0 f  (t)e -stdt

Properties of Laplace Transforms

EXAMPLE B . 3
Use transform pair 5 from Table B.1 and Equation (B.4) to determine L{sin2t}.

SO LU T I ON
Noting that

(a)

and applying properties (B.3) and (B.4) with n � 1 gives

(b)

Using transform pair 5 from Table B.1,

(c)L{sin 2t } = -

1

2
 a s2

s2
+ 4

- 1b =

2
s2

+ 4

L{sin 2t } = -

1
2

 (s L{cos 2t } - 1)

sin 2t = -

1
2

 

d (cos 2t)

dt

EXAMPLE B . 4
Use Table B.1 and the first shifting theorem to calculate where

.

SO LU T I ON
Using the first shifting theorem and transform pair 5 from Table B.1,

(a)L{e -zvnt cos vd t } =

s
s2

+ v2
d

2
s :s +zvn

=

s + zvn

(s + zvn)
2

+ v2
d

=

s + zvn

s2
+ 2zvns + v2

n

vd = vn1(1 - z2)
L{e -zvnt cos vd 

t }
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B.6 SECOND SHIFTING THEOREM
If F(s) � L{ f (t)}, then

(B.6)L{ f  (t - a)u(t - a)} = e -asF (s)

EXAMPLE B . 5
Use Table B.1 and the second shifting theorem to determine the Laplace transform of the
function of Figure B.1.

SO LU T I ON
The function of Figure B.1 is written using unit step functions as

Use of transform pair 2 from Table B.1 with n � 1 and the second shifting theorem give

L{  f  (t)} =

1
s

- e -s
 

2
s

+ e -2s
 

1
s

=

1
s

 (1 - 2e -s
+ e -2s )

 = tu(t) - 2(t - 1)u(t - 1) + (t - 2)u(t - 2)

 f  (t) = t 3u(t) - u(t - 1)4 + (2 - t )3u(t - 1) - u(t - 2)4

f(t)

1

t1 2

FIGURE B.1

B.7 INVERSION OF TRANSFORM
If F(s) � L{ f (t)}, then f (t) � L�1 {F(s)} where

(B.7)

is an integral carried out in the complex s plane. Inverse transforms are often obtained by
using Table B.1 in conjunction with transform properties.

L-1{F(s)} =

1
2piL

g+ i q

g- i q

F (s)e st  ds

EXAMPLE B . 6
If

find F(t), where f (t) � L�1{F (s)}.

e -2s
 

s + 5
s2

+ 2s + 5
= F (s)
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B.8 CONVOLUTION

Let F (s) � L{ f (t)} and G (s) � L{g (t)}. Then

(B.8)

where is called the convolution of f (t ) and g (t ). The property is known as the
convolution property. It is usually used to invert transforms.

B.9 SOLUTION OF LINEAR DIFFERENTIAL
EQUATIONS
The properties of linearity of the transform and transform of derivatives are used to solve
a linear differential equation with initial conditions.

f  (t ) * g (t )

L{ f  (t) * g (t)} = Le
L

t

0
f (t)g(t - t)dt f = F (s)G (s)

Completing the square of the denominator of F (s) gives

Using linearity, the first shifting theorem, and transform pairs 4 and 5 from Table B.1 leads to

Using the second shifting theorem leads to

f  (t ) = u(t - 2)g (t - 2) = e 2 - t3cos 2(t - 2) + 2 sin 2(t - 2)4u(t - 2)

 g (t ) = L-1{G(s)} = e -t(cos 2t + 2 sin 2t )

F (s) = e -2s 
s + 5

(s + 1)2
+ 4

= e -2s c s + 1
(s + 1)2

+ 4
+

4
(s + 1)2

+ 4
d = e -2sG(s)

EXAMPLE B . 7
Solve the differential equation

(a)

where f (t ) is the function of Figure B.1 and

(b)

are given initial conditions.

SO LU T I ON
Taking the Laplace transform of both sides of Equation (a) leads to

(c)

Applying the property of linearity of the transform to Equation (c) leads to

(d)L{ x$  } + 16L{x } = L{  f  (t )}

L{ x$ + 16x } = L{ f  (t )}

x (0) = 0  x#  (0) = 0

x$ + 16x = f  (t )
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Let X(s) � L{x (t)}. Using the property of the transform of the second derivative and
applying the transform of the function in Figure B.1 leads to

(e)

Applying the initial conditions, Equation (b) to Equation (e) leads to

(f)

The solution for X(s) is

(g)

Noting that x(t) � L�1{X(s)}, the solution of the differential equation is obtained by invert-
ing Equation (g).

Using linearity of the transform in the inverse fashion,

(h)

From transform pair 4 of Table B.1, . Then using the second

shifting theorem in reverse, . A similar method is
used to invert the final transform, leading to

(i)x (t) =

1

4
 sin 4t -

1

2
 sin34(t - 1)4u (t - 1) +

1

4
 sin34(t - 2)4u (t - 2)

L-1 E e -s

s 2
+ 16
F =

1
4 sin 4(t - 1)u (t - 1)

L-1E 1
s 2

+ 16
F =

1
4 sin 4t

x (t) = L-1e 1
s2

+ 16
f - 2L-1e e -s

s2
+ 16

f + L-1e e -2s

s2
+ 16

f

X (s) =

1 - 2e -s
+ e -2s

s2
+ 16

(s2
+ 16)X (s ) = 1 - 2e -s

+ e -2s

s2X(s) - sx (0) - x#  (0) + 16X (s) = 1 - 2e -s
+ e -2s
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Appendix C

C.1 DEFINITIONS

1. A matrix is a collection of numbers arranged in a specific order in rows and columns.
If matrix A has n rows and m columns, then it is represented by

(C.1)

Throughout this text a single capital letter in boldface is used to represent a
matrix. The corresponding lowercase letter with two subscripts is used to refer to a spe-
cific element of the matrix. For example, the element aij resides in the ith row and jth
column of A.

A matrix with n rows and m columns is called an n � m matrix. A square matrix
has the same number of rows and columns.

2. A column vector is a matrix with only one column. A row vector is a matrix with only
one row. Usually, a single lowercase letter in boldface is used to represent a column
vector or a row vector. The letter with a single subscript refers to a specific element of
the vector. A column vector with n rows or a row vector with n columns is said to be
an n-dimensional vector. If x is an n-dimensional column vector, then xi, i � n is the
element in the ith row of the vector.

3. A diagonal matrix is a square matrix with all off-diagonal elements equal to zero. That
is aij � 0 if i � j.

4. An identity matrix is a square diagonal matrix whose diagonal elements are all unity.
That is aij � �ij, where �ij is the Kronecker delta defined by

5. The transpose of the matrix A, denoted by AT, is the matrix obtained by interchanging
the rows and columns of A. If B � AT, then bij � aji. The transpose of a column vector
is a row vector and vice versa.

6. A symmetric matrix is a square matrix whose transpose is equal to the matrix 
itself. If A is an n � n symmetric matrix, then aij � aji for i � 1, . . . , n and j �
1, . . . , n.

dij = e1 i = j
0 i Z j

A = E
a11 a12 a13

Á a1m

a21 a22 a23
Á a2m

a31 a32 a33
Á a3m

o o o ∞ o

an1 an2 an3
Á anm

U

833
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C.2 DETERMINANTS
The determinant of a square n � n matrix is a number associated with the matrix that is
often of great consequence. It is easiest to define the determinant of a 2 � 2 matrix and
use this definition and properties of determinants to calculate the determinant of larger
matrices.

The determinant of the 2 � 2 matrix A is

(C.2)

The minor corresponding to the element in the ith row and jth column of an n � n
matrix A, denoted by Mij, is the determinant of the (n � 1) � (n � 1) matrix obtained by
deleting the ith row and jth column from A. The cofactor corresponding to the element in
the ith row and jth column of A, denoted by Cij, is

(C.3)

For an i, i � 1, . . . , n, the determinant of A is obtained by the following row expansion:

(C.4)

The value of the determinant is the same regardless of the value of i. The determinant can
also be calculated by a column expansion according to the formula

(C.5)

Since the minors themselves are determinants, row or columns expansions can be used
to express each of the minors in terms of the minors of their corresponding matrix. These
expansions continue until the remaining minors are 2 � 2 determinants.

| A |  = a
n

j  = 1

ajiCji

| A |  = a
n

j  = 1

aijCij

Cij = (-1)i + j Mij

 det{A} = | A | = 2 a11 a12

a21 a22

2 = a11a22 - a12a21

EXAMPLE C . 1
Calculate the determinant of the 4 � 4 matrix A where

SO LU T I ON
The determinant is evaluated by a first-row expansion, using Equation (C.4),

| A | = (1) †
2 -1 0

-1 3 1
0 -2 1

† - (2) †
1 2 -1
2 -1 3
2 0 - 2

†

A = D1 0 0 2
1 2 -1 0
2 -1 3 1
2 0 - 2 1

T
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The determinant of a matrix is zero if and only if the column vectors that form the
matrix are linearly dependent. For example, the determinant of a matrix with a column of
zeros is zero. A matrix whose determinant is zero is said to be singular. The row vectors of
a singular matrix are also linearly dependent.

C.3 MATRIX OPERATIONS
If C � A � B, then

(C.6)

If the number of columns of A equals the number of rows of B, then the matrix C � AB
is defined as a matrix with the number of rows of A and the number of columns of B and
cij is the sum of the products of the corresponding elements in the ith row of A and the jth
column of B. That is,

(C.7)

Matrix multiplication is not commutative, but is associative and distributive. The
transpose of the product has the following property. If C � AB, then

(C.8)CT
= (AB)T

= BTAT

cij = a
n

k  = 1

aikbkj

cij = aij + bij

Expansion by the first row is used to evaluate each of the 3 � 3 determinants,
resulting in

The 2 � 2 determinants are evaluated using Equation (C.2), yielding

  = -31

 -  (2){[(-1)(-2) - (3)(0)] - (2)[(2)(-2) - (3)(2)] - [(2)(0) - (-1)(2)]}

 | A | = (2)[(3)(1) - (1)(-2)] + [(-1)(1) - (1)(0)]

 -  (2) ` 2 3
2 - 2

` + (-1) ` 2 -1
2 0

` b
 | A | = (2) ` 3 1

-2 1
` - (-1) ` -1 1

0 1
` - 2a(1) ` -1 3

0 - 2
`

EXAMPLE C . 2
Calculate Ax where

A = D1 2 4 -1
2 3 0 4
1 2 6 2
0 2 3 1

T  x = D 1
4

-1
2

T
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C.4 SYSTEMS OF EQUATIONS
Consider the system of n simultaneous equations which are to be solved for the n
unknowns x1, x2, . . . , xn,

(C.9)

Using the definitions of matrix addition and matrix multiplication, the system of
Equation (C.9) is written in matrix form as

where

(C.10)

Cramer’s rule can be used to solve for the components of x,

(C.11)

where Bi is the matrix obtained by replacing the ith column of A with y. Thus if A is sin-
gular, a solution of Equation (C.9) exists only for certain forms of y. Since its rows are lin-
early dependent when the matrix is singular, the solution corresponding to special forms of
y is not unique.

An equation in a system of equations can be replaced, without affecting the solution
of the system, by an equation obtained by multiplying the equation by a scalar and
adding or subtracting it from another equation. The equations can be so manipulated
until one of the equations only has one unknown. This is the basis of the Gauss elimi-
nation method.

x i =

| B i |

| A |

A = Da11 a12
Á a1n

a21 a22
Á a2n

o o ∞ o

an1 an2
Á ann

T  x = Dx1

x2

o

xn

T  y = Dy1

y2

o

yn

T
Ax = y

a11x1 + a12x2 +
Á

+ a1nxn = y1

a21x1 + a22x2 +
Á

+ a2nxn = y2

  
o
     

o
         

o
      

o

an1x1 + an2x2 +
Á

+ annxn = yn

SO LU T I ON
The product of a 4 � 4 matrix and a four-dimensional column vector is a four-dimensional
column vector,

Ax = D (1)(1) + (2)(4) + (4)(-1) + (-1)(2)
(2)(1) + (3)(4) + (0)(-1) + (4)(2)
(1)(1) + (2)(4) + (6)(-1) + (2)(2)
(0)(1) + (2)(4) + (3)(-1) + (1)(2)

T = D 3
22
7
7

T
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Matrix formulation of the equations expedites the application of Gauss elimination.
The n � n coefficient matrix is augmented with the right-hand side vector to form an
n � (n � 1) matrix. Each row of the augmented matrix represents one equation. The Gauss
elimination procedure is applied by performing manipulations on the rows of the aug-
mented matrix such that coefficients below the diagonal become zero. The elimination pro-
cedure results in a coefficient matrix with all zeros below its diagonal. Back substitution is
used to determine the solution.

C.5 INVERSE MATRIX
If A is a nonsingular n � n matrix, then a matrix A�1, called the inverse of A, exists such that

(C.12)

If A�1 is known, Equation (C.9) can be solved by premultiplying both sides by A�1,

(C.13)

If y is a column vector with all zeros except yi � 1, then A�1y is the ith column of A�1.
This provides the basis of an extension of Gauss elimination which is used to determine
A�1. The coefficient matrix is augmented by the n � n identity matrix. The procedure used
in Gauss elimination is applied until the identity matrix appears in place of the original
matrix. The matrix that augments the identity matrix is A�1.

A-1Ax = x = A-1y

AA-1
= A-1A = I

EXAMPLE C . 3
Determine the inverse of

SO LU T I ON
Gauss elimination is applied to the following matrix:

Gauss elimination is used to develop zeros below the diagonal of the coefficient matrix

The procedure of Gauss elimination is used to eliminate the zeros above the diagonal
of the coefficient matrix. Each row is divided by the value of the element along the

C2 -1 0 1 0 0
0 5 -4 1 2 0
0 0 7

2 1 2 5
2

S

C 2 -1 0 1 0 0
-1 3 -2 0 1 0

0 -2 3 0 0 1
S

A = C 2 -1 0
-1 3 -2

0 -2 3
S
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C.6 EIGENVALUE PROBLEMS
The eigenvalues of an n � n matrix, A, are the values of � such that the system of equations

(C.14)

has a nontrivial solution. The nontrivial solution corresponding to an eigenvalue is called
an eigenvector. Equation (C.14) can be rewritten as

(C.15)

From Cramer’s rule, Equation (C.11), the solution for xi is

Thus, for each , unless

(C.16)

The determinant of Equation (C.16) can be expanded by a row or column expansion.
This yields an nth-order polynomial equation of the form

(C.17)

called the characteristic equation. Equation (C.17) has n roots, and A has n eigenvalues.
Since the coefficients in Equation (C.17) are all real, if complex eigenvalues occur, they
occur as complex conjugate pairs.

If � is an eigenvalue of A, then Equation (C.14) has a nontrivial solution, an eigen-
vector. From Equation (C.l6), the matrix A � �I is singular. Thus the equations defin-
ing the components of the corresponding eigenvector are not all independent and the
eigenvector is not unique. The eigenvector is unique only to an arbitrary multiplicative
constant.

ln
+ C1l

n - 1
+ C2l

n - 2
+

Á
+ Cn - 1l + Cn = 0

| A - lI | = 0

i = 1, Á , n, x i = 0

x i =

0

| A - lI |
  i = 1, Á n

(A - lI)x = 0

Ax = lx

diagonal of the matrix that has taken the place of the original coefficient matrix. 
The result is

Thus

A-1
= D5

7
3
7

2
7

3
7

6
7

4
7

2
7

4
7

5
7

T

D1 0 0 5
7

3
7

2
7

0 1 0 3
7

6
7

4
7

0 0 1 2
7

4
7

5
7

T
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If A is an n � n singular matrix, then one of its eigenvalues is zero. If A is nonsingu-
lar, then the eigenvalues of A�1 are the reciprocals of the eigenvalues of A. The eigenvec-
tors of A�1 are the same as the eigenvectors of A.

EXAMPLE C . 4
Determine the eigenvalues and eigenvectors of the matrix

SO LU T I ON
The eigenvalues of A are determined by finding the values of � satisfying Equation (C.16),
which for this example become

Expansion of the determinant by its first row gives

When the 2 � 2 determinants are expanded by using Equation (C.2), the following cubic
equation is obtained:

The eigenvalues are the roots of the cubic equation which are 0.609, 2.227, and 5.164. The
eigenvector corresponding to the smallest eigenvalue is obtained by solving

The first equation gives x1 � 0.719x2. The third equation gives x3 � 0.836x2. When these
relationships are substituted into the second equation, it is identically satisfied. Thus x2
remains arbitrary and the eigenvector of A corresponding to � � 0.609 is

where C1 is an arbitrary constant. The same procedure is followed yielding the eigenvectors
corresponding to the second and third eigenvalues. These are

respectively.

C2C -4.41
  1
  2.59

S   C3C -0.316
  1
-0.924

S

C1C0.719
1
0.836

S

C   1.391 -1   0
-1   2.391 -2

  0 -2   2.391
S C x1

x2

x3

S = C0
0
0
S

-l3
+ 8l2

- 16l + 7 = 0

(2 - l) c3 - l -2
-2 3 - l

d - (-1) ` -1 -2
0 3 - l

` = 0

C2 - l -1 0
-1 3 - l -2
0 -2 3 - l

S = 0

A = C 2 -1 0
-1 3 -2

0 -2 3
S
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C.7 SCALAR PRODUCTS
Let u, v, and w be arbitrary real n-dimensional column vectors. A scalar product is an oper-
ation among two of these vectors yielding a real value. The scalar product of u and v is
denoted by (u, v). The scalar product must satisfy four requirements.
1. The scalar product is commutative. That is,

(C.18)

2. For any real �,

(C.19)

3. The scalar product is distributive

(C.20)

4. (C.21)

and if and only if  (C.22)

The definition of a scalar product is not unique. The standard scalar product is defined as

(C.23)

Two vectors, u and v, are said to be orthogonal with respect to a scalar product if

(C.24)

A matrix A is said to be positive definite with respect to a scalar product if

(C.25)

and if and only if (C.26)u = 0(Au, u) = 0

(Au, u) Ú 0

(u, v) = 0

(u, v) = uTv

u = 0(u, u) = 0

(u, u) Ú 0

(u + v, w) = (u, w) + (v, w)

(au, v) = a(u, v)

(u, v) = (v, u)

EXAMPLE C . 5
Show that if A is a positive-definite symmetric matrix, then

(C.27)

is a valid scalar product where (u, v) is the standard scalar product defined by Equation (C.23).

SO LU T I ON
In order for Equation (C.27) to represent a valid scalar product, it is necessary to show that
the four properties of Equations (C.18) through (C.22) are true, knowing that they are true
for the standard scalar product.

1.

(u, v)A = (Au, v)

(u, v)A = (Au)Tv Equations (C.23) and (C.27)
    = uTATv  Equation (C.9)
    = uTAv   symmetry of A
    = (u, Av) Equation (C.23)
    = (Av, u) Equation (C.18)
    = (v, u)A  Equation (C.27)
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2. For any real �,

3.

4. The validity of the property 4 for this definition of the scalar product follows directly
from the positive definiteness of A, Equations (C.25) and (C.26).

(u + v, w)A = 3A(u + v)4T w
      = 3(Au)T

+ (Av)T4 w
      = (Au)Tv + (Av)Tw
      = (u, w)A + (v, w)A

(au, v)A = a(Au)Tv
    = a(u, v)A

The concept of scalar products can be extended to continuous functions. Any operation
between two continuous functions that results in a scalar and obeys Equations (C.18)
through (C.22) is a valid scalar product. For example, for two functions f (x) and g(x) that are
everywhere continuous between x � 0 and x � 1, a valid scalar product is

(C.28)(  f , g ) =

L

1

0
f  (x)g (x) dx



Consider a beam of total length L, subject to arbitrary end constraints. Let z be a coordi-
nate along the neutral axis of the beam. The beam has n intermediate simple supports at
z � zi, i � 1, 2, . . . ,  n. It is desired to calculate the deflection of the beam as a function
of z due to a concentrated unit load applied at z � a. If y(z) is the deflection of the neutral
axis of the beam, measured positive downward from the horizontal, then use of the usual
assumptions of linear elastic beam theory leads to

(D.1)

where w(z) represents the loading, E is the elastic modulus of the beam, and I is the
moment of inertia of the cross-sectional area about the neutral axis.

The intermediate supports are replaced by concentrated loads. The analysis requires
the deflection to be zero at the intermediate supports.

The mathematical representation for a concentrated load of magnitude P applied at
z � a is Pd(z � a) where d(z) is the unit impulse function. Thus the loading function w(x)
for the beam of Figure D.1 is written as

(D.2)

where Ri, i � 1, . . . ,  n, are the reactions at the intermediate supports. Equation (D.2) is
substituted into Equation (D.1) and the resulting equation is integrated three times, using
Equation (A.5), giving

(D.3)EI 
d 3y

dz 3 = u(z - a) + a
n

i  = 1

Riu(z - z i  
) + C1

w(z) = d(z - a) + a
n

i  = 1

Ri 
d(z - z i  

)

EI 
d 4y

dz 4
= w(z)

Appendix D

DEFLECTION OF BEAMS SUBJECT
TO CONCENTRATED LOADS

FIGURE D.1
Deflection equation for beam with intermediate supports
due to a unit concentrated load is developed by represent-
ing the load and the support reactions using the unit
impulse function.

1z

z1

zn

a

842



Deflection of Beams Subject to Concentrated Loads 843

(D.4)

(D.5)

(D.6)

where C1, C2, C3, and C4 are constants of integration which are determined upon applica-
tion of the appropriate boundary conditions.

The appropriate boundary conditions depend on the type of support at the bound-
aries. Table D.1 provides the boundary conditions for different types of support. Two
boundary conditions are applied at each end of the beam. Thus, n � 4 equations are
applied to determine the n �4 unknowns, n intermediate support reactions, and four
constants of integration.

+ C1

z 3

6
+ C2

z 2

2
+ C3z + C4

EIy =

1

6
 (z - a)3u(z - a) +

1

6a
n

i  = 1

Ri(z - z i 
)3u(z - z i 

)

+ C1

z 2

2
+ C2z + C3

EI 
dy

dz
=

1
2

 (z - a)2u(z - a) +

1

2a
n

i  = 1

Ri(z - z i 
)2u(z - z i )

EI 
d 2y

dz 2 = (z - a)u (z - a) + a
n

i  = 1

Ri (z - z i 
)u (z - z i 

) + C1z + C2

T A B L E D . 1

Boundary Boundary
End Condition Condition Condition

Free

Fixed y � 0

Pinned y � 0 EI 
d 2y

dx 2 = 0

dy

dx
= 0

EI 
d 3y

dx 3 = 0EI 
d 2y

dx 2 = 0

EXAMPLE D . 1
Determine the deflection of a beam fixed at x � 0 and pinned at z � L due to a unit con-
centrated load applied at z � a, 0 	 a 	 L.

SO LU T I ON
From Table D.1, the appropriate boundary conditions are

d 2y

dz 2
2
z  = L

= 0    (d  )
dy

dz
2
z  =  0

= 0    (b)

y (L) = 0   (c)y (0) = 0   (a)



844 APPENDIX D

Boundary conditions are applied to the beams of Table D.2, resulting in the evaluation
of constants and, if applicable, intermediate reactions for each beam. Equation (D.6) is
used to calculate the deflection of the beam at any point.

Application of (a) to Equation (D.6) yields C4 � 0. Application of (b) yields C3 � 0.
Application of (c) and (d) yields the following equations:

respectively. The preceding equations are solved simultaneously, yielding

C2 = a a1 -

a
L
b a1 -

a
2L
b

C1 =

1
2

 a1 -

a
L
b c a a

L
b2

- 2
a
L

- 2 d

LC1 + C2 = - (L - a)

L3

6
C1 +

L2

2
C2 = -

1

6
(L - a)3
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T A B L E D . 2

The deflection, y(z), of a uniform beam of elastic modulus E and cross-sectional moment of inertia I due to a unit concentrated
load applied at z � a is

where Ri is the reaction at an intermediate support located at z � zi. The forms of the constants and the intermediate reactions
for common beams are given as follows.

1.

2.

3.

4.
C1 = - a1 -

a
L
b2a1 +

2a
L
b  C3 = 0

C2 = a a1 -

a
L
b2           C4 = 0

C1 =

1

2
 a1 -

a
L
b  c a a

L
b2

- 2
a
L

- 2 d  C3 = 0

C2 =

1
2

a a1 -

a
L
b a2 -

a
L
b          C4 = 0

C2 = 0        C4 = 0

C1 =

a
L

- 1  C3 =

aL
6

 a1 -

a
L
b a2 -

a
L
b

C1 = -1  C3 = 0

C2 = a     C4 = 0

y (z) =

1
EI

 c1
6

 (z - a)3u(z - a) +

1
6 a

n

i =  1
Ri(z - z i)

3u(z - z i ) + C1

z 3

6
+ C2

z 2

2
+ C3z + C4 d

1

Fixed-free

a

1

Pinned-pinned

a

1

Fixed-pinned

a

1

Fixed-fixed

a

C1 = -

3
2

+

3a
2z1

+

1
2

 a1 -

a
z1

b3

u (z1 - a)     C3 = 0

C2 =

z1

2
 a1 -

a
z1

b c1 - a1 -

a
z1

b3

u (z1 - a) d  C4 = 0

R1 =

1
2

-

3a
2z1

-

1
2

 a1 -

a
z1

b3

u (z1 - a)

C1 =

a
z1

- 1  C3 = - a1 -

a
z1

b z 2
1

6
c a1 -

a
z1

b2

u(z1 - a) - 1 d
C2 = 0     C4 = 0

R1 = -

a
z1

1

Fixed-free with overhang

z1

a

1

Pinned-free with overhang

a

z1

5.

6.



Lalanne reports the following integral formulas:

(E.1)

(E.2)

and

(E.3)

In general,

(E.4)

where

(E.5)In =

4z
p

 v
n - 3

n - 3
+ 2(1 - 2z2)In - 2 - In - 4

In =

4z
p L

vn

(1 - v2)2
+ (2zv)2 dv

+

1
p

 C  tan -1 
v + 21 - z2

z
+  tan -1 

v - 21 - z2

z
S

=

z

2p21 - z2
 ln 
v2

- 2v21 - z2
+ 1

v2
+ 2v21 - z2

+ 1
  

I2 =

4z
p L

v2

(1 - v2)2
+ (2zv)2 dv

I1 =

4z
p L

v

(1 - v2)2
+ (2zv)2 d v =

1

p21 - z2
 tan -1 

2z21 - z2

1 - 2z2
- v2

+

1
p

 C  tan -1 
v + 21 - z2

z
+  tan -1 

v - 21 - z2

z
S

=

z

2p21 - z2
 ln 
v2

+ 2v21 - z2
+ 1

v2
- 2v21 - z2

+ 1
  

I0 =

4z
p L

1

(1 - v2)2
+ (2zv)2 d v

Appendix E

INTEGRALS USED IN RANDOM VIBRATIONS
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The software programs, collectively called VIBES, are available at the website
www.cengage.com/engineering/kelly. It contains programs written in MATLAB and
associated with the calculations involved with vibrations problems and the resulting
graphs that can be generated. VIBES also contains all programs that are used in the text
in examples, to generate plots, or to simply perform calculations. The following is a
brief description of each program that comprises VIBES. The descriptions are arranged
in order that they would be useful in the text.

SPRING.m Designs a helical coil spring.

BEAM_STIFFNESS.m Determines the stiffness of a uniform fixed-free beam as a
function of distance from the fixed support.

BEAM_MASS.m Determines the equivalent mass of a uniform fixed-free beam as a
function of distance from the fixed support.

MACHINE_A.m Calculates the natural frequency of a machine mounted on a fixed-
pinned beam including inertia effects of the beam.

DIVER.m Provides natural-frequency calculations for a diver on a diving board that
is modeled as a continuous fixed-pinned beam.

FREE_VISCOUS.m Provides the free-vibration response of a system with viscous
damping.

FREE_COULOMB.m Provides the free response of a system with Coulomb damping.

SUSPENSION_A.m Provides the response of a simplified SDOF model of a sus-
pension system when the vehicle encounters a pothole in the road.

MAGNIF.m Provides analysis of problems using M(r, z).

LAMBDA.m Provides analysis of problems using Λ(r, z).

TRANS.m Provides analysis of problems using T(r, z).

SUSPENSION_B.m Analysis of SDOF model of suspension system as it traverses
a sinusoidal road contour.

ISOL.m Aids in the design of a vibration isolation system.

ISOL_FREQ2.m Aids in the design of a vibration isolation system to protect the
foundation over a range of frequencies.

M_C.m Provides analysis of problems using MC(r, i).

FOURIER_A.m Provides analysis of a machine with a periodic rectangular pulse.

FOURIER_B.m Uses symbolic algebra to develop the response of a SDOF system
due to a periodic input.

Appendix F

VIBES

847

www.cengage.com/engineering/kelly
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FOURIER_ISOL. Aids in the design of vibration isolators to protect a foundation
from periodic inputs.

CONVOL.m Provides symbolic integration of the convolution integral to solve
SDOF problems subject to a general excitation.

LAPLACE.m Provides the Laplace transform solution for a SDOF system due to an
arbitrary excitation.

PIECEWISE.m Provides numerical integration of the convolution integral using
piecewise constants to interpolate the excitation.

RESPONSE_SPECT.m Uses a MATLAB program ODE45.m to numerically inte-
grate the differential equation and develop the response spectrum due to any type of
excitation.

ISOL_EFF.m Calculates the values of Q(z) and S(z).

SUSPENSI0N_2DOF.m Develops a two DOF model for the natural frequencies
and mode shapes for a vehicle suspension system.

FORCED_2.m Symbolically determines the steady-state response of a two DOF
system.

ABSORB.m Aids in the design of a undamped vibration absorber.

FIXED_FREE.m Develops the flexibility matrix for a six DOF model of a fixed-
free beam for equally spaced nodes.

FIXED_FIXED.m Calculates the flexibility matrix for an nDOF model of a fixed-
fixed beam. Nodes may be at any location along axis of the beam.

FREE_FREE.m Develops the stiffness matrix for a nDOF model of a free-free
beam.

DESIGN_BEAM.m Provides support for the design of a fixed-pinned beam using a
three DOF model.

NDOF_FREE.m Determines the natural frequencies and mode shapes for an nDOF
system given the mass matrix and the stiffness matrix.

SIMPLY_MASS.m Calculates the natural frequencies and mode shapes for a
nDOF model of a simply supported beam with a machine attached by a spring.

PROPORTIONAL_FREE.m Calculates the natural frequencies and mode shapes
for a four DOF model of a system with proportional damping.

SUSPENSION_4.m Calculates the natural frequencies and damping ratios for a
four DOF model of a suspension system.

FORCED_N.m Determines the steady-state response of an nDOF system due to a
single frequency harmonic exciation.

MODAL_3.m Provides modal analysis on a specific three DOF system given the
system input.

FIXED_PINNED_ISOL.m Determines the steady-state response of a machine
attached to a fixed-pinned beam through an undamped isolator. The machine is sub-
ject to a harmonic excitation.
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FIXED_PINNED_ISOLD.m Determines the steady-state response of a machine
attached to a fixed-pinned beam through a damped isolator. The machine is subject to
a harmonic excitation.

FIXED_PINNED_GENERAL.m Uses modal analysis to develop response of a
machine attached to a fixed-pinned beam through a damped isolator. The machine is
subject to an arbitrary excitation.

SUSPESNI0N_6.m Uses numerical integration of the convolution integral to
develop a six DOF model of a vehicle suspension system due to any type of road contour.

FIXED_FREE_CONT.m Calculates the natural frequencies, mode shapes, and
normalization constants for a continuous system model of a fixed-free beam.

FIXED_PINNED_CONT.m Calculates the natural frequencies, mode shapes, and
normalization constants for a continuous systems model of a fixed-pinned beam.

FIXED_SPRING_CONT.m Calculates the natural frequencies, mode shapes, and
normalization constants for a continuous systems model of a beam fixed at one end
and attached to a linear spring at its other end.

PINNED_SPRING_CONT.m Calculates the natural frequencies, mode shapes,
and normalization constants for a continuous systems model of a beam that is pinned
at one end and attached to a linear spring at its other end.

TORSIONAL_CONT.m Plots the mode shapes for the torsional oscillations of a
shaft that is pinned at one end and has a disk attached at its other end.

FREQ_RESPONSE_CONT Uses a continuous systems model to develop the fre-
quency response for a beam fixed at one end with a machine attached at its other end.
The machine is subject to a frequency squared excitation.

RAYLEIGH_RITZ.m Uses a Rayleigh-Ritz method to aid in the design a fixed-
pinned beam.

ASSUMED_FREE.m Uses the assumed modes method to determine the natural
frequencies and mode shapes of a tapered bar with an attached mass and linear spring.

ASSUMED_FORCED.m Uses the assumed-mode method to determine the forced
response of a tapered bar with an attached mass and linear spring.

VARIABLE_AREA.m Develops the local mass and stiffness matrices for a beam
element whose cross-sectional properties vary across the span of the element.

SHAFT_FEM. Uses the finite-element method to approximate the natural frequen-
cies and mode shapes for torsional oscillation of a free-free shaft with rotors at the end.

FIXED_PINNED_FREE.m Uses a finite-element method to calculate the natural
frequencies and mode shapes of a fixed-pinned beam with a machine at its midspan.

FIXED_PINNED_FORCED.m Uses a finite-element method to calculate the
forced response of a fixed-pinned beam with a machine at its midspan.

SIMPLY-SUPPORTED_FEM Uses a finite-element method to determine the
forced response of a simply supported beam with a discrete mass-spring system attached
at its midspan.

DUFFING.m Numerically integrates Duffing’s equation.
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free vibrations of SDOF systems and,
171–172

pendulum and, 5
Algebra, linear

definitions, 833
determinants, 834–835
eigenvalue problems in, 838–839
equation systems in, 836–837
inverse matrix in, 837–838
matrix operations in, 835–836
scalar products in, 840–841

Amplitude
of absolute displacement, 292
acceleration, ratio of, 292
Buckingham Pi theorem and, 215
change in, for system with 

Coulomb damping, 188
defined, 141
equations, 770
of motion of mass relative to base, 291
near primary resonance, 770
of response due to frequency-squared

excitation, 291
state plane showing, 757

steady-state, 444, 596
near superharmonic resonance, 770
of transmitted force, 292

Analytical solutions, numerical 
solutions v., 748

Analytical tools, for identifying 
and classifying chaos, 762

Angular coordinate, 66–68, 118
Angular displacement

of thin disk, 89–92
of transmission system shaft, 105–106

Angular impulse, 33–34, 36
Angular momentum, 36
Applied loading, 500–501
Arbitrary combination, of springs, 118
Arbitrary function of time, probability 

distribution for, 787–788
Archimedes’ principle, 69
Assumed modes method

admissible functions in, 726
defined, 690
equation, 726
finite-element method and, 690–693
longitudinal bar and, 690–695
MATLAB script for, 692
twice differentiable 

approximation in, 700
Assumptions

displacement, 97–100
in mathematical modeling, 4–5
rigid body, validity of, 633
small angle, 97–100, 118

Attached disk end condition, 642
Attached inertia element end 

condition, 654, 657
Attached mass end condition, 654, 657
Attractors, 743
Autocorrelation function

equations, 816
power spectral density and, 804–807
probability distributions and, 794–797

Auxiliary mass-spring system, 414–415
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B
Back substitution, 837
Bandlimited white noise, 806–807
Bar. See also Longitudinal bar

admissible functions of, 726
fixed-free, 705–708
four-bar truss, 722–726
free-free, 698–699

Bar element
degrees of freedom of, 726
in finite-element method, 696–700, 705,

726–727
kinetic energy of, 696
potential energy of, 697
uniform bar element equations, 727

Base
harmonic excitations of, 232
mass displacement relative 

to base, 291, 371
motion problems, convolution integral

for, 371
transient vibrations due to excitation of,

330–332
Basic laws of nature, 6
Basis functions, piecewise-defined, 694
Beam(s). See also Simply supported beam;

Transverse beam vibrations
admissible functions of, 726
cantilever, 117, 545–546
dynamic deflection of, 81–83
element, in finite-element method,

700–705, 726–727
elementary theory of, 10

Beam(s)
fixed-free, 483–484, 702–703, 714
fixed-pinned, 541–543, 708–713, 782
free-free, 497, 515–517, 655
mode shapes, 656–657, 660, 674,

702–703, 713–714
natural frequencies, 656–657, 

702–703, 714
pinned-free, 655
pinned-pinned, 704–705
scalar products for Rayleigh-Ritz 

method, 669
stiffness, 60–61, 117
subject to concentrated loads, 

deflection of, 843–845
uniform beam element equations, 727

Beating, 210–211, 290
Bell-shaped curve, 789, 814

Benchmark problems, 3, 27. See also Machine
on floor of industrial plant; Suspension
system

Bifurcation diagrams, 765
Biomechanics, vibration analysis and, 3
Body force, 6
Boundary conditions. See also End conditions

for deflection of beams subject to 
concentrated loads, 843–845

geometric, 690, 705, 726
globally applied, 726
linear spring, 654, 656
natural, 690, 726
for second-order systems, 641–642
for torsional oscillations of circular shaft,

641–642
for transverse beam vibrations, 653–654

Boundary layer, 227
Buckingham Pi theorem

amplitude and, 215
in dimensional analysis, 3, 11–13
frequency response and, 411–412
nondimensional variables and, 11–12

Buoyancy, in modeling of SDOF 
systems, 69–70

Buoyant force, 69

C
Cantilever beam

circular, 545–546
stiffness, 117

Carbon nanotubes
length-to-diameter ratio of, 4
natural frequencies and mode shapes of,

655, 658–659
Center, equilibrium point as, 745
Center of percussion, 34
Central limit theorem, 792–793
Centroidal moment of inertia, 76
Chaos

analytical tools for identifying and 
classifying, 762

bifurcation diagrams for, 765
defined, 761
Fourier transforms for, 762, 764–765
nonlinear vibrations and, 761–768
observation of, 761–762
Poincaré sections for, 762–763
state planes and, 766–767
state space for, 762
universal features of, 764
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Characteristic equation
defined, 838
mode shapes and, 536
natural frequencies and, 536
roots of, 187

Chemical laboratory structure, 351–353,
365–366

Choleski decomposition, 568
Circular cantilever beam, 545–546
Circular cylinders

added mass for, 84
moment of inertia of, 77, 84
vortex shedding from, 225–228

Circular shaft, tapered, 668–671. See also
Torsional oscillations, of circular shaft

Classification, of vibration, 11
Closed Adams formula, 346
Closed form, differential equations in, 594
Coefficient matrix, 837
Column

girder v., 633
vectors, 833, 835

Combination, of springs
arbitrary combination of, 118
combinations, in SDOF system 

modeling, 62–68
general combination of, 66
parallel combination of, 62, 117
series combination of, 62–63, 118

Combination resonances, 759–761
Commutativity, 557
Compactor, 109–111
Complex form, Fourier series in, 797
Complex frequency, 259–260, 266
Complex roots, 536
Complex scalar products, 557
Compression waves, 633–634
Concentrated loads, 843–845
Concentrated mass, 635
Conservation of mass, 6
Conservation of momentum, 6
Conservative forces, 22, 68
Conservative system, Lagrange’s 

equations for, 518
Consistent mass matrix, 500
Constants of integration, 138
Constitutive equations, 6
Continuous functions, scalar products 

extended to, 841
Continuous systems

defined, 11

examples of, 633–634
in modeling of MDOF systems, 461,

499–502
mode shapes of, 635, 638
natural frequencies of, 635
nonlinear, 760–761
principal coordinates for, 639
uniform, scalar products for, 638

Continuous systems, vibrations of
differential equations for, 635–636
end conditions for, 642
energy methods for, 667–671
expansion theorem for, 639, 761
general method for, 636–639
important concepts, 676–677
important equations, 677–678
introduction to, 633–636
machine on floor of industrial 

plant and, 672–676
nonlinear, 760–761
partial differential equations for, 635–636
Rayleigh-Ritz method for, 669–671, 677
Rayleigh’s quotient for, 668–669
second-order systems, 639–651
separation-of-variables method 

for, 635, 637, 676
simply supported beam and, 660–663
transverse beam vibrations, 651–666

Continuum assumption, 4
Convolution, of Laplace transform, 831
Convolution integral

derivation of, 315–318
nonlinear systems and, 738
numerical evaluation of, 340–344, 372
numerical integration of, 618–619
for principal coordinates, 624–625
for relative displacement in base motion

problems, 371
solution, 444
for step response, 372
for system with general damping, 625
transient vibrations of SDOF systems

and, 314–318, 325
for underdamped system, 371

Coordinates. See also Generalized coordinates;
Principal coordinates

angular, 66–68, 118
local system of, 696, 726

Coulomb damping
amplitude changes for system with, 188
differential equations for system with, 260
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Coulomb damping (Continued )
from dry sliding friction, 172
free vibrations of SDOF systems 

and, 138, 160–167
harmonic excitation of SDOF systems

and, 260–264
kinetic coefficient of friction 

and, 160, 164
magnification factor for, 293
motion ceasing due to, 188
viscous damping v., 163–164

Coupling, 398–399, 480
Cramer’s rule, 535
Critically damped free vibrations, 140,

154–160, 187
Cross correlations, 797
Cube, added mass for, 84
Cubic nonlinearity

defined, 739
excitation frequency and, 755
forced vibrations of SDOF systems 

with, 753–759
Cyclic motion, 141
Cylinders. See also Circular cylinders

in piston-cylinder arrangement, 72–73
square, 84

D
D’Alembert’s principle, 20, 36
Damped Duffing’s equation, 745–746,

752–753
Damped natural frequency, 149, 187
Damped period, 148, 187
Damped system

critically damped, 140, 154–160, 187
free response of, 443
steady-state solution of, 624
viscously damped, 214–220

Damped vibration(s)
absorbers, 420–424, 441–442, 444
critically damped, 140, 154–160, 187
overdamped, 140, 156–160, 187
viscously damped, 11

Dampers. See also Viscous damper
Houdaille, 424
torsional, 642
vibration, 424–425, 642

Damping. See also Coulomb damping;
General damping; Hysteretic 
damping; Proportional damping;
Viscous damping

components, 55
energy harvesting and, 272–273
force, 71
matrix, 400, 482, 572
in MDOF systems, 534
other forms of, free vibrations of SDOF

systems and, 171–173
ratio, 138–139, 187, 216–217, 244
shock spectrum and, 350, 353
in structural systems, 569, 609

Dashpot
in mass-spring-dashpot system, 228–231
piston-cylinder arrangement, 72–73
simple model, 71–72
viscous damping from, 172

Decoupled system, 399
Deflection. See also Static deflection

of beams subject to concentrated loads,
843–845

boundary conditions for, 843–845
dynamic, 81–83
loading function for, 842

Deformable materials, 633
Degenerate system

defined, 534
as special case, 545–548

Degrees of freedom. See also Multiple 
degree-of-freedom systems; Single
degree-of-freedom systems; Two
degree-of-freedom systems

of bar element, 726
of beam element, 726
global, geometric boundary conditions

reducing, 705
of rigid body, 8
in vibration classification, 11

Delayed exponential function, 327
Delayed impulse, 326
Delayed ramp function, 326
Delayed sine function, 327
Delayed step function, 326
Dependent variables

defined, 7–8
transcendental function of, 739

Derivatives, Laplace transform of, 
828–829

Determinants, in linear algebra, 
834–835

Deterministic systems, 781–782
Detuning parameter, 756, 770
Diagonal matrix, 480, 500, 833
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Diagrams. See also Free-body diagram
bifurcation, 765
in mathematical modeling, 6–7
stress–strain, 167–168

Differential, 467
Differential eigenvalue problem, 638
Differential equations. See also Linear 

differential equations; Partial 
differential equations

in closed form, 594
energy method of derivation, 384

Differential equations 
FBD method for deriving, 56, 384–387,

461–467
for forced vibrations of SDOF systems,

290, 313–314
for free vibrations of MDOF systems,

533, 571–572
for free vibrations of SDOF systems,

138–140, 187
for harmonic excitations, 214, 260,

594–596
for mass sliding on surface with 

friction, 188
mass-spring system governed by, 118
matrix formulation of, 478–483, 519
of motion, derivation of, 

384–387
nonlinear, 737, 769
numerical solution of, 344–350
pendulum motion governed by, 97–98,

738–739
for principal coordinates, 443, 584, 624
for response of system with Coulomb

damping, 260
separable, 637
for two degree-of-freedom systems,

383–387, 400, 411
for undamped forced vibrations due to

single-frequency excitation, 208
for undamped systems, 624
uses of, 3–4
vibrations of continuous systems and,

635–636
viscous damper governed by, 118
for viscously damped system subject to 

single-frequency harmonic 
excitation, 214

Dimensional analysis, 3, 11–13
Dimensional frequencies, for simply support-

ed beam, 567

Dimensionless parameters, physical 
meaning of, 12

Discrete mass, displacement of, 711
Discrete viscous dampers, 74–75
Displacement

absolute, 291–292
angular, 89–92, 105–106
assumption, 97–100
base, 291, 371
of discrete mass, 711
Duffing’s equation as functionof, 750
in force-displacement relationships, 

6, 117
force relationships with, 6, 117
harmonic, 634
linear, as generalized coordinate, 118
mass, relative to base, 291
node, 695
of particles, 10
second spatial derivative of, 700

Distributed parameter systems. See
Continuous systems

Drag coefficient, 12
Dry sliding friction, 138, 172
Duffing’s equation

damped, 745–746, 752–753
forced, 746
as function of displacement, 750
nonlinear vibrations and, 741, 743–747,

750, 769
primary resonance of, 756–757
two-term expansion for free 

vibrations of, 770
undamped, 743–744, 751, 770
unforced, 743–746, 751–752

Dynamically coupled system, 
398–399, 480

Dynamical matrix, 535
Dynamic beam deflection, 81–83
Dynamics

kinematics in, 16–18
kinetics in, 18–21
principle of impulse and momentum in,

24–27, 36
principle of work and energy in, 

22–24, 36
review of, 16–27

Dynamic vibration absorber
added to primary system, 12–13
in two degree-of-freedom systems,

414–419



858 Index

E
Earth, as inertial reference frame, 4
Earthquakes. See also Seismic vibration meas-

urement instruments
ground motion of, 313
randomness of, 781
shock spectrum and, 350

Eccentric circular cam, 232
Effective forces, 461
Eigenvalue

in differential eigenvalue problem, 638
in eigenvalue-eigenvector problem, 536,

565–566
equilibrium points and, 769
in linear algebra, 838–839
MATLAB routines for, 566
real, 557

Eigenvector
defined, 838
in eigenvalue-eigenvector problem, 536,

565–566
multiple of, 534

Elastic body, particles in, 10
Elastic elements, as springs, 59–60
Elastic mounting, 234
Elastomers, isolator made of, 244
Electrical circuit components, 

in combination, 63
Elementary beam theory, 10
End conditions

attached disk, 642
attached inertia element, 654, 657
attached mass, 654, 657
fixed, for transverse vibrations of 

beam, 654
fixed, for vibrations of continuous 

systems, 642
fixed-attached mass, 657
fixed-fixed, 656, 845
fixed-free, 656, 845
fixed-linear spring, 656
fixed-pinned, 657, 845
free, 642, 654
free-free, 656
pinned, 654
pinned-free, 845
pinned-linear spring, 657
pinned-pinned, 656, 845
torsional damper, 642
torsional spring, 642
viscous damper, 654

End supports, solvability conditions for,
655–657

Energy. See also Kinetic energy; Potential energy
loss per cycle, due to hysteretic 

damping, 188
methods, 384, 667–671
non-conservative forces adding or 

dissipating, 1–2
principle of, 22–24, 36
sources, 55–56
stored, from energy harvesting, 2
strain, 59
viscous damping dissipating, 74–76

Energy harvesting
average power harvested by, 293
damping and, 272–273
harmonic excitation of SDOF systems

and, 268–273
MEMS systems and, 268, 286–288
stored energy from, 2

Energy scalar products
complex, 557
defined, 552
extended to continuous functions, 841
of free vibrations of MDOF systems,

552–555
kinetic energy scalar product, 553,

556–557, 584, 638, 677
in linear algebra, 840–841
notation of, 554
potential energy scalar product, 552–553,

584, 700
for Rayleigh-Ritz method, 669–670
requirements of, 840
for uniform continuous system, 638

Ensemble processes, 782–783
Equation systems, in linear algebra, 836–837
Equilibrium

points, 744–745, 769
vertical position, 1–2

Equivalent mass, 76–79
Equivalent systems method, in modeling of

SDOF systems, 56, 100–106
Ergodic processes, 784, 816
Euler method, 344–345
Euler’s identity, 543
Even periodic function, 248
Excitation frequency. See also Single-frequency

excitation
natural frequency equaling, 210, 290
of system with cubic nonlinearity, 755
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Expansion theorem
equation, 677
for free vibrations of MDOF systems,

561, 584
for vibrations of continuous systems, 

639, 761
Expected value, of random variables, 786
Explicit assumptions, 5
Exponential function, 327
External force field, gravity as, 5
External source, in modeling of SDOF 

systems, 84–86

F
FBD. See Free-body diagram
Finite-element method

accuracy of, 705
applications, 689
assumed modes method and, 690–693
bar element in, 696–700, 705, 726–727
beam element in, 700–705, 726–727
general method for, 693–696
global matrix in, 705–708, 726
important concepts, 726
important equations, 726–727
introduction to, 689–690
machine on floor of industrial plant 

and, 708–713
MATLAB scripts for, 718–719, 722, 

724, 726
nodes in, 689
Rayleigh-Ritz method and, 689–690
software for, 696
transformation matrix in, 708
undetermined coefficients in, 722

First derivative, transform of, 829
First Shifting Theorem, 829
First spatial derivative, 700
Fixed-attached inertia element, 657
Fixed-attached mass end condition, 657
Fixed end condition

for transverse vibrations of beam, 654
for vibrations of continuous systems, 642

Fixed-fixed end condition, 656, 845
Fixed-free bar, 705–708
Fixed-free beam, 483–484, 702–703, 714
Fixed-free elastic shaft, 699–700
Fixed-free end condition, 656, 845
Fixed-linear spring end condition, 656
Fixed-pinned beam, 541–543, 708–713, 782
Fixed-pinned end condition, 657, 845

Flexibility influence coefficients, 461,
491–497

Flexibility matrix
equation, 519
in lumped-mass modeling of continuous

systems, 500
in modeling of MDOF systems, 461,

492–497
mode shapes from, 584
stiffness matrix v., 497

Flow-monitoring device, 237
Flywheels, 548–549
Focus, 745
Forced Duffing’s equation, 746
Force-displacement relationships

constitutive equations developing, 6
for linear spring, 117

Forced response of system, 444, 737
Forced vibrations

defined, 11
for discrete system, 726
with forcing function, equation for, 677
of longitudinal bar, 690–692
second-order systems and, 650–651
torsional oscillations of circular shaft and,

650–651
transverse beam, 662–666
in undamped system, due to single-fre-

quency excitation, 208–213
in viscously damped system subject to sin-

gle-frequency harmonic excitation,
214–220

Forced vibrations, of MDOF systems
harmonic excitations and, 594–599
important concepts, 623–624
important equations, 624–625
introduction to, 593–594
Laplace transform method for, 593,

599–603
machine on floor of industrial plant,

615–616
Forced vibrations, of MDOF systems 

modal analysis for, 594, 603–614
nonlinear, 760
numerical solutions for, 614
short-term behavior and, 593
suspension system and, 616–619
undetermined coefficients for, 

593–594, 624
Forced vibrations, of SDOF systems

with cubic nonlinearities, 753–759
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differential equation describing, 290,
313–314

harmonic excitation and, 205–206,
208–220

Forced-vibration solution, 639
Force spectra, 353–356
Force vector, 479
Forcing function, 677
Forge hammer, 357–358, 361
Four-bar truss, 722–726
Fourier coefficients, 249
Fourier series

in complex form, 797
representation, 207, 246–250, 292

Fourier transforms
for chaos, 762, 764–765
mean square value of response 

and, 808
for nonperiodic functions, 798–800
pair, 798, 816
Parseval’s identity, 797, 802, 816
random vibrations and, 797–802
in terms of f, 802
transfer functions, 801–802

Fourth-order systems, 636
Free-body diagram (FBD)

defined, 3
for differential element of shaft, 640
for differential equation derivation, 56,

384–387, 461–467
generalized coordinates and, 87
in general method for vibrations of con-

tinuous systems, 636
Lagrange’s equations v., 267
in mathematical modeling, 6–7
in modeling of MDOF systems, 461–467
in modeling of SDOF systems, 87–94
Newton’s laws applied to, 3, 87
springs and, 87–88
of transverse beam vibrations, 652
of viscous damping, 73–74

Free end condition
for transverse vibrations of beam, 654
for vibrations of continuous systems, 642

Free-free bar, 698–699
Free-free beam, 497, 515–517, 655
Free-free end condition, 656
Free response

of damped system, 443
of two degree-of-freedom systems with

viscous damping, 396–398, 443

of undamped two degree-of-freedom sys-
tems, 393–395, 443

of underdamped system, 187
Free torsional response, free-vibration solu-

tions for, 643–646
Free vibrations

critically damped, 140, 154–160, 187
of Duffing’s equation, two-term expan-

sion for, 770
overdamped, 140, 156–160, 187
properties for simply supported 

beam, 665
transverse beam, 654–661
underdamped, 140, 147–154

Free vibrations, of MDOF systems
degenerate system, 545–548
differential equations governing, 533,

571–572
energy scalar products of, 552–555
expansion theorem for, 561, 584
general solution, 543–545
general viscous damping in, 571–574
important concepts, 583
important equations, 584–585
introduction to, 533–534
machine on floor of industrial plant and,

574–576
MATLAB script for, 543
mode shapes and, 534–543, 555–560,

565–568
natural frequencies and, 536–543,

555–558, 565–568
nonlinear, 759–760
normal mode solution, 534–536, 584
principal coordinates in, 534, 562–565
proportional damping in, 568–571, 584
Rayleigh’s quotient and, 534, 558,

560–562
simply supported beam and, 566–568
special cases, 545–552
suspension system and, 576–577
undamped system, 187, 533
unrestrained system, 548–552

Free vibrations, of SDOF systems
aerodynamic drag and, 171–172
Coulomb damping and, 138, 160–167
critically damped, 140, 154–160, 187
defined, 11
differential equation, standard form of,

138–140, 187
hysteretic damping and, 138, 167–171
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important concepts, 185–186
important equations, 186–188
introduction to, 137–138
machine on floor of industrial plant 

and, 175–177
nonlinear vibrations, 749–753
numerical integration for, 750
other forms of damping in, 171–173
overdamped, 140, 156–160, 187
suspension system and, 174–175
undamped, 11, 140–147, 187, 533
underdamped, 140, 147–154

Free-vibration solutions
for free torsional response, 643–646
in general method, 637–639, 677
mode shapes and, 646–650
natural frequencies and, 646–650
product solution, 677
for second-order systems, 642–650
for torsional oscillations of circular shaft,

642–650
Frequency ratio, 215–217, 291
Frequency response

Buckingham Pi theorem and, 411–412
curves, 215
in harmonic excitation of SDOF systems,

207–208, 217–218
in two degree-of-freedom systems, 411–414
vibration absorber and, 444

Frequency-squared excitations
amplitude of response due to, 291
equation, 291
general theory, 220–222
in harmonic excitation of SDOF systems,

220–228
rotating unbalance, 222–224, 238,

284–286, 291–292
special case of, 207, 238
vibration isolation from, 238–241
vortex shedding from circular cylinders,

225–228
Friction

dry sliding, 138, 172
energy dissipated by, 1–2
kinetic coefficient, 160, 164, 556–557
mass sliding on surface with, 188

G
Gauss elimination, 837
Gaussian density function distribution, 

normalized, 789

Gaussian process
central limit theorem and, 792
normalized, 815
probability density function for, 815
probability distribution for, 789–790
random variables and, 788–790

General combination, of springs, 66
General damping. See also Systems with gen-

eral damping
convolution integral solution for, 625
modal analysis for, 611–614
viscous, in free vibrations of MDOF 

systems, 571–574
General excitation, response due to, 318–323
Generalized coordinates

angular coordinate as, 66–68, 118
coupling relative to, 480
defined, 3, 8–9
in FBD method, 87
global, 696
as linear combinations of principal coor-

dinates, 565
linear displacement as, 118
in two degree-of-freedom systems, 383

Generalized forces, 474
Generalized stiffness influence coefficients,

485
General method

equation, 677
for finite-element method, 693–696
forced-vibration solution in, 639
free-vibration solution in, 637–639, 677
problem formulation in, 636–637
for vibrations of continuous systems,

636–639
General periodic excitations

Fourier series representation, 207,
246–250, 292

harmonic excitation of SDOF systems,
246–254

system response due to, 250–253, 292
vibration isolation for multifrequency and

periodic excitations, 253–254
General perturbation expansion, 770
General shape, moment of inertia of, 77
General solution, for free vibrations of

MDOF systems, 543–545
Geometric boundary conditions

defined, 690, 726
global degrees of freedom reduced by, 705

Geometric constraints, 6
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Geometric nonlinearity, 5, 738
Girders, columns v., 633
Global degrees of freedom, geometric bound-

ary conditions reducing, 705
Global generalized coordinates, 696
Globally applied boundary conditions, 726
Global matrix

in finite-element method, 705–708, 726
mass, 705–708
stiffness, 705–706
transformation, 708

Golf cart suspension system. See Suspension
system

Gram-Schmidt orthogonalization 
process, 556

Gravity
diagram, 6
in modeling of SDOF systems, 68–69,

94–96
as only external force field, 5
potential energy due to, 118
static deflection and, 94–96
static spring forces and, 769

Ground motion, of earthquakes, 313

H
Hamilton’s Principle, 518
Hand and upper arm model, 513–515
Hardening spring, 741
Harmonic displacement, surge and, 634
Harmonic excitation, of SDOF systems

complex representations, 259–260
Coulomb damping and, 260–264
deterministic systems, 782
energy harvesting and, 268–273
forced vibrations in, 205–206, 208–220
frequency response in, 207–208, 

217–218
frequency-squared excitations, 220–228
general periodic excitations, 246–254
helical coil springs and, 243
hysteretic damping and, 265–267
important concepts, 289–290
important equations, 290–293
introduction to, 205–208
machine on floor of industrial plant 

and, 273–274
multifrequency excitations, 244–246
resonance and, 210, 263
response due to excitation of support,

228–233

seismic vibration measurement instru-
ments and, 207, 255–259

in suspension system, 274–281
vibration isolation in, 207, 234–244

Harmonic excitations
of base, 232
differential equations for, 214, 260,

594–596
forced vibrations of MDOF systems and,

594–599
homogeneous solution and, 594
of support, 228–233

Harmonic functions, 795
Harmonic loading, 782
Harmonic motion, simple

equation, 35
introduction to, 14–16

Harmonic response, of two degree-of-freedom
systems, 401–404

Harmonic torque, 650
Helical coil springs

as continuous system, 633–634
harmonic excitations of SDOF systems

and, 243
in modeling of SDOF systems, 

57–58, 117
Homogeneous response, 207, 209
Homogeneous solution

harmonic excitations and, 594
short-term transient motion influenced

by, 314
Houdaille damper, 424
Hysteretic damping

coefficient, 168
energy loss per cycle due to, 188
equivalent viscous damping ratio for, 188
free vibrations of SDOF systems and,

138, 167–171
harmonic excitation of SDOF systems

and, 265–267
isolators and, 243–244
magnification factor for, 293
mathematical modeling of, 168–169
from spring, 172
viscous damping v., 169, 266

I
Ideal gas, pressure waves in, 643
Identity matrix, 833
Impedance matrix, 599, 624
Implicit assumptions, 4–5
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Impulse. See also Unit impulse
angular, 33–34, 36
delayed, 326
due to force, 36, 371
principle of, 24–27, 36

Impulsive forces, 85, 315
Impulsive response equations, 371–372
Independent mode shapes, 556
Independent variables, 7–8
Industrial sewing machine, 236–237, 282
Inertia, moment of

angular coordinate used as generalized
coordinate and, 118

centroidal, 76
of three-dimensional bodies, 77, 84

Inertia components
added mass, 83–84
inertia effects of springs, 79–83, 118

Inertia elements
attached, 654, 657
equivalent mass, 76–79
in modeling of SDOF systems, 55–56,

76–84
Inertia influence coefficients, 497–499
Inertial reference frame, earth as, 4
Integrals, used in random vibrations, 846. 

See also Convolution integral
Integration

constants of, 138
direct, 827
numerical, 618–619, 750

Internal resonance, 759, 761
Interpolating function, 340–344
Inverse matrix, 837–838
Inversion of transform, 829–831
Isolation, vibration

from elastic mounting, 234
from frequency-squared excitations,

238–241
in harmonic excitation of SDOF systems,

207, 234–244
for multifrequency excitations, 253–254
for periodic excitations, 253–254
practical aspects of, 241–244
protection with, 234
due to rotating unbalance, 292
for short-duration pulses, 357–361

Isolator
classes, 243
design, 242, 360
efficiency, reciprocal of, 372

elastomers in, 244
hysteretic damping and, 243–244
maximum stiffness of, 241
static deflection and, 241, 283–284

J
Jacobi’s method, 566
Joint probability distributions, 793–797
Jump phenomenon, 756–757, 759–760

K
Kinematics, in dynamics, 16–18
Kinetic coefficient of friction

Coulomb damping and, 160, 164
orthogonality of, 556–557

Kinetic energy
of bar element, 696
Lagrange’s equations and, 460
quadratic form of, 497
scalar product, 553, 556–557, 584, 

638, 677
of SDOF systems, 23

Kinetics, of particles
basis of, 3
in dynamics, 18–21
Newton’s second law and, 18
rigid-body problems, 19–20

L
Lag, 15
Lagrange’s equations

for conservative system, 518
FBD v., 267
kinetic energy and, 460
in modeling of MDOF systems, 460,

467–478
non-conservative systems and, 474, 518

Lagrangian, 518
Laplace transform(s)

convolution of, 831
defined, 827
of derivatives, 828–829
direct integration obtaining, 827
equations, 371–372, 624
First Shifting Theorem of, 829
for forced vibrations of MDOF systems,

593, 599–603
inversion of, 829–831
linear differential equation solutions with,

831–832
linearity of, 827–828
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Laplace transform(s) (Continued )
method, 332–336, 408
properties, 829
Second Shifting Theorem, 829–830
solutions using, 332–336
table of, 827
transfer functions and, 314, 404,

801–802
transient vibrations of SDOF systems

and, 314, 332–336
two degree-of-freedom systems and,

408–410
uses, 332

Laws of nature, 6
Length-to-diameter ratio, nanotube, 4
Linear algebra

definitions, 833
determinants, 834–835
eigenvalue problems in, 838–839
equation systems in, 836–837
inverse matrix in, 837–838
matrix operations in, 835–836
scalar products in, 840–841

Linear differential equations
Laplace transform solutions with,

831–832
matrix form and, 478–483, 519
second-order linear ordinary, 56

Linear displacement, as generalized 
coordinate, 118

Linear process, deterministic, 781
Linear spring

boundary conditions, 654, 656
fixed-linear spring end condition, 656
in modeling of SDOF systems, 57, 117
pinned-linear spring end condition, 657
potential energy in, 117

Linear superposition, principle of, 253, 257
Linear systems

equivalent systems method for, 56
matrix formulation of differential 

equations for, 478–483, 519
nonlinear systems v., 5
SDOF, 66
two degree-of-freedom, 383

Linear vibrations, 11
Loading function, for deflection of beams

subject to concentrated loads, 842
Local coordinate system, 696, 726
Logarithmic decrement, 149–150, 187
Longitudinal bar

assumed modes method and, 690–695
forced vibrations of, 690–692
longitudinal oscillations of, 643
scalar products for Rayleigh-Ritz 

method, 669
stiffness, 117

Longitudinal oscillations, of bar, 643
Longitudinal vibrations, 59
Lumped-mass modeling

accuracy of, 566
flexibility matrix in, 500
in modeling of MDOF systems, 499–502

M
Machine on floor of industrial plant

finite-element method and, 708–713
forced vibrations of MDOF systems 

and, 615–616
free vibrations of MDOF systems 

and, 574–576
free vibrations of SDOF systems 

and, 175–177
harmonic excitation of SDOF systems

and, 273–274
introduction to, 27–28
modeling of MDOF systems 

and, 502–505
modeling of SDOF systems and, 106–107
random inputs of, 782–783
transient vibrations of SDOF systems

and, 361–362
two degree-of-freedom systems 

and, 425–427
vibrations of continuous systems 

and, 672–676
Machine tool chatter, 2
Magnetic field, 182–184
Magnification factor, 215–216, 218, 291, 293
Manometer, U-tube, 742–743, 764–765, 768
Mass

added, as inertia component, 83–84
attached, end condition for, 654, 657
concentrated, 635
conservation of, 6
discrete, displacement of, 711
displacement, relative to base, 291, 371
equivalent, 76–79
fixed-attached, end condition, 657
increased, 242
mass sliding on surface with friction,

differential equation for, 188
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in mass-spring-dashpot system, 228–231
sprung, 107
unsprung, 427

Mass matrix
consistent, 500
global, 705–708
in modeling of MDOF systems,

479–482, 497–499
symmetric, 480

Mass-spring-dashpot system, 228–231
Mass-spring system

auxiliary, 414–415
differential equation governing, 118

Material nonlinearity, 5, 738
Mathematical modeling

assumptions, 4–5
basic laws of nature in, 6
constitutive equations in, 6
diagrams in, 6–7
geometric constraints in, 6
of hysteretic damping, 168–169
problem identification in, 4
results, physical interpretation of, 7
solution obtained in, 7
of vibrations, 4–7

Mathematical solution, 7
MATLAB

for assumed modes method, 692
eigenvalue routines in, 566
for finite-element method, 718–719, 722,

724, 726
for free vibrations of MDOF systems, 543
for modal analysis, 614
for transient vibrations of SDOF systems,

347–350
VIBES program and, 847–849

Matrix. See also Flexibility matrix; Global
matrix; Mass matrix; Stiffness matrix

coefficient, 837
damping, 400, 482, 572
defined, 833
diagonal, 480, 500, 833
dynamical, 535
equation systems and, 836–837
formulation of differential equations,

478–483, 519
identity, 833
impedance, 599, 624
inverse, 837–838
iteration method, 566
modal, 563

operations, 835–836
singular, 835
symmetric, 480, 833
transformation, 708
transpose of, 833

MDOF systems. See Multiple 
degree-of-freedom systems

Mean, 786, 815
Mean square value, 786, 815–816
Mean square value of response

Fourier transform and, 808
random vibrations and, 808–812

Mean value theorem, 653
MEMS systems. See Micro-electromechanical

systems
Micro-electromechanical (MEMS) systems

accelerometers in, 92
energy harvesting and, 268, 286–288
vibrations used by, 2–3

Milling machine, 242–243, 
347–348, 423–424

Minor, 834
Missile, instability of, 515–517
Modal analysis

defined, 603
for forced vibrations of MDOF systems,

594, 603–614
for general damping, 611–614
MATLAB program for, 614
proportional damping and, 603–611
rotating unbalance and, 606–608
summarized, 604, 612
for transverse beam, 662
for undamped systems, 603–611

Modal fraction, 443
Modal matrix, 563
Modeling, lumped-mass

accuracy of, 566
flexibility matrix in, 500
in modeling of MDOF systems, 499–502

Modeling, mathematical
assumptions, 4–5
basic laws of nature in, 6
constitutive equations in, 6
diagrams in, 6–7
geometric constraints in, 6
of hysteretic damping, 168–169
problem identification in, 4
results, physical interpretation of, 7
solution obtained in, 7
of vibrations, 4–7
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Modeling, of MDOF systems
continuous systems in, 461, 499–502
FBD method for, 461–467
flexibility influence coefficients in, 461,

491–497
flexibility matrix in, 461, 492–497
important concepts, 517–518
important equations, 518–519
inertia influence coefficients in, 497–499
introduction to, 459–461
Lagrange’s equations applied to, 460,

467–478
lumped-mass modeling, 499–502
machine on floor of industrial plant and,

502–505
mass matrix in, 479–482, 497–499
matrix formulation of differential equations

for linear systems, 478–483, 519
partial differential equations and, 499
potential energy in, 460–461, 485
stiffness influence coefficients in, 461,

483–492
stiffness matrix in, 479–483, 486–492,

496–497
suspension system and, 506–508
three degree-of-freedom model, 463–464

Modeling, of SDOF systems
buoyancy in, 69–70
displacement assumption in, 97–100
equivalent systems method in, 56,

100–106
external source in, 84–86
FBD method for, 87–94
gravity in, 68–69, 94–96
helical coil springs in, 57–58, 117
important concepts, 116–117
important equations, 117–118
inertia elements in, 55–56, 76–84
introduction to, 3, 55–56
linear spring in, 57, 117
machine on floor of industrial plant and,

106–107
small angle assumption in, 97–100, 118
springs, 56–62
springs in combination, 62–68
static deflection in, 94–96
suspension system and, 107–108
viscous damping, 55, 71–76

Mode shapes
for beams, 656–657, 660, 674, 702–703,

713–714

characteristic equation 
and, 536

of continuous systems, 
635, 638

determination of, 565–568
equations defining, 584
from flexibility matrix, 584
of free-free bar, 698–699
free vibrations of MDOF systems 

and, 534–543, 555–560, 565–568
free-vibration solutions and, 

646–650
independent, 556
matrix iteration method for, 566
of nanotube, 655, 658–659
normalized, 558–560, 584, 

646–650, 660, 677
normal mode solution of, 388, 443,

534–536
orthogonality of, 556–558, 584
properties of, 555–558
Rayleigh-Ritz method for, 566
two degree-of-freedom systems 

and, 388–393
Moment equation, 36
Moment of inertia

angular coordinate used as generalized
coordinate and, 118

centroidal, 76
of three-dimensional bodies, 77, 84

Momentum
angular, 36
conservation of, 6
principle of, 24–27, 36

Multifrequency excitations
harmonic excitation of SDOF 

systems, 244–246
vibration isolation for multifrequency,

253–254
Multiple degree-of-freedom (MDOF) 

systems. See also Forced vibrations, 
of MDOF systems; Free vibrations, 
of MDOF systems; Modeling, of
MDOF systems

analysis of, 460
damping in, 534
defined, 10
eigenvalue-eigenvector problem and, 536
nodes in, 500
nonlinear vibrations in, 759–760

Multiple scales method, 755
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N
Nano-electromechanical (NEMS) systems, 2–3
Nanotubes

length-to-diameter ratio of, 4
natural frequencies and mode shapes 

of, 655, 658–659
Narrowband process, 805
Natural boundary conditions, 690, 726
Natural frequencies

for beams, 656–657, 702–703, 714
characteristic equation and, 536
of continuous systems, 635
damped, 149, 187
determination of, 565–568
excitation frequency equaling, 210, 290
of fixed-free elastic shaft, 699–700
of free-free bar, 698–699
free vibrations of MDOF systems 

and, 536–543, 555–558, 565–568
free-vibration solutions and, 646–650
matrix iteration method for, 566
of motion, 139, 141
of nanotube, 655, 658–659
nondimensional, 658–659, 665
numerical solutions and, 614
properties of, 555–558
Rayleigh-Ritz method for, 566
of SDOF system, 186
for simply supported beam, 660–661
from stiffness matrix, 584
of tapered circular shaft, 668–671
of transverse vibrations, 546
two degree-of-freedom systems 

and, 388–393, 417
of zero, 548, 556

Nature, laws of, 6
Negative roots, 536
Negative slope pulse, 356
NEMS systems. See Nano-electromechanical

systems
Newton’s second law

applied to FBD, 3, 87
equations, 36
kinetics of particles and, 18

Nodes
displacement of, 695
equilibrium points as, 744–745
in finite-element method, 689
in MDOF systems, 500
in two degree-of-freedom systems, 

389, 400

Non-conservative forces
defined, 84
energy added or dissipated by, 1–2
virtual work by, 518
viscous damping, 74–76

Non-conservative systems, Lagrange’s 
equations and, 474, 518

Nondimensional frequencies, for simply 
supported beam, 567

Nondimensional natural frequencies,
658–659, 665

Nondimensional partial differential equation,
for transverse beam vibrations, 677

Nondimensional variables, Buckingham 
Pi theorem and, 11–12

Nondimensional wave equation, 643
Nonlinear differential equations, 737, 769
Nonlinearity

cubic, 739, 753–759
geometric, 5, 738
material, 738
quadratic, 740, 760
sources, 738–743

Nonlinear systems
continuous, 760–761
convolution integral and, 738
deterministic input and, 781
linear systems v., 5
MDOF, 759–760
parameters influencing, 766–767
period of, 770
physical, 5, 737
qualitative analysis of, 743–747
quantitative analysis of, 747–748
SDOF, with elastic element, 741
viscous damping influencing, 753

Nonlinear vibrations
chaos and, 761–768
in continuous systems, 760–761
defined, 11
Duffing’s equation and, 741, 

743–747, 750, 769
exact solutions for, 747–748
forced vibrations of MDOF systems, 760
forced vibrations of SDOF systems 

with cubic nonlinearities, 753–759
free vibrations of MDOF systems,

759–760
free vibrations of SDOF systems,

749–753
important concepts, 769
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Nonlinear vibrations (Continued)
important equations, 769–770
introduction to, 737–738
jump phenomenon and, 756–757,

759–760
in MDOF systems, 759–760
multiple scales method for, 755
nonlinearity sources, 738–743
qualitative analysis of, 743–747
quantitative analysis of, 747–748
resonance conditions and, 755–756
superposition principle absent for,

737–738
Nonperiodic excitation, 313
Nonperiodic functions, Fourier transform 

for, 798–800
Nonuniform expansion, 755
Normalization constraint, 558–559
Normalized Gaussian density function 

distribution, 789
Normalized Gaussian process, 815
Normalized mode shapes, 558–560, 584,

646–650, 660, 677
Normalized random variable, 815
Normal mode solution

for free vibrations of MDOF systems,
534–536, 584

of mode shapes, 388, 443, 534–536
separation-of-variables method and, 635

Notation, scalar product, 554
Numerical integration

of convolution integral, 618–619
for free vibrations of SDOF systems, 750

Numerical methods
Adams’ formulas, 346
Euler method, 344–345
for forced vibrations of MDOF systems,

614
numerical evaluation of convolution inte-

gral, 340–344, 372
numerical solution of differential equa-

tions, 344–350
predictor-corrector, 346
Runge-Kutta methods, 345–346, 349, 353
self-starting, 344
for transient vibrations of SDOF systems,

340–350
Numerical solutions

analytical solutions v., 748
of differential equations, 344–350
natural frequencies and, 614

O
Odd periodic function, 247
One-story structure

chemical laboratory, 351–353, 
365–366

as continuous system, 633–634
random input and, 783

Open Adams formula, 346
Optimum damped vibration absorber,

421–422, 441–442, 444
Orthogonality

of kinetic coefficient of friction, 556–557
of mode shapes, 556–558, 584

Output, mean square value of, 816
Overdamped free vibrations, 140, 

156–160, 187
Overshoot, 151

P
Parallel combination, of springs, 62, 117
Parametrically excited system, 743
Parseval’s identity, 797, 802, 816
Partial differential equations

modeling of MDOF systems and, 499
nondimensional, for transverse 

beam vibrations, 677
separable, 637
vibrations of continuous systems and,

635–636
wave equation, 642–643

Particles. See also Kinetics, of particles
acceleration of, 35–36
in elastic body, 10
position vector of, 16–17
relative displacement of, 10
on rigid body, 10
velocity of, 35–36

Pendulum
aerodynamic drag and, 5
differential equation governing motion of,

97–98, 738–739
internal resonance of, 759
torsional, 182–184

Period doubling, through subharmonic
cascade, 768

Periodic excitations. See also General periodic
excitations

Fourier series representation, 207,
246–250, 292

harmonic excitation of SDOF systems,
246–254
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system response due to, 250–253, 292
vibration isolation for, 253–254

Periodic motion, 141
Perturbation methods

general expansion, 770
period approximated with, 751
secular terms removed by, 748, 753

Phase
angle, 15, 291
near primary resonance, 770
plane, 746–747
state plane showing, 757
steady-state, 444

Physical problems, wave equation governing,
642–643

Physical systems
deterministic inputs of, 781–782
nonlinear, 5, 737

Piecewise constants, 341, 343
Piecewise-defined basis functions, 694
Piezoelectric transducer, 255
Pinned end condition, 654
Pinned-free beam, 655
Pinned-free end condition, 845
Pinned-linear spring end condition, 657
Pinned-pinned beam, 704–705
Pinned-pinned end condition, 656, 845
Piping system, simply supported, 633–634
Piston-cylinder arrangement, 72–73
Planar motion, rigid body undergoing, 36
Poincaré sections, 762–763
Position vector, of particles, 16–17
Potential energy

of bar element, 697
function, 57
due to gravity, 118
in linear spring, 117
in modeling of MDOF systems,

460–461, 485
quadratic form of, 460
scalar product, 552–553, 584, 700
sources, 55, 68–71

Potential flow theory, 83
Power spectral density

autocorrelation function and, 804–807
equation, 816
measured values of, 810
narrowband process and, 805
random vibrations and, 803–807
wideband process and, 804–805

Predictor-corrector method, 346

Pressure waves, in ideal gas, 643
Primary resonance, 756–757, 

760–761, 770
Principal coordinates

for continuous system, 639
convolution integral solution for,

624–625
coupling and, 398–399
defined, 563
equations for, 443, 584, 624
expansion of response in terms of, 624
in free vibrations of MDOF systems, 534,

562–565
generalized coordinates as linear combina-

tions of, 565
for proportional damping, 584
for system with general damping, 625
in two degree-of-freedom systems,

398–400
Probability distributions

for arbitrary function of time, 
787–788

autocorrelation function and, 794–797
cross correlations and, 797
Gaussian, 789–790
joint, 793–797
range of values of, 815
Rayleigh, 791–792, 815
for two random variables, 793–794

Probability functions, of random variables,
784–785, 815

Problem formulation
in general method, 636–637
for second-order systems, 639–642
for torsional oscillations of circular shaft,

639–642
for transverse beam vibrations, 651–654

Problem identification, in mathematical 
modeling, 4

Product solution, for free-vibration problems,
677

Proportional damping
defined, 568
equations, 584, 624
in free vibrations of MDOF systems,

568–571, 584
modal analysis and, 603–611
principal coordinates for, 584
in structural systems, 569

Pulley, 21
Punch press, 251–254, 317–318
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Q
Quadratic form

eigenvalue-eigenvector problem and, 536
of kinetic energy, 497
of potential energy, 460
of Rayleigh’s dissipation function, 460,

482, 519
Quadratic nonlinearities, 740, 760
Qualitative analysis

of nonlinear systems, 743–747
state plane in, 743–745

Quantitative analysis, of nonlinear systems,
747–748

Quenching, 760

R
Rack-and-pinion steering system, 104–105
Railroad car couplers, 550–551
Ramp function, 326
Random inputs, 781–783
Random variables

behavior of, 782–784
central limit theorem and, 792–793
ensemble processes and, 782–783
ergodic processes and, 784, 816
expected value of, 786
functions of, 784–793
Gaussian process and, 788–790
mean of, 786, 815
mean square value of, 786, 815–816
normalized, 815
probability distribution for arbitrary func-

tion of time, 787–788
probability functions of, 784–785, 815
Rayleigh distribution and, 791–792, 815
standard deviation of, 786
stationary processes and, 783–784, 816
two, probability distributions for,

793–794
variance of, 815

Random vibrations
behavior of random variable 

and, 782–784
defined, 11
Fourier transforms and, 797–802
functions of random variable and,

784–793
important concepts, 814–815
important equations, 815–816
integrals used in, 846
introduction to, 781–782

joint probability distributions and,
793–797

mean square value of response and,
808–812

power spectral density and, 803–807
suspension system and, 812–813

Rayleigh distribution, 791–792, 815
Rayleigh-Ritz method

coefficients in, 678
equations, 678
finite-element method and, 689–690
for mode shapes, 566
for natural frequencies, 566
scalar products for, 669–670
twice differentiable, 700
for vibrations of continuous systems,

669–671, 677
Rayleigh’s dissipation function, 460, 482, 518
Rayleigh’s dissipation function, quadratic

form of, 460, 482, 519
Rayleigh’s quotient

defined, 534, 558, 677
equations, 584, 678
free vibrations of MDOF systems and,

534, 558, 560–562
stationary, 561, 565
uses of, 561
for vibrations of continuous systems,

668–669
Recoil mechanisms, 155
Rectangular pulse, 332, 336, 354
Recurrence relations, 344–345
Relative acceleration equations, 36
Relative velocity equations, 36
Relativistic effects, ignored, 5
Renormalization, 753, 755
Resonance

classification of, 769
combination, 759–761
conditions, 755–756
harmonic excitation of SDOF systems

and, 210, 263
internal, 759, 761
primary, 756–757, 760–761, 770
simultaneous, 759
subharmonic, 755, 757–758, 760–761,

767
superharmonic, 757–758, 760–761, 770

Response spectrum, 315, 353–356, 364. See
also Shock spectrum

Reversed loading, 356, 369–370
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Reynolds number, involving wind-induced
oscillations, 226–228

Rigid body
assumption, validity of, 633
degrees of freedom of, 8
kinetics problems, 19–20
planar motion undergone by, 36
relative displacement of particles on, 10

Rigid foundation, 242
Rigid pipe, waterhammer waves in, 643
Rotating manometer, 768
Rotating unbalance

frequency-squared excitations, 222–224,
238, 284–286, 291–292

modal analysis and, 606–608
vibration isolation due to, 292

Rotational mode, 547
Row vectors, 833, 835
Runge-Kutta methods, 345–346, 

349, 353

S
Saddle point, 744–745
Saturation phenomenon, 760
Scalar products

complex, 557
defined, 552
extended to continuous functions, 841
of free vibrations of MDOF systems,

552–555
kinetic energy scalar product, 553,

556–557, 584, 638, 677
in linear algebra, 840–841
notation of, 554
potential energy scalar product, 552–553,

584, 700
for Rayleigh-Ritz method, 669–670
requirements of, 840
for uniform continuous system, 638

Scotch yoke, 232–233, 264
SDOF systems. See Single degree-of-freedom

systems
Second derivative, transform of, 829
Second law of thermodynamics, 6
Second-order linear ordinary differential

equation, 56
Second-order systems

boundary conditions for, 641–642
continuous, vibrations of, 639–651
forced vibrations and, 650–651
free-vibration solutions, 642–650

problem formulation for, 639–642
wave equation for, 642–643, 677

Second Shifting Theorem, 829–830
Second spatial derivative of displacement, 700
Secular terms, 748, 753
Seismic vibration measurement instruments

accelerometers, 207, 256–259
harmonic excitation of SDOF systems

and, 207, 255–259
seismometers, 207, 255–256

Seismometers, 207, 255–256, 293
Self-starting numerical methods, 344
Semidefinite systems, 496
Separable partial differential equations, 637
Separated equations, 677–678
Separation argument, 637, 655
Separation constant, 637
Separation-of-variables method

defined, 637
normal mode solution and, 635
for vibrations of continuous systems, 635,

637, 676
Series combination, of springs, 62–63, 118
Settling time, 176–177
Sewing machine, 236–237, 282
Shear stress distribution, 667
Shock isolation, 353
Shock spectrum

damping and, 350, 353
earthquakes and, 350
transient vibrations of SDOF systems

and, 350–357
Short-duration responses

maximum transmitted force for, 372
transient, 314, 357–361
vibration isolation for, 357–361

Short-term behavior, forced vibrations of
MDOF systems and, 593

Short-term transient motion, homogeneous
solution influencing, 314

Simple harmonic motion
equation, 35
introduction to, 14–16

Simplified suspension system. See Suspension
system

Simply supported beam
dimensional frequencies for, 567
free-vibration properties for, 665
free vibrations of MDOF systems and,

566–568
machine on, 672–676
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Simply supported beam (Continued )
natural frequencies for, 660–661
nondimensional frequencies for, 567
steady-state response of, 662–666
vibrations of continuous systems and,

660–663
Simply supported piping system, 633–634
Simultaneous resonances, 759
Sine function, 327
Sine pulse, 355, 362–364
Single degree-of-freedom (SDOF) systems.

See also Forced vibrations, of SDOF
systems; Free vibrations, of SDOF sys-
tems; Harmonic excitation, of SDOF
systems; Modeling, of SDOF systems;
Transient vibrations, of SDOF systems

damping ratio of, 187
defined, 10, 66
kinetic energy of, 23
linear, 66
natural frequency of, 186
with nonlinear elastic element, 741
state plane for, 743
steady-state response of, 291

Single-frequency excitation
forced vibrations in undamped system

due to, 208–213
forced vibrations in viscously damped sys-

tem subject to, 214–220
Singular matrix, 835
Sinusoidal forces, 85
Sinusoidal pulse, 355
Sinusoidal transfer functions, 408–410, 624
Slender rod, moment of inertia of, 77
Slider-crank mechanism, 245–246
Small angle assumption, 97–100, 118
Softening spring, 741
Solvability conditions, for transverse beam

vibrations, 655–657
Spatial derivatives, 700
Special cases, of free vibrations of MDOF sys-

tems
degenerate system, 545–548
unrestrained system, 548–552

Spectral density
autocorrelation function and, 804–807
equation, 816
measured values of, 810
narrowband process and, 805
random vibrations and, 803–807
wideband process and, 804–805

Sphere
added mass for, 84
moment of inertia of, 77, 84

Spring(s). See also Combination, of springs;
Helical coil springs; Linear spring

constant, 57
defined, 56
elastic elements as, 59–60
in FBD method, 87–88
force, 88
force-displacement relationships for, 117
hardening, 741
hysteretic damping from, 172
inertia effects of, 79–83, 118
introduction to, 56–57
length, change in, 58–59
in mass-spring-dashpot system, 228–231
in mass-spring system, 118, 414–415
in modeling of SDOF systems, 56–62
as potential energy source, 55
softening, 741
static deflection of, 61–62, 70–71, 94–96
static spring forces, 769
stiffness, 57, 117–118
swinging, 740
taut, transverse vibrations of, 643
torsional, 57, 157–160, 642

Sprung mass, 107
Square cylinder, 84
Stable equilibrium point, 744–745, 769
Standard deviation, 786
State plane

amplitude and phase shown by, 757
chaos and, 766–767
in qualitative analysis, 743–745
for SDOF systems, 743

State space, 762
Statically coupled system, 398–399, 480
Static deflection

gravity and, 94–96
isolators and, 241, 283–284
in modeling of SDOF systems, 94–96
of springs, 61–62, 70–71, 94–96

Static force, 94, 769
Stationary ensemble, 784
Stationary processes, 783–784, 816
Steady-state amplitude, 444, 596
Steady-state phases, 444
Steady-state response

of absolute displacement, 291
of fixed-pinned beam, 713
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of pinned-pinned beam, 704–705
of SDOF systems, 291
of simply supported beam, 662–666
trivial, 758
of two degree-of-freedom systems,

401–403, 443
viscous damping and, 402–403, 443

Steady-state solution, of undamped and
damped systems, 624

Step function, 323–326, 372, 825–826
Stiffness

beam, 60–61, 117
components, 55
isolator, 241
longitudinal bar, 117
spring, 57, 117–118
torsional, 57, 117
of vibration absorber, 427

Stiffness influence coefficients
generalized, 485
in modeling of MDOF systems, 461,

483–492
stiffness matrix and, 483

Stiffness matrix
flexibility matrix v., 497
global matrix and, 705–706
in modeling of MDOF systems,

479–483, 486–492, 496–497
natural frequencies from, 584
stiffness influence coefficients and, 483
for unconstrained systems, 496–497

Strain energy, 59
Stress–strain diagram, 167–168
Structural failure, 2
Structural systems, damping in, 569, 609
Subharmonic cascade, period doubling

through, 768
Subharmonic resonance, 755, 757–758,

760–761, 767
Summation index, 479
Superharmonic resonance, 757–758,

760–761, 770
Superposition principle, 737–738
Support, harmonic excitation of, 

228–233
Surface forces, 6–7
Surge, 633–634
Suspension system

ensemble processes and, 782–783
forced vibrations of MDOF systems and,

616–619

free vibrations of MDOF systems and,
576–577

free vibrations of SDOF systems in,
174–175

harmonic excitation of SDOF systems in,
274–281

introduction to, 28–29
modeling of MDOF systems and,

506–508
modeling of SDOF systems in, 107–108
random vibrations and, 812–813

Suspension system 
transient vibrations of SDOF systems

and, 362–365
two degree-of-freedom systems and,

427–432
Swinging spring, 740
Symmetric mass matrix, 480
Symmetric matrix, 480, 833
Systems with general damping

convolution integral solutionfor, 625
free vibrations of MDOF systems and,

571–574
modal analysis for, 611–614
principal coordinates for, 625

Systems with proportional damping, modal
analysis for, 603–611

T
Tacoma Narrows Bridge disaster, 210
Tapered circular shaft, 668–671
Taylor series expansions, 752
Thin disk

added mass for, 84
angular displacement of, 89–92
moment of inertia of, 77, 84

Thin plate
added mass for, 84
moment of inertia of, 77, 84

Third law of thermodynamics, 6
Three degree-of-freedom model, 463–464
Three-dimensional bodies

added mass for, 84
moments of inertia of, 77, 84

Time
arbitrary function of, 787–788
discretization of, 340–341
settling, 176–177

Time-dependent process, deterministic, 781
Torque, harmonic, 650
Torsional damper end condition, 642
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Torsional oscillations, of circular shaft
boundary conditions for, 641–642
forced vibrations and, 650–651
free-vibration solutions, 642–650
problem formulation for, 639–642
wave equation for, 642–643, 677

Torsional pendulum, 182–184
Torsional shaft, 669
Torsional spring, 57, 157–160, 642
Torsional stiffness, 57, 117
Torsional viscous damper, 73, 157–160
Torsion element, 697–698
Trajectories, 743
Transcendental equation, 647–648
Transcendental function, of dependent 

variable, 739
Transducer, 255–256
Transfer functions

defined, 337
equations for, 372, 816
Fourier transform, 801–802
Laplace transform and, 314, 404,

801–802
magnitude of, 810
sinusoidal, 408–410, 624
transient vibrations of SDOF systems

and, 314, 337–340
two degree-of-freedom systems and,

404–410
Transformation matrix, 708
Transient forces, 85
Transient vibrations, of SDOF systems

due to base excitation, 330–332
convolution integral and, 314–318, 325
defined, 11
forms changing at discrete times,

323–330
important concepts, 370–371
important equations, 371–372
introduction to, 313–315
Laplace transform method and, 314,

332–336
machine on floor of industrial plant and,

361–362
MATLAB scripts for, 347–350
numerical methods for, 340–350
response due to general excitation,

318–323
shock spectrum and, 350–357
short-duration responses, 314, 357–361
suspension system and, 362–365

transfer functions and, 314, 337–340
in undamped system, 325–328

Transmissibility ratio, 231
Transmission system, 105–106
Transpose, of matrix, 833
Transverse beam vibrations

boundary conditions for, 653–654
of continuous systems, 651–666
FBDs of, 652
forced, 662–666
free vibrations, 654–661
modal analysis for, 662
nondimensional partial differential equa-

tion for, 677
problem formulation for, 651–654
solvability conditions for, 655–657

Transverse vibrations, 60, 546, 643
Tree swing, 165–167
Triangular pulse, 328–330, 354, 357
Trivial steady-state response, 758
Tumbler, 282–283
Tuned vibration absorbers, 444
Two degree-of-freedom systems

coupling and, 398–399
damped vibration absorbers and, 420–424
deterministic systems, 782
differential equations for, 383–387, 

400, 411
dynamic vibration absorbers and,

414–419
frequency response in, 411–414
generalized coordinates in, 383
harmonic response of, 401–404
important concepts, 442–443
important equations, 443–444
introduction to, 23–24, 383–384
Laplace transform and, 408–410
linear, 383
machine on floor of industrial plant and,

425–427
mode shapes and, 388–393
natural frequencies and, 388–393, 417
nodes in, 389, 400
principal coordinates in, 398–400
sinusoidal transfer functions and,

408–410
steady-state response of, 401–403, 443
subject to pulse loading, 782
suspension system and, 427–432
transfer functions and, 404–410
with two inputs, 404
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undamped, 393–395, 443
with viscous damping, free response of,

396–398, 443
Two-story frame structure, 435–438
Two-term expansion, for free vibrations of

Duffing’s equation, 770

U
Unbalance, rotating

frequency-squared excitations, 222–224,
238, 284–286, 291–292

modal analysis and, 606–608
vibration isolation due to, 292

Unconstrained systems, 496–497
Uncontrolled vibrations, 2
Undamped Duffing’s equation, 743–744,

751, 770
Undamped free vibrations, of SDOF systems,

11, 140–147, 187, 533
Undamped systems

differential equations for, 624
forced vibrations in, due to single-fre-

quency excitation, 208–213
MDOF, free vibrations of, 187, 533
modal analysis for, 603–611
SDOF, free vibrations of, 11, 140–147,

187, 533
steady-state solution of, 624
transient vibrations in, 325–328
two degree-of-freedom, 393–395, 443
when excitation frequency equals natural

frequency, 290
Underdamped free vibrations, 140, 147–154
Underdamped system

convolution integral for, 371
free response of, 187
impulsive response of, 371
rectangular velocity pulse and, 336

Undetermined coefficients
equation, 624
in finite-element method, 722
for forced vibrations of MDOF systems,

593–594, 624
harmonic response of two degree-of-free-

dom systems and, 401
Unforced Duffing’s equation, 743–746,

751–752
Uniform bar element equations, 727
Uniform beam element equations, 727
Uniform continuous system, scalar products

for, 638

Uniform fixed-free beam, 702–703, 714
Uniform torsion element, 697–698
Unit impulse

function, 317, 798, 825–826
response due to, 315–318

Unit step function, 323–326, 372, 825–826
Unrestrained system

defined, 534
as special case, 548–552

Unsprung mass, 427
Unstable equilibrium point, 744–745
Unstretched length, 56
U-tube manometer, 742–743, 764–765, 768

V
Velocity

particle, 35–36
pulse, 331–332, 336

Versed sine pulse, 355, 362–364
Vertical equilibrium position, 1–2
VIBES program, 847–849
Vibration absorbers

as auxiliary mass-spring system, 414–415
damped, 420–424, 441–442, 444
defined, 384, 420
dynamic, 12–13, 414–419
frequency response and, 444
stiffness of, 427
tuning of, 444

Vibration dampers, 424–425, 642
Vibration isolation

from elastic mounting, 234
from frequency-squared excitations,

238–241
in harmonic excitation of SDOF systems,

207, 234–244
for multifrequency and periodic 

excitations, 253–254
practical aspects of, 241–244
protection with, 234
due to rotating unbalance, 292
for short-duration pulses, 357–361

Vibrations. See also Continuous systems,
vibrations of; Damped vibration(s);
Forced vibrations; Forced vibrations, of
MDOF systems; Free vibrations, of
MDOF systems; Free vibrations, of
SDOF systems; Nonlinear vibrations;
Random vibrations; Seismic vibration
measurement instruments; Transient
vibrations, of SDOF systems;
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Transverse beam vibrations
analysis of, 3, 743–748
classification of, 11
defined, 1
dynamic vibration absorber and, 12–13
important concepts, 34–35
important equations, 35–36
linear, 11
longitudinal, 59
mathematical modeling of, 4–7
MEMS systems using, 2–3
study of, 1–4
transverse, 60, 546, 643
uncontrolled, 2
viscously damped, 11

Virtual work, 468, 518
Viscous damper

differential equation governing, 118
discrete, 74–75
end condition, 654
force from, 88–89, 118
motion input and, 85–86
system, motion of, 94–96
torsional, 73, 157–160

Viscous damping
coefficient, 71, 75–76, 169, 188
Coulomb damping v., 163–164
from dashpot, 172
defined, 73
energy dissipated by, 74–76

Viscous damping 
FBD of, 73–74

general, in free vibrations of MDOF sys-
tems, 571–574

hysteretic damping v., 169, 266
modeling of SDOF systems and, 55,

71–76
as non-conservative force, 74–76
nonlinear systems influenced by, 753
ratio, 188
steady-state response and, 402–403, 443
two degree-of-freedom systems with, free

response of, 396–398, 443
work done by, 118

Viscously damped system, 214–220
Viscously damped vibrations, 11
Vortex shedding

from circular cylinders, 225–228
random, 781–782

W
Waterhammer waves, in rigid pipe, 643
Wave equation, 642–643, 677
White noise, 805–807, 812–813, 816
Wideband process, 804–805
Wiener-Khintchine equations, 804, 814, 816
Wind-induced oscillations, Reynolds number

involving, 226–228
Work

by external sources, 118
done by force, 36, 118
by non-conservative forces, 518
principle of, 22–24, 36
virtual, 468, 518
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